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ABSTRACT

A knowledgebase of the systematic functional anno-
tation of fusion genes is critical for understanding
genomic breakage context and developing therapeu-
tic strategies. FusionGDB is a unique functional an-
notation database of human fusion genes and has
been widely used for studies with diverse aims. In
this study, we report fusion gene annotation up-
dates aided by deep learning (FusionGDB 2.0) avail-
able at https://compbio.uth.edu/FusionGDB2/. Fu-
sionGDB 2.0 has substantial updates of contents
such as up-to-date human fusion genes, fusion gene
breakage tendency score with FusionAI deep learn-
ing model based on 20 kb DNA sequence around BP,
investigation of overlapping between fusion break-
points with 44 human genomic features across five
cellular role’s categories, transcribed chimeric se-
quence and following open reading frame analysis
with coding potential based on deep learning ap-
proach with Ribo-seq read features, and rigorous in-
vestigation of the protein feature retention of individ-
ual fusion partner genes in the protein level. Among
∼102k fusion genes, about 15k kept their ORF as In-
frames, which is two times compared to the previous
version, FusionGDB. FusionGDB 2.0 will be used as
the reference knowledgebase of fusion gene anno-
tations. FusionGDB 2.0 provides eight categories of
annotations and it will be helpful for diverse human
genomic studies.

INTRODUCTION

Gene fusion is one of the hallmarks of the cancer genome
via chromosomal rearrangement initiated by DNA double-

strand breakage. Fusion genes have the breakpoints of
structural variants on their gene body and provide a high-
lighted structural variant resource for studying the genomic
breakages with expression and potential pathogenic im-
pacts. A knowledgebase of the systematic functional anno-
tation of fusion genes is critical for understanding genomic
breakage context and developing therapeutic strategies. For
this aim, previously, we built FusionGDB (1), which is a
unique functional annotation database of human fusion
genes. To date, FusionGDB has been widely used for diverse
studies with different human genomic study aims. It has
been visited ∼27k times by the users and this study was of-
ten cited from the peer-review scientific papers since its pub-
lication in 2019. To serve the research communities of di-
verse genomic mechanisms studies, we report FusionGDB
2.0, which has substantial updates of contents, including
the analyses aided by deep learning approaches. This up-
dated version of human fusion gene annotation will provide
unique and essential analyses results to the research com-
munities.

DATABASE UPDATE OVERVIEW

In this study, we report FusionGDB 2.0, the update ver-
sion of fusion gene annotation database including the anal-
yses aided by deep learning approaches such as (i) up-to-
date human fusion genes with breakpoint location infor-
mation with gene structure, gene assessment in pan-cancer
fusions, and updated functional category assignment to in-
dividual fusions, (ii) fusion gene breakage tendency scores
from FusionAI (2) deep learning model based on 20 kb
DNA sequence around BP area, (iii) investigation of over-
lapping between fusion breakpoints (and high breakage fea-
ture importance scored regions) with 44 human genomic
features across five cellular role’s categories (i.e. integration
sites of 6 viruses, 13 types of repeats, 5 types of structural
variants, 15 different chromatin stated regions and 5 gene

*To whom correspondence should be addressed. Tel: +1 713 500 3636; Email: pora.kim@uth.tmc.edu

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-8321-6864
https://orcid.org/0000-0003-4090-113X
https://orcid.org/0000-0001-7191-6495
https://compbio.uth.edu/FusionGDB2/


D1222 Nucleic Acids Research, 2022, Vol. 50, Database issue
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Figure 1. Overview of FusionGDB 2.0. Updated FusionGDB provides multiple annotations on fusion genes in eight categories including fusion gene
summary, fusion gene genomic feature, fusion gene ORF, fusion protein features, fusion sequence, fusion PPI, related drugs and related diseases.

expression regulatory regions), (iv) transcribed and trans-
lated chimeric sequences, (v) open reading frame (ORF)
analyses and enhanced coding potential investigation
through deep learning approach using Ribo-seq alignment
features (deepORF) rather than classical comparison be-
tween coding vs non-coding gene structure and (vi) inves-
tigation of the protein feature retention of individual fusion
partner genes in the protein level using FGviewer (3), a visu-
alization tool for functional features of human fusion genes.
Among ∼102k fusion genes, about 15k fusions were pre-
dicted as keeping their open reading frames as the in-frame,
which is two times compared to the previous version of Fu-
sionGDB.

FusionGDB 2.0 provides eight categories of annotations:
Fusion Gene Summary, Fusion Gene ORF analysis, Fu-
sion Gene Genomic Features, Fusion Protein Features, Fu-
sion Gene Sequence, Fusion Gene PPI analysis, Related
Drugs and Related Diseases. For 511 highly recurrent fu-
sion genes that have been expressed in more than five sam-
ples, we performed manual curation of PubMed articles.
All such information is included and downloadable in the
database with a unique and non-redundant format. Figure 1

summarizes the overview of FusionGDB 2.0 annotations.
All entries and annotation data are available for browsing
and downloading on the website with unique and efficient
visualization (https://compbio.uth.edu/FusionGDB2). The
main features of FusionGDB 2.0 annotations are summa-
rized below.

i. Fusion Gene Summary information category provides
five unique and useful fusion gene information includ-
ing basic gene information, gene assessment score in
pan-cancer, study context, most frequent breakpoint
information, and anticipated loss of major functional
domain due to fusion event. In this update, we extended
the functional gene groups to assign potential loss-of-
functional effect with ORF annotation and provide all
breakpoints based on the gene structures of individual
partners using the UCSC genome browser.

ii. Fusion Gene ORF Analysis category provides the ORF
annotation results. It provides the coding potential
study results based on three approaches. First, we in-
vestigated the ORF whether in-frame or frame-shift if
both breakpoints are located in the coding sequence
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(CDS) area. Second, to have the potential amino acid
sequence, we input the in-frame fusions’ full-length
transcript sequences to ORFfinder by NCBI (4). Third,
we also input these in-frame fusions’ transcript se-
quences into a deep learning model classifier to identify
the coding potential of fusion transcripts. This model
was built by training between the coding genes mapped
by Ribo-seq reads with high reliability and non-coding
genes not mapped by any Ribo-seq reads.

iii. Fusion Gene Genomic Features category provides the
potential human genomic features related to the fu-
sion gene breakpoints or near to that area. For all fu-
sion transcripts whose breakpoints are located at the
exon junction boundaries, we ran an in-house model,
FusionAI, which is a deep learning-based classifier be-
tween fusion breakpoint sequence and no fusion break-
point sequence. FusionAI predicts the fusion breakage
potential of a fusion gene from a 20k bp length DNA
sequence. Then, we investigated the overlap between
the diverse human genomic features with the top 10%
of the feature importance scored regions and all the
20kb sequences. To do this, we integrated 44 different
types of human genomic feature information across five
big categories.

iv. Fusion Protein Features category provides the reten-
tion information of 39 protein features of fusion pro-
teins based on the canonical protein structures with
considering multiple transcripts from gene isoforms
and multiple breakpoints. By focusing on the types of
protein features, the user can infer the overall func-
tional loss or different regulation for a fusion gene.
In this updated version, we also added the link to
an in-house web tool, FGviewer. FGviewer provides
functional feature annotations at four different lev-
els: DNA-, RNA-, protein- and pathogenic levels. The
same breakpoint lines across four tiers classify between
fusion involving or non-involving zones with multiple
types of functional features.

v. Fusion Gene Sequence information category provides
the full-length fusion transcript sequence and predicted
amino acid sequences considering the multiple break-
points with matched gene isoforms.

vi. Fusion Gene PPI analysis category provides the poten-
tial protein–protein interactions between fusion pro-
tein and small molecules in the cells that are anticipated
as losing or retaining their interactions due to gene fu-
sion events.

vii. Related Drugs and Related Diseases categories provide
the related information of 3635 approved drugs that
target 1205 fusion genes as well as 5981 fusion genes
that are reported to be associated with 11 264 different
types of diseases.

DATA INTEGRATION AND ANNOTATIONS

Fusion gene information

50 360 and 52 737 fusion genes and their related informa-
tion were downloaded from the comprehensive database of
chimeric transcripts matched with druggable fusions and
3D chromatin maps (ChiTaRS 5.0, http:// http://chitars.

md.biu.ac.il/, January 2020) (5) and an updated and ex-
panded database of fusion genes (ChimerDB 4.0, http://
www.kobic.re.kr/chimerdb/, January 2020) (6), respectively.
Of these, 50 360 and 50 931 fusion genes were from Entrez
Sanger sequences and TCGA samples, respectively. By the
union of these, we obtained 102 647 unique fusion genes in
total. For the genome coordinates information of some fu-
sion breakpoints from ChimerDB 4.0, we lifted over from
the human reference genome GRCh38 to GRCh37 using
Batch Coordinate Conversion (liftOver) utility from UCSC
Genome Browser (7). For all fusion gene information from
these two resources, the following information was col-
lected: sample ID or expressed sequence tag (EST) ID, fu-
sion partner gene names, exon junction breakpoint infor-
mation. We followed the definition of fusion gene’s direc-
tion for the Hgene (Head gene or 5′-gene) and Tgene (Tail
gene or 3′-gene) to these datasets.

Fusion genomic feature analyses

Recently, we developed a deep learning-based classi-
fier between fusion gene and no fusion gene break-
point sequences (FusionAI, https://compbio.uth.edu/
FusionGDB2/FusionAI/) (2). It aims to learn sequence
context around the fusion gene breakpoints. The input of
FusionAI is the flanking DNA sequence of ±5 kb from
the two breakpoints of a fusion gene. Since FusionAI is
designed based on the exon junctional breakpoints, for
all fusion transcripts whose breakpoints are located at
the exon junction boundaries, we made input sequences
and ran FusionAI. Then, we had FusionAI output scores,
which is the probability of being used as the fusion gene
breakpoint. We also investigated what human genomic
sequence features are enriched in the fusion gene break-
point area. To do this, we overlapped the top 10% of
the feature importance scored regions among the 20kb
sequence of fusion gene breakpoints with 44 different types
of human genomic feature loci information across five
big categories including virus integration sites, repeats,
structural variants, chromatin states, and gene expression
regulation. First, we downloaded the virus integration site
information from the VISDB (8) and we lifted it over to
the hg19 version using the liftover tool from the UCSC
Genome Browser to set the same human genome version
that was used in FusionAI model. We integrated 13 types
of repeats (Alu repeats, A-Phased repeats, Directed repeats,
DNA transposons, ‘G-Quadruplex, forming repeats’,
Inverted repeats, L1 repeats, L2 repeats, ‘Low complexity,
A/T rich regions’, Microsatellites, MIR repeats, Mirror
repeats, and Z-DNA motifs) from RepeatMasker (9) and
MicroSatellite DataBase (MSDB) (10). For the diverse
types of structural variants including the copy number
variants, we downloaded the arranged breakpoint infor-
mation of the structural variants from dbVar (11). The
chromatin states category include the loci of 15 different
types of chromatin states such as 1 TssA, 2 TssAFlnk,
3 TxFlnk, 4 Tx, 5 TxWk, 6 EnhG, 7 Enh, 8 ZNF Rpts,
9 Het, 10 TssBiv, 11 BivFlnk, 12 EnhBiv, 13 ReprPC,
14 ReprPCWk and 15 Quies, from the previous study on
the chromatin state calls using a 15-state model for 12
cell lines, were obtained from the Roadmap Epigenomics
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Mapping Consortium (12,13). The gene expression regula-
tory category includes five types of features as CPGisland,
Methylation, Promoters, ReplicationTiming, and TAD
boundaries. The information of the first three feature cat-
egories was downloaded from the FANTOM5 collection
(14). We downloaded the replication timing-specific peak
regions from the ENCODE portal site by selecting the
assay type of the replication timing (15). We used 2477 loci
of common TAD boundaries from a previous study that
made high-resolution chromosome conformation (Hi-C)
datasets from five human cell lines based on the (16).

Open reading frame (ORF) annotations

Between the 5′-partner gene and the 3′-partner gene, we
checked the open reading frame of the full-length fu-
sion transcript sequence. When both breakpoints of 5′-
and 3′-genes are located inside of coding region (CDS)
and the number of fusion transcript sequences from the
transcription start site of 5′-gene to transcription end
site of 3′-gene is a multiple of three, then we reported
this fusion gene as ‘in-frame’. If there is one or two nu-
cleotide insertion, then we reported as the ‘frame-shift’.
Except for these two ORFs, there are 15 more ORFs
such as ‘3UTR-CDS’, ‘3UTR-3UTR’, ‘3UTR-5UTR’,
‘3UTR-intron’, ‘CDS-3UTR’, ‘CDS-5UTR’, ‘CDS-intron’,
‘5UTR-CDS’, ‘5UTR-3UTR’, ‘5UTR-5UTR’, ‘5UTR-
intron’, ‘intron-CDS’, ‘intron-3UTR’, ‘intron-5UTR’ and
‘intron-intron’. Here, the ‘intron’ is reported when the
breakpoint is located 6 bp apart from the exon junction site
to the intron direction. Since our fusion breakpoints were
derived from the ESTs and RNA-seq data, all the break-
points should be located inside of the exon. Therefore, if the
breakpoint is located on the intron, then we report as an in-
tron, and the ORFs including the intron in at least one of the
partners, we set aside these categories to not available (NA)
ORF cases in our ORF classification. For these analyses, we
considered all matched Ensembl transcripts (ENSTs) (17).
There were 73 784 and 79 196 breakpoints of 15 141 and
16 814 partner genes that were matched with 58 709 and
64 273 ENSTs for the 5′- and 3′-genes, respectively. Total 68
877 ENSTs were mapped to 18 407 genes involved in 150 496
fusion genes. Among these, we identified 16 146 in-frame fu-
sion genes. With considering multiple breakpoints and gene
isoforms, we made 83 291 full-length fusion transcript se-
quences. For these in-frame fusion transcripts, we ran the
open reading frame finder (ORFfinder), which is mainly se-
lecting the longest ORFs from the six-frames-based trans-
lation. Then, we found 42 110 fusion amino acid sequences
from 14 569 fusion genes. From the result of ORFfinder, we
adopted the translated ORF sequences and the position of
start and end from ORFfinder outputs.

Prediction of the coding potential of fusion transcripts using
a deep learning model

The tools to predict the coding potential of transcripts
usually train their models by comparing the transcript se-
quences between coding genes versus non-coding genes of
the human reference genome. However, we noticed that
those are not enough data to find the best features of the

coding transcripts that are bound by the ribosomes. There-
fore, we made the positive data of the coding genes that
were experimentally read by the ribosomes. We also made
the negative data of non-coding genes that were not read
by ribosomes. To have the ORFs read by Ribo-seq data
in humans, we downloaded the ORFs that were read in
102 Ribo-seq data of 56 different human cells including
cancers and normal cells from RPFdb v2.0 (18). We lifted
over all genomic coordinates into hg38. To make the posi-
tive data, we selected the ORFs that have the median read
count is greater or equal to 22 and the RibORF score (19)
is bigger than 0.7 for the reliability. Then, there were 23,587
Ensembl transcripts with 2,367,842 read ORFs in coding
genes. To make the negative data, first, we integrated the
read lncRNA ORFs from the 102 Ribo-seq data as the min-
imum read count was bigger than one and the RiboORF
score was bigger than 0.7. Then, there were 158 387 En-
sembl transcripts with 25 218 872 read ORFs in the non-
coding genes. Since we are investigating the lncRNA not
read by ribosomes, we excluded these read lncRNA-based
ORFs from all lncRNA genes of GENCODE v19. As a re-
sult, we were able to have 20 869 Ensembl transcripts of
lncRNAs. In summary, we have a total of 23 587 coding
and 23 587 lncRNA Ensembl transcripts as the positive
and negative data sets. Since overall, the length distribution
of the positive and negative data, we first decided to make
deepORF model using the genes whose sequence length is
less than 3k. Then, in total, there were 20 243 coding and
19 971 lncRNA transcripts as the positive and negative data
sets, respectively. Using the divided data from the mixture of
the positive and negative data into 70% and 30%, we trained
and test deepORF, respectively.

We initially adopted the model design of RNAsamba
(20), which is composed of two different sources of the
whole sequence branch and the longest ORF branch. The
usage of the IGLOO architecture to learn from sequence
data and the integration of the whole transcript and ORF-
derived information into a single coding score. By using
IGLOO layers, RNAsamba could learn non-intuitive cod-
ing patterns. Based on the same model structure, we trained
our model with a different training dataset, which is exper-
imentally validated coding genes’ transcript sequences as
the positive data and the non-coding genes’ transcript se-
quences never read by ribosomes. We believe this is a more
reliable training data set. As a result, the initial version
of deepORF (AUC: 0.94) showed better performance than
RNAsamba (AUC: 0.79). In this study, we mainly adopted
the existing model structure but enhanced the data quality
of the training, which made better performance. This is to
fill the gap of blank knowledge on the coding potential of
known fusion genes as soon as possible, but with a better
model. In the future, we will make a more unique and effi-
cient algorithm by incorporating the technologies that are
used in natural language process studies.

Retention analysis of 39 protein features from UniProt

We first downloaded the GFF (General Feature Format)
format protein information of 10 651 UniProt accessions
from UniProt for total of 10 619 genes involved in 15 030
fusion genes (21). UniProt provides the loci information of
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39 protein features including six molecule processing fea-
tures, 13 region features, four site features, six amino acid
modification features, two natural variation features, five
experimental info features, and three secondary structure
features. Since such feature loci information was based on
amino acid sequence, the genomic breakpoint information
was converted into the amino acid level while considering all
UniProt protein accessions, ENST isoforms, and multiple
breakpoints for each partner. To map each feature to the hu-
man genome sequence, we used the GENCODE gene model
of human reference genome v19 (22). For the 5′-partner
gene, we considered the protein feature to be retained in the
fusion gene if the breakpoints occurred on the 3′-end of the
protein feature. On the contrary, if a protein domain was not
included completely in the fusion amino acid sequence, we
reported that such fusion genes did not retain that protein
feature. Similarly, for the 3′-partner gene, we considered the
fusion gene to have retained the protein feature if the break-
points occurred on the 5′-end of the protein feature region.

Creating fusion transcript and fusion amino acid sequences

Two different genes can form fusion genes with multiple
breakpoints based on multiple gene isoforms. Therefore, we
considered all gene isoforms at each breakpoint. To help for
the identification and validation of fusion genes, we focused
on the in-frame fusion genes. For more reliable fusion genes,
we checked the distance between the two breakpoints in
case of intra-chromosomal rearrangements and created fu-
sion sequences when those genes are apart more than 100kb.
We also selected fusion genes when both of their break-
points are aligned at the exon junction. To call each exon
sequence of given breakpoint, transcription start/end sites,
and CDS start/end sites, we used the nibFrag utility from
UCSC Genome Browser based on ENCODE hg19 genome
structure. After filtering, we have created 83 290 fusion tran-
script sequences of 16 146 in-frame fusion genes. For these
fusion transcript sequences, if it has the ORF annotation
results from ORFfinder, then we adopted the start and end
position for the in-frame ORF and translated amino acid
sequence. As a result, we have 42 110 fusion amino-acid se-
quences in total.

Protein-protein interaction information

We downloaded interactor information from BIOGRID (v
3.4.260) to provide the PPI information to the wild-type
protein of each fusion partner (23). There was a limitation
of this dataset like providing the interactor name only. Since
we need to know the loci information of each PPI to inves-
tigate the retention of the PPI at the fusion protein level, we
recognized that the ‘Region’ feature, which is one of 39 pro-
tein features provided by UniProt, included the start and
end information of interaction on each protein. Therefore,
we followed the same method for the protein feature reten-
tion screening in this aim. During the process of protein fea-
ture retention search, we also checked whether these inter-
action loci are retained or not at fusion protein.

Table 1. Statistical comparison of FusionGDB and FusionGDB 2.0

# fusion
genes

# in-frame
fusion genes

# all
partner
genes

# reviewed
UniProt

accessions of
all partner

genes

FusionGDB 43 895 9859 14 910 14 943
FusionGDB 2.0 102 645 16 146 26 688 17 300

Table 2. Number of fusion genes per gene group

Gene group
# in-frame fusion

genes
# frame-shift fusion

genes

Cancer gene census 2747 2862
Cell metabolism 4136 4342
Epigenetic factor 2076 2309
Essential gene 11 628 12 708
IUPHAR 4871 5325
Kinase 1430 1582
Trascription factor 2002 2347
Tumor suppressors 2513 2694

Functional or gene category assignment

To assign the functional or gene categories, we integrated
cancer genes, tumor suppressors, epigenetic regulators,
DNA damage repair genes, human essential genes, ki-
nases and transcription factors. The first four genes were
downloaded from a gene selection resource for cancer
genome projects (CancerGenes) (24), an updated literature-
based knowledgebase for tumor suppressor genes (TSGene)
(25), a comprehensive database of human epigenetic fac-
tors and complexes (EpiFactors) (24,26), Knijnenburg et al.
study about the genomic and molecular landscape of DNA
damage repair deficiency across TCGA data (27), an up-
date of the Database of Essential Genes that includes built-
in analysis tools (DEG 15) (28). For these gene groups, we
checked the retention and ORFs of the main protein func-
tional features including 13 features belong to the region,
such as ‘calcium binding’, ‘coiled coil’, ‘compositional bias’,
‘DNA binding’, ‘domain’, ‘intramembrane’, ‘motif ’, ‘nu-
cleotide binding’, ‘region’, ‘repeat’, ‘topological domain’,
‘transmembrane’ and ‘zinc finger’.

Drug and disease information

Drug-target interactions (DTIs) were extracted from Drug-
Bank (January 2021, version 5.1.8) with the duplicated
DTI pairs excluded (29). All drugs were grouped using
Anatomical Therapeutic Chemical (ATC) classification sys-
tem codes. Disease-gene information was extracted from
a database of gene–disease associations (DisGeNet, July
2020, version 7.0) (30).

Manual curation of PubMed articles

For the 551 highly recurrent fusion genes, which are ex-
pressed in more than five samples or cells, a literature query
of PubMed was performed in June 2021 using the search
expression that applied to each fusion gene. Using BCR-
ABL1 as an example, it is ‘((BCR [Title/Abstract]) AND
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Figure 2. Feature importance (FI) score distributions across fusion breakpoint sequence of 20 Kbp length from FusionAI. (A) Distribution of overlaps
between top 10% FI scored regions and 44 different types of human genomic features. (B) Distribution of overlaps between all regions and 44 different
types of human genomic features. (Individual background corresponds to categories with the same colored font among 44 human genomic features).

ABL1 [Title/Abstract]) AND fusion [Title/Abstract])’. Af-
ter a manual review of the abstracts, we found 108 fu-
sion genes had literature evidence that support these fusion
genes.

Database architecture

The FusionGDB system is based on a three-tier architec-
ture: client, server, and database. It includes a user-friendly
web interface, Perl’s DBI module, and MySQL database.

This database was developed on MySQL 3.23 with the My-
ISAM storage engine.

UPDATED WEB INTERFACE AND ANALYSIS RE-
SULTS

Fusion gene information category (Fusion Gene Summary)

This category provides five types of information on a fu-
sion gene including basic gene information, gene assessment
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Table 3. Number of fusion genes per ORF types

ORF of fusion transcript # fusion genes

3UTR-3UTR 3035
3UTR-5UTR 2311
3UTR-CDS 5499
3UTR-intron 8577
5UTR-3UTR 2204
5UTR-5UTR 5132
5UTR-CDS 9865
5UTR-intron 8781
CDS-3UTR 6890
CDS-5UTR 11 944
CDS-intron 28 940
Frame-shift 17 710
In-frame 16 146
intron-3UTR 13 411
intron-5UTR 12 883
intron-CDS 27 931
intron-intron 48 685

score in pan-cancer, study context, most frequent break-
point information, and anticipated lost major functional
domains due to fusion event. In this updated version, we
have 102 647 fusion genes from two representative fusion
gene resources of ChiTaRs 5.0 (5) and ChimerDB 4.0 (6)
(Supplementary Table S1). Total, 26 688 genes with 17 300
UniProt accessions were involved in these human fusion
genes (Table 1). The gene assessment scores that are show-
ing in this section are the Degree of Frequency (DoF) score
and Major Active Isofusion Index (MAII) score from pre-
vious studies (31,32). The study context of a fusion gene is
showing PubMed article search results for the fusion genes
present in at least five samples. To provide the most reliable
and representative breakpoints, in this updated version, this
category showed the most frequent breakpoint information
per fusion gene. Last, we list the potentially affected ma-
jor protein functional domains from specific gene groups
including, kinase, transcription factor, cancer gene census,
tumor suppressor, IUPHAR drug targets, cell metabolism
genes, human essential genes, and epigenetic factors by in-
vestigation of retention and ORFs (between in-frame and
frame-shift) of 13 protein features (See methods). As shown
in Table 2, there were 1430 kinase fusion genes that retained
their kinase domain but 12 708 essential gene fusion genes
that lost their major functional domains due to the fusion
event. Besides, this category shows the distribution of all
breakpoints across two genes involved in the fusion gene
with the UCSC genome browser. These are all unique and
essential to understand the potential function/effect of fu-
sion genes.

Fusion genomic feature information category (fusion gene ge-
nomic feature)

In this section, we sought to identify the genomic fea-
tures of the fusion gene breakpoint area across the hu-
man genome sequences. We ran FusionAI by inputting
all in-frame fusion genes that have both breakpoints lo-
cated in the exon junction boundaries. The input se-
quence data from FusionGDB 2.0′s fusion genes for Fu-
sionAI and the output scores can be accessed from the
download page of the website (https://compbio.uth.edu/

FusionGDB2/tables/TableS5.txt and https://compbio.uth.
edu/FusionGDB2/tables/TableS6.txt). We investigated the
feature importance scores across the 20 kb length fusion in-
put sequence (Supplementary Table S7). Overall, the top
10% feature importance scored regions were enriched in
near to the breakpoints among 20 kb sequence as shown in
Supplementary Figure S1, which is the distribution of me-
dian values of the top 10% FI scores per nucleotide across
20 kb sequence. Next, we integrated 44 different human ge-
nomic features belong five important cellular mechanism
categories such as integration site category of 6 viruses, 13
types of repeat category, 5 types of structural variant cate-
gory, 15 different types of chromatin state category and 5
gene expression regulatory category to have the landscape
of genomic features in the fusion breakpoint area (see Ma-
terials and Methods). For individual features of these five
categories, we counted the unique number of the overlap be-
tween feature loci with the top 10% FI scored regions in ev-
ery nucleotide across 20k sequence of all fusion genes (Fig-
ure 2A). The overall distribution of overlaps was enriched
in the fusion gene breakpoint area.

Furthermore, we counted the unique number of the over-
lapped loci of the individual features with all regions of the
20 kb breakpoint sequence to see without potential con-
founding factors in the genomes (Figure 2B). From this
distribution, we identified several genomic features that
showed different distribution around the breakpoint area.
In the repeat category (green background), two repeats like
G-Quadruplex forming repeats and low complexity A/T
rich regions were increased to the breakpoint area. On the
other hand, Alu, L1 and L2 repeats were decreased to
the breakpoint area. In the chromatin state category (pur-
ple background), 1 TssA and 10 TssBiv chromatin states
showed increased distribution to the breakpoints. Those
states represent active TSS and bivalent/poised TSS. In the
expression regulation category (gray background), CpG is-
land and promoter regions showed increased distribution
around the breakpoints. Both plots in Figure 2 were drawn
for all fusion genes’ average values. However, on the web-
site, we provide these two plots for individual fusion genes,
separately. From these plots, the users can infer what ge-
nomic features are associated with individual fusion gene
breakpoints. Overall, the distance between the top 10% fea-
ture importance scored regions and breakpoints was 70 nt
of the median, 99.54 nt of mean with 211.28 nt of standard
deviations (SD) as shown in Supplementary Figure S1.

Fusion gene ORF annotation category (fusion gene ORF)

This category provides three types of annotations of open
reading frames of fusion genes of individual breakpoints.
First, using in-house ORF annotation codes (see Meth-
ods), we annotate the ORF of fusion transcript at given
breakpoints and transcript isoforms. From this result, we
found 16 146 and 17 710 in-frame and frame-shift fu-
sion genes (https://compbio.uth.edu/FusionGDB2/tables/
TableS2.txt). The statistics of diverse ORFs of fusion genes
are summarized in Table 3. For 16 146 in-frame fusion
genes, we made full-length transcript sequences considering
multiple gene isoforms and multiple breakpoints in the indi-
vidual partner genes. There were total of 83 291 fusion tran-

https://compbio.uth.edu/FusionGDB2/tables/TableS5.txt
https://compbio.uth.edu/FusionGDB2/tables/TableS5.txt
https://compbio.uth.edu/FusionGDB2/tables/TableS6.txt
https://compbio.uth.edu/FusionGDB2/tables/TableS2.txt
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Figure 3. Prediction of the coding potential of fusion transcript with the deep learning approach. (A) Pipeline for creating the training data of deepORF.
(B) Performance comparison between deepORF and RNAsamba. (C) Comparison of the distribution of the coding potential scores for in-frame fusion
transcripts between deepORF data-based model (blue) and RAsamba (pink).

scripts. Then, we input these fusion transcript sequences to
the ORFfinder. Then, ORFfinder resulted in 42 110 fusion
amino acid sequences of 14 569 fusion genes. For these, we
made the fusion amino acid sequences, which are available
from the Fusion Gene Sequence category (https://compbio.
uth.edu/FusionGDB2/tables/TableS3.txt). Last, we used a
deep learning classifier to distinguish coding vs non-coding
transcripts (see Methods), named as deepORF. For the deep
learning model design, we adopted it from RNAsamba, a
neural network-based assessment of the protein-coding po-
tential of RNA sequences. By retraining the model using
high-quality training data set as shown in the pipeline in
Figure 3A, we could have dramatically increased the per-
formance of the prediction of coding potentials (Figure 3B).
We will enhance this model by creating a unique model de-
sign in the future. With the current model, we predicted
the coding potential of individual in-frame fusion transcript
sequences in FusionGDB 2.0 (Supplementary Table S4).
The prediction scores’ distributions using RNAsamba and
deepORF are shown in Figure 3C.

Fusion protein feature information category (fusion protein
Feature)

In this category, we provide the detailed annotation of
fusion protein functions through the retention search of
39 protein features from UniProt based on the fusion
protein sequence. For individual partners in fusion genes,
we checked the retention of 39 protein features (https:
//compbio.uth.edu/FusionGDB2/tables/TableS8.txt and
https://compbio.uth.edu/FusionGDB2/tables/TableS9.txt).
Specifically, in this category, we are showing the results of
the retention studies of 13 features belong to the region sub-
section including ‘calcium binding’, ‘coiled coil’, ‘compo-
sitional bias’, ‘DNA binding’, ‘domain’, ‘intramembrane’,
‘motif ’, ‘nucleotide binding’, ‘region’, ‘repeat’, ‘topological
domain’, ‘transmembrane’ and ‘zinc finger’, to focus on
the major functional component due to the limited web

page long. Most of all, in this updated version, we added
a link to FGviewer (https://ccsmweb.uth.edu/FGviewer),
a tool for visualizing functional features of the human
fusion genes. FGviewer takes the genomic coordinate of
the fusion gene breakpoints as the input data. The same
breakpoint lines across four tiers across DNA, RNA,
protein and pathogenic levels will classify between fusion
involved or deleted zones with multiple types of functional
features. Those features include fusion mRNA and amino
acid sequences based on the user’s breakpoint coordinates,
swapped gene expression regulatory (i.e. transcription
factor or miRNA binding sites), protein functional features
(i.e., protein domains, protein-protein interactions, binding
sites of all molecules, secondary structure level feature,
etc.), clinically relevant variants, and etc. Through these
annotations, users can easily infer the possible roles of
fusion genes in tumorigenesis.

DISCUSSION AND FUTURE DIRECTION

FusionGDB 2.0 is the substantially updated version of
FusionGDB that served as the unique and widely used
systematic annotations of the functions of human fusion
genes. FusionGDB 2.0 is the first database that systemat-
ically annotates the function of fusion genes across pan-
cancer aided by deep learning approaches. From the ge-
nomic feature landscape of individual fusion genes, sci-
entists can have novel insights into the breakage of the
genome and forming fusion genes. Further studies may be
able to identify novel genomic features in the specific fu-
sion gene groups. From the advanced ORF annotations, the
researchers can have the coding potential fusion genes in
human cancer. From the protein feature study results, we
identified 1430, 2002 and 2747 in-frame fusion genes re-
taining major functional domains of kinase, transcription
factors, and cancer genes. We also identified 4342, 2309,
5325 and 2694 frame-shifted fusion genes that lost the ma-
jor functional domains of cell metabolism genes, epigenetic

https://compbio.uth.edu/FusionGDB2/tables/TableS3.txt
https://compbio.uth.edu/FusionGDB2/tables/TableS8.txt
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factors, IUPHAR drug target genes and tumor suppressors.
These candidates can be novel sources of new drug devel-
opment in cancer. From the fusion sequence category, users
can download the full-length fusion transcript sequence and
predicted fusion amino acid sequences.

To serve broad biomedical research communities, we will
continuously update and curate human fusion genes rou-
tinely by checking new fusion gene or fusion protein data.
We will investigate and extend the methods to find the clini-
cally important fusion genes and affected target genes in the
downstream part in the future. We believe this updated ver-
sion will be more widely and actively visited/used in diverse
human genetic diseases including cancers for a better under-
standing of pathogenesis, progression, cancer biology, and
identification of drug-targetable features of specific fusion
genes.

DATA AVAILABILITY

All annotation results are available from the FusionGDB
2.0 website (https://compbio.uth.edu/FusionGDB2) for
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