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Abstract: Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of
cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear
factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis
and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2
results in the expression of proteins and cytoprotective enzymes, which provide cellular protection
against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to
modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for
its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating
cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been
shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights
the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer,
diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide
future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.

Keywords: kaempferol; Nrf2 modulation; targeting Nrf2 modulation; therapeutic outcomes

1. Introduction

Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in
carcinogenesis and other diseases, playing an important role in modulating redox status
and inflammation [1]. In the context of oncology, Nrf2 targeting has been considered an
important chemotherapy and chemoprevention strategy [2]. It has been demonstrated that
the modulation of Nrf2 leads to cell protection from cancer promotion and initiation [3]. The
enhanced activation and overexpression of Nrf2 renders the cells resistant to radiotherapy
and conventional chemotherapy [4]. In addition, the quenching and production of reactive
oxygen species and free radicals-related intracellular/extracellular signaling needs to be
strictly regulated upon cellular damage [5]. Nrf2 also plays a critical role in cardiovascular
disease [6], and Nrf2 targeted activation might open new avenues in cardiovascular disease

Molecules 2022, 27, 4145. https://doi.org/10.3390/molecules27134145 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27134145
https://doi.org/10.3390/molecules27134145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1054-6720
https://orcid.org/0000-0002-1736-4404
https://orcid.org/0000-0002-8156-2069
https://orcid.org/0000-0002-2619-1656
https://orcid.org/0000-0003-4530-8706
https://doi.org/10.3390/molecules27134145
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27134145?type=check_update&version=1


Molecules 2022, 27, 4145 2 of 13

therapeutics. In addition to carcinogenesis and cardiovascular disease, studies have shown
the role Nrf2 in diabetes complications and neurological disorders [7–9].

Natural products based phytochemicals increase cancer cell death primarily by regu-
lating Nrf2 [10], leading to pro-autophagy, oxidative stress, pro-apoptosis and inhibition
of expression of cytoprotective genes [11]. Several phytochemicals exert their anticancer
or chemo preventive role by Nrf2 modulation [12]. These include quercetin, curcumin,
and resveratrol [13]. Natural Nrf2 inhibitors, such as luteolin, malabaricone, wogonin,
and ascorbic acid reduce the production of Nrf2 and thus offer chemo sensitizer and
anti-carcinogenic activity in tumors [14].

Kaempferol is a natural flavonoid extracted from tea. Other sources include kale,
grapes, citrus fruits, vegetables, beans, apple, broccoli, and tomatoes. Physically, it is
crystalline in nature with pure yellow color. It is slightly soluble in water [15], and it has
shown efficacy as an anticancer, anti-inflammatory, and anti-arthritic compound, given its
antioxidant and antiviral activity [16–18].

This review article highlights the therapeutic role of kaempferol in cancer, cardio-
vascular diseases, diabetic complications, and neurological disorders by targeting Nrf2
modulation. The current status of kaempferol targeting Nrf2 modulation is underpinned
along with the future directions that need further exploration of this versatile phytochemical.

2. Nrf2 Activation/Inhibition

Nrf2 (nuclear factor erythroid 2-related factor 2) activation results in the expression
of several proteins and cytoprotective enzymes that provide cellular protection against
reactive oxygen species (ROS), thus offering cytoprotection [19]. Nrf2 is thus believed to be
the first defense line against agents that cause cancer initiation and promotion.

Nrf2 under normal conditions is sequestered in cytoplasm and attached to its repressor
receptor known as Keap1 (Kelch-like ECH-associated protein 1) [20]. Beyond its function
in cell protection, it is implicated in a wide network regulating anti-inflammatory response
and metabolic reprogramming, i.e., a key regulator of cell fate and a strategic player in the
control of cell transformation and response to viral infections [21]. Several phytochemicals,
such as isothiocyanate, act as Nrf2 activators, binding to the SH group of keap-1 protein
and, in turn, leading to inhibition of Nrf2 degradation. Under oxidant stress conditions,
Nrf2 is translocated to the nucleus, where it induces a variety of genes involved in the
antioxidant defense [22].

Several protein kinases, i.e., AMP-activated protein kinases, tyrosine protein kinases,
and mitogen-activated protein kinases, lead to Nrf2 post-translational modifications that
trigger the release of Nrf2. These protein kinases phosphorylate Nrf2, which, in turn,
modulates its activity and stability. Such phosphorylation and consecutive activation
of Nrf2 leads to therapeutic potential in inflammatory disorders [23]. The p62 protein
is an autophagy receptor for the degradation of proteins and mitochondria. Keap 1 is
degraded after interaction with p62 protein via autophagy, in turn leading to stabilization
of Nrf2 [24,25]. On the other hand, increased phosphorylation of p62 and autophagy
impairment lead to Nrf2 activation, promoting proliferation of cancer cells. Nrf2 protein
levels are also regulated by epigenetic mechanisms, such as microRNA and methylation of
Keap 1 promoters [26].

Nrf2 also contributes to chemoresistance, proliferation, and invasion [27]. Thus, Nrf2
pro-oncogenic activation in cancer is associated with mechanisms that involve both genetic
and epigenetic alterations [28]. Nrf2 leads to cancer cell proliferation following certain
metabolic re-programming [29]. In normal cells, Nrf2 signaling cascades afford defensive
mechanisms, while attenuated Nrf2 levels lead to tumorigenesis [30,31]. For example,
Nrf2-null mice were found more susceptible to exposure to carcinogens [32]. Nrf2 is the
key transcription factor regulating antioxidant and xenobiotic exposure response. When
oxidative stress increases, Nrf2 translocates to the cell nucleus and forms heterodimer
with small Maf (sMaf) proteins. Nrf2/sMaf heterodimer binds specifically to a cis-acting
enhancer called antioxidant response element (ARE) and initiates transcription of genes
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encoding antioxidant and detoxification proteins [33]. Nrf2 modulation in cancer cells is
schematically illustrated in Figure 1.
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Figure 1. Nrf2 activation/inhibition in cancer cells. Various molecular mechanisms in cancer cells
constitute activation of Nrf2, leading to gene expression associated with progression of tumors. The
resultant effect is in the form of activation of metabolic reprogramming, enhanced cell proliferation,
drug resistance, and adaptation to stress. Nrf2 antioxidant activation also induces an imbalance in
the carbon metabolism in cancer. Keap-1; kelch-like ECH-associated proteins, Nrf2; nuclear factor
erythroid 2-related factor 2, MAF; musculoaponeurotic fibrosarcoma protein.

In human lung cancer, persistent Nrf2 modulation has been shown to result in toxicity
attenuation. Conversely, cellular response to drug therapy and ionizing radiations was
enhanced upon Nrf2 knockdown [34]. In tumor metastasis, Nrf2 modulation has been
shown to result in inhibition of pro-metastatic transcription factor Bach1 degradation,
which resulted in promoting lung cancer [35]. Furthermore, Nrf2 modulation was found to
be linked to RhoA gene activation, leading to metastasis and proliferation of breast cancer
cells [36]. A reduction in antioxidant defense or excessive production of free radicals has
been shown to lead to redox imbalance, in turn inducing cardiovascular diseases.

In diabetes mellitus, Nrf2, in addition to its protective response, exerts other significant
functions that contribute to the management of diabetes mellitus [37].

Therefore, Nrf2 targeting may pave new ways in the therapy of life-threatening
disorders including diabetes.

3. Phytochemical as Nrf2 Modulators

Among the phytochemicals, polyphenols are the most extensively studied and diver-
sified group of phytochemicals [38]. Flavonoids and phenolic acids are classified as two
major classes of polyphenols. Hydroxycinammic and hydroxybenzoic acid are classified
as main classes of phenolic acid. Further, flavonoids are classified as flavonols, flavones,
flavanol, flavonones, and isoflavone [39,40]. Various molecules and signaling pathways im-
plicated in cell death, proliferation, and differentiation are targeted by polyphenols [41–43].
The relationship between phytochemicals and Nrf2 signaling is shown in Figure 2. In the
prophylaxis of cancer, the cytoprotective role of Nrf2 was elaborated based on expression
of various genes through activation of Nrf2 signaling. Nrf2 induction by phytochemicals
has been investigated recently, showing Nrf2 activation [44].



Molecules 2022, 27, 4145 4 of 13

Molecules 2022, 27, x FOR PEER REVIEW 4 of 14 
 

in Figure 2. In the prophylaxis of cancer, the cytoprotective role of Nrf2 was elaborated 
based on expression of various genes through activation of Nrf2 signaling. Nrf2 induc-
tion by phytochemicals has been investigated recently, showing Nrf2 activation [44]. 

 
Figure 2. Nrf2 activation by phytochemicals leading to various events. MAF (musculoaponeurotic 
fibrosarcoma protein) activates antioxidant response genes by interacting with Nrf2 through ARE 
signaling, indicating that in response to electrophilic and oxidative stresses. In addition, in cancer 
cells, the imbalance in Nrf2/ARE signaling leads to drug resistance, poor prognosis, and cell pro-
liferation. So, the consecutive Nrf2 activation might cope with the consequences in a positive 
manner. 

Tea components have shown efficacy in in vitro and in vivo disease models, in-
cluding cancer [45–47]. The derivatives of betalamic acid, xanthohumol, betalains, and 
tannins have been explored to a lesser degree; nonetheless, they do exhibit efficacy in 
modulating Nrf2 [48]. Tannic acid has been shown in vitro to increase the expression of 
phase II enzymes downstream of Nrf2 [49]. Betanin was explored in hepatoma-derived 
HepG2 cell lines in hepatic cancer, showing anticarcinogenic and hepatoprotective effects 
by Nrf2 activation [50], consistent with findings with xanthohumol. In addition, xan-
thohumol via activation of Nrf2 signaling has shown anti-inflammatory efficacy in mi-
croglial BV2 cells [51]. Induction of the AMPK/GSK3β-Nrf2 pathway was shown to af-
ford protection in acute lung injury [52]. Urosolic acid was investigated in epidermal 
JB6P+ cells of a mouse skin cancer model, showing Nrf2 activation and increased anti-
oxidant efficacy [53]. 

Other phytochemicals, such as apigenin and luteolin, were evaluated in 
NSCLC/A549 cells of non-small cell lung cancer and Bel-740ADM cells of hepatocellular 
carcinoma. Both reduced protein and Nrf2-mRNA levels, resulting in anti-cancer activity 
[54,55]. Nrf2 inhibitors were also investigated for cancer treatment. Quassinoid brusatol, 
a potent inhibitor of Nrf2 that acts via stimulation of Nrf2 poly-ubiquitination, led to 
reduction in Nrf2 protein levels [28]. Studies in human xenograft myeloid leukemia 
models showed that quercetin induced apoptosis via reduction in nuclear translocation 
of Nrf2 and induction of proteasomal degradation via Nrf2 [56]. Details on selected 
phytochemicals modulating Nrf2 are shown in Table 1. 

  

Figure 2. Nrf2 activation by phytochemicals leading to various events. MAF (musculoaponeurotic
fibrosarcoma protein) activates antioxidant response genes by interacting with Nrf2 through ARE
signaling, indicating that in response to electrophilic and oxidative stresses. In addition, in cancer cells,
the imbalance in Nrf2/ARE signaling leads to drug resistance, poor prognosis, and cell proliferation.
So, the consecutive Nrf2 activation might cope with the consequences in a positive manner.

Tea components have shown efficacy in in vitro and in vivo disease models, including
cancer [45–47]. The derivatives of betalamic acid, xanthohumol, betalains, and tannins
have been explored to a lesser degree; nonetheless, they do exhibit efficacy in modulating
Nrf2 [48]. Tannic acid has been shown in vitro to increase the expression of phase II
enzymes downstream of Nrf2 [49]. Betanin was explored in hepatoma-derived HepG2
cell lines in hepatic cancer, showing anticarcinogenic and hepatoprotective effects by Nrf2
activation [50], consistent with findings with xanthohumol. In addition, xanthohumol
via activation of Nrf2 signaling has shown anti-inflammatory efficacy in microglial BV2
cells [51]. Induction of the AMPK/GSK3β-Nrf2 pathway was shown to afford protection in
acute lung injury [52]. Urosolic acid was investigated in epidermal JB6P+ cells of a mouse
skin cancer model, showing Nrf2 activation and increased antioxidant efficacy [53].

Other phytochemicals, such as apigenin and luteolin, were evaluated in NSCLC/A549
cells of non-small cell lung cancer and Bel-740ADM cells of hepatocellular carcinoma. Both
reduced protein and Nrf2-mRNA levels, resulting in anti-cancer activity [54,55]. Nrf2
inhibitors were also investigated for cancer treatment. Quassinoid brusatol, a potent
inhibitor of Nrf2 that acts via stimulation of Nrf2 poly-ubiquitination, led to reduction in
Nrf2 protein levels [28]. Studies in human xenograft myeloid leukemia models showed that
quercetin induced apoptosis via reduction in nuclear translocation of Nrf2 and induction
of proteasomal degradation via Nrf2 [56]. Details on selected phytochemicals modulating
Nrf2 are shown in Table 1.
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Table 1. Phytochemicals (non-nutrient) modulating Nrf2.

Phytochemicals Model Concentration Effects on Nrf2 References

Apigenin HepG2 cells 6.2 µM Decreased proteins and
mRNA levels of Nrf2 [57]

Sappanone RAW264.7 cells 30 µM Nrf2 increased nuclear
translocation [58]

Xanthohumol PANC-1 cells 5–10 µM
Nrf2 and DNA binding

along with Nrf2
increased expression

[59]

Sulforaphane MCF-7 cells 5, 10 and 20 µM Increased Nrf2
expression [60]

Oridinin MG-63 cells, c
nude mice 30 mg/kg Nrf2 decreased nuclear

translocation [61]

Wogonin MCF-7 cells 60 µM Decreased Nrf2
expression [62]

Genistein Laying Hen model 52.48 mg/hen Increased Nrf2
expression [63]

Resveratrol HaCaT cells 60 µM Increased nuclear level of
Nrf2 [64]

Quercetin ICR mice (male) 40–80 mg/kg Mimicked nuclear
translocation of Nrf2 [65]

Curcumin MCF-7 cells 20–40 µM Nrf2 increased
expression [66]

Piperine Wistar rats (male) 30–60 mg/kg Increased Nrf2
expression [67]

Arctigenin SD rats (male) 20 mg/kg Increased SOD
expression [68]

Combination delivery of phytochemicals has also shown significant effect through
modulation of Nrf2. Resveratrol, xanthohumol, and phenethyl isothiocyanate when co-
delivered in PANC-1 cells of pancreatic cancer have shown increased DNA and Nrf2
binding along with increased Nrf2 expression [69].

4. Pharmacological Actions of Kaempferol

Kaempferol belongs to a class of natural flavonol. Kaempferol (Figure 3) has been
shown to reduce the risk of chronic diseases, such as cancer, diabetes, obesity, and liver
injury [70,71]. Kaempferol has also been used for its anti-inflammatory potential in various
chronic and acute inflammatory conditions, such as acute lung injury, disc degenera-
tion, and colitis [15]. In acute lung injury, kaempferol, has shown efficacy in mitigating
pulmonary inflammatory responses and suppress MAPKs and NF-kB signaling path-
way [72]. In disc degeneration, kaempferol has been shown to enhance the viability of
bone marrow-derived mesenchymal stem cells through increased cell proliferation and LPS
(lipopolysaccharides)-induced cell apoptosis [73]. In colitis, kaempferol has been shown to
suppress inflammatory activity [74].
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In the hippocampus, kaempferols attenuate hippocampus apoptosis and memory
defects induced by Cd-Cl2, targeting Akt/mTOR signaling pathway [75]. It also elevates
the level of butyrate receptors, tight junction proteins, and transporters in intestinal mu-
cosa, leading to prophylactic treatment of liver injury induced by alcohol [76]. Kaempferol
has been also used for prostate cancer treatment. It promotes apoptosis and inhibits cell
proliferation [77]. By regulating vasohibin-1 and ERK signaling, kaempferol prevents high
glucose-induced injury in retinal ganglion cells [78]. In addition, kaempferol has a bone-
sparing effect via mTOR/PI3K/Akt signaling pathway [79,80]. Co-delivery of kaempferol,
quercetin, and pterostilbene has been shown to activate Nrf2 signaling pathways synergis-
tically in hepatic cells, resulted and attenuate ROS generation. Such combination leads to
increased binding of Nrf2 to ARE [81].

Promoting mitochondrial function by reduction of oxidative stress is a suitable ap-
proach for coping with oxidative stress. D-ribose accumulation in mesangial cells leads
to the production of ROS and induces advanced glycation end-products, which, in turn,
leads to apoptosis. Kaempferol via autophagy repair mechanism has shown to reverse such
effects [82]. In acute lung injury, kaempferol has been shown to reduce damage by altering
the ubiquitination of TNF receptor-associated factor-6 (TRAF6). In addition, kaempferol
via miR-181a upregulation and MAPK/ERK inactivation leads to proliferation suppression
of human gastric cancer cells [83].

The neuroprotective effect of kaempferol was evaluated in striatal injury models.
Kaempferol provided a neuroprotective effect by maintaining the integrity of the blood-
brain barrier, abating neuroinflammation, and downregulation of the toll-like receptor
4 (TLR4) signaling pathway [84]. Such effects were attributed to protein kinase B/β-
catenin cascade (AKT) upregulation and was explored in a mouse model [85], showing
reduction in DNA fragmentation and increased cell proliferation targeting PI3K/AKT
pathway [86]. Kaempferol has also been shown to inhibit uterine fibroid cells [87]. The
inflammation and oxidative stress induced by AGE-RAGE/MAPK was significantly re-
duced by kaempferol in diabetic rats [88]. Finally, kaempferol inhibits the NF-κB pathway
activation in osteoarthritis chondrocytes decreasing the level of interleukin-1β-stimulated
pro-inflammatory mediators [89].

5. Kaemperol Affects Nrf2 Activation in Different Pathological Conditions/Diseases
5.1. Cancer

In order to reduce oxidative stress in cancers, many potential signaling and molecular
pathways are involved, and kaempferol has been considered an effective agent targeting
Nrf2 signaling pathway [90]. In combating cancer, kaempferol regulates transcriptional
pathways and restores redox homeostasis, as shown in Figure 4.

The regulation of the Nrf2 signaling pathway affects various factors and other signal-
ing, which, in turn, plays a significant role in cancer [91]. Nrf2 is involved in drug resistance
during lung cancer therapy and cancer cell survival [92]. Kaempferol was evaluated for
its anti-Nrf2 inhibition potential. Lung cancer A549 and NCIH460 cell lines were used,
followed by Nrf2 reporter assay, showing reduction in protein and Nrf2 mRNA levels along
with down regulation of Nrf2 target gene transcription. Kaempferol resulted in no change
in NFκBp65 and phospho NFκBp65 levels. In addition, kaempferol-induced Nrf2 inhibition
resulted in accumulation of reactive oxygen species, sensitizing non-small cell lung cancer
cells to apoptosis [93]. Kaempferol-loaded nanoparticles were fabricated and evaluated
in a hepatocellular carcinoma model, offering a suitable delivery system for kaempferol
during hepatic cancer and Nrf2 signal modulation [94].

Modified Xiaoyao powder—Chinese traditional medicine has been used in the treat-
ment and prevention of breast cancer. Nrf2 was investigated in MCF7 breast cancer cell
line followed by determination of chemo preventive action Nrf2 knockdown and Nrf2
wild-type MCF-10A cells, showing upregulation of Nrf2 expression with reduction in
oxidative stress. The active compounds were kaempferol and quercetin [95].
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Figure 4. Kaempferol antioxidant potential via modulation of Nrf2. Reactive oxygen species
metabolism is inhibited by kaempferol via acting on Nrf2 complex. After disintegration of the
Nrf2 complex, it is translocated to the nucleus where it binds to Maf; as a result, the expression of
target genes takes place, eventually causing the inhibition of inflammation, oxidation, and induction
of autophagy.

5.2. Cardiovascular Diseases

Inflammatory responses and oxidative stress are mediators of vascular pathology [96,97].
Kaempferol has been evaluated for its protective action in vascular endothelium in a mouse
model. Kaempferol administration in cardiovascular injury significantly increased the level
of Nrf2 along with attenuation of antioxidant levels [98]. The proposed mechanism of
kaempferol on atherosclerosis is illustrated in Figure 5.
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Kaempferol led to reduction in heart Nrf2 level with elevation in the level of Keap-
1 mRNA [99]. Several drugs and targets were investigated for the management and
treatment of cardiac hypertrophy [100–102]. In this context, kaempferol’s effect on collagen
accumulation induced by angiotensin II was investigated in C57BL/6 mice, showing
that cardiac dysfunction and fibrosis induced by angiotensin II was significantly reduced
by kaempferol administration. In addition, the angiotensin II-related oxidative stress
and inflammation was prevented by kaempferol through regulation of AMPK/NRF2
signaling pathway [103]. In addition, kaempferol normalized lipid level and blood vessel
morphology with suppression of apoptosis and inflammation, secondary to activation of
Nrf2 and estrogen receptor coupled with G-proteins [104].

5.3. Diabetes Complications

Nrf2 activators are effective in mitigating diabetic complications. Nrf2 play a signif-
icant role in insulin sensitivity and beta cell function [105]. Kaempferol has been shown
to be effective against diabetic nephropathy secondary to its antioxidant potential [106].
Nrf2 levels have been shown to increase in response to kaempferol and to improve heart
function [107]. ARE driven genes transcription plays an important role in the regulation of
oxidative stress induced by transient hyperglycemia in normal beta cells [105]. Kaempferol
modulates of Nrf2 diabetic complications and delays its progression [108].

5.4. Neurological Disorders

Kaempferol has been evaluated for its therapeutic potential in neuroinflammation.
Results of the study revealed that Nrf2 binding in microglia to DNA was enhanced by
kaempferol, inhibiting neuroinflammation [109]. The neuroprotective effect of kaempferol
via Nrf2 regulation was evaluated in a rat model upon chlorpyrifos treatment, a food
contaminant and an agricultural pesticide. Results showed a significant protection through
kaempferol against neuronal damage, mediated by GSK3β and inhibition of Nrf2 induc-
tion [110]. Kaempferol also significantly (p ≤ 0.001) increased the total antioxidant capacity
and improved the memory via elevation of Nrf2 [111].

6. Kaempferol Modification during Digestion and Colonic Fermentation

Kaempferol is a poorly absorbed flavonoid. It is also modified during digestion
and colonic fermentation. In a recent study, kaempferol-3-glucoside and rutinoside were
identified by HPLC. The contents posed modifications at gastric level as compared to
intestinal and oral digestion. The rutinosides formed during transport from mouth to
intestine showed half reduction in its value, but was stable in the gastrointestinal tract [112].
Under oral and gastrointestinal conditions, the kaempferol glycosides were also found
unstable. The conversion of kaempferol glycosides into aglycone kaempferol was also
reported following hydrolysis by glycosidases during oral and intestinal digestion. The
resultant contents then bind to starch in the digestive tract [113]. Furthermore, another
study showed kaempferol glycosides degradation and absorption during gastrointestinal
digestion [114]. The Nrf2 interactome is functionally linked to cytoprotection in low-
grade stress, chronic inflammation, metabolic alterations, mechanical stress, and ROS
formation [115]. Analysis of these molecular profiles suggests alterations of Nrf2 expression
and activity as a common mechanism in a subnetwork of diseases referred to as the Nrf2
diseasome. In addition to the role of Nrf2 in various diseases, acute and regular exercise
can also induce a state of “low stress” through the production of ROS and stimulation of
other mechanoreceptors that activates Nrf2 to modulate endogenous antioxidant systems.

7. Conclusions and Future Directions

Kaempferol is a natural flavonoid that offers therapeutic potential. The main sources
of kaempferol include tea, kale, spinach, grapes, and gingko biloba leaves. It exhibits the
potential of reducing the risk of certain chronic diseases such as cancer, diabetes, obesity, and
liver injury. In addition, it has been used in many acute and chronic inflammatory conditions.
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The clinical applications of kaempferol are hindered by its low bioavailability. Thus, to
improve the clinical efficacy, there is need for structural modifications and novel formulation
development. Specific site modification via glycosylation or methylation might be effective
because these compounds endogenously occur in plants. Furthermore, the low bioavailabil-
ity of kaempferol has limited its use in cancer therapy, therefore combination delivery of
kaempferol with other anti-cancer drugs. The delivery of kaempferol as nanotechnology
scaffolds also offers a versatile choice for cancer and other pathologic treatments.

In modulating Nrf2, several phytochemicals have shown synergistic effects after co-
delivery. Kaempferol in the same may be used with other phytochemicals, resembling the
combination of phytochemicals in food matrix.
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