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Abstract
Background: Many lines of evidence suggest that poly(ADP-ribose) polymerase-1 (Parp-1) is involved in
transcriptional regulation of various genes as a coactivator or a corepressor by modulating chromatin
structure. However, the impact of Parp-1-deficiency on the regulation of genome-wide gene expression
has not been fully studied yet.

Results: We employed a microarray analysis covering 12,488 genes and ESTs using mouse Parp-1-deficient
(Parp-1-/-) embryonic stem (ES) cell lines and the livers of Parp-1-/- mice and their wild-type (Parp-1+/+)
counterparts. Here, we demonstrate that of the 9,907 genes analyzed, in Parp-1-/- ES cells, 9.6% showed
altered gene expression. Of these, 6.3% and 3.3% of the genes were down- or up-regulated by 2-fold or
greater, respectively, compared with Parp-1+/+ ES cells (p < 0.05). In the livers of Parp-1-/- mice, of the
12,353 genes that were analyzed, 2.0% or 1.3% were down- and up-regulated, respectively (p < 0.05).
Notably, the number of down-regulated genes was higher in both ES cells and livers, than that of the up-
regulated genes. The genes that showed altered expression in ES cells or in the livers are ascribed to
various cellular processes, including metabolism, signal transduction, cell cycle control and transcription.
We also observed expression of the genes involved in the pathway of extraembryonic tissue development
is augmented in Parp-1-/- ES cells, including H19. After withdrawal of leukemia inhibitory factor, expression
of H19 as well as other trophoblast marker genes were further up-regulated in Parp-1-/- ES cells compared
to Parp-1+/+ ES cells.

Conclusion: These results suggest that Parp-1 is required to maintain transcriptional regulation of a wide
variety of genes on a genome-wide scale. The gene expression profiles in Parp-1-deficient cells may be
useful to delineate the functional role of Parp-1 in epigenetic regulation of the genomes involved in various
biological phenomena.

Published: 7 February 2007

BMC Genomics 2007, 8:41 doi:10.1186/1471-2164-8-41

Received: 5 August 2006
Accepted: 7 February 2007

This article is available from: http://www.biomedcentral.com/1471-2164/8/41

© 2007 Ogino et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17286852
http://www.biomedcentral.com/1471-2164/8/41
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2007, 8:41 http://www.biomedcentral.com/1471-2164/8/41
Background
Poly(ADP-ribose) polymerase-1 (Parp-1) is a nuclear pro-
tein that catalyzes the transfer of ADP-ribose units to var-
ious nuclear proteins as a post-translational modification
[1]. Poly (ADP-ribose) is a highly negatively charged mol-
ecule and poly (ADP-ribosylation) of chromatin-bound
proteins including histone may change the interaction of
the modified proteins with DNA or other proteins. A 'his-
tone shuttle model' proposed by Althaus et al. can explain
the dynamic changes of chromatin structure through his-
tone replacement induced by Parp-1 activation [2]. Accu-
mulating evidence suggests that under Parp-1 deficiency,
transcriptional regulation, cell differentiation, and tumor-
igenesis are substantially affected. For example, Parp-1 is
involved in the regulation of Reg3 gene [3] as a transcrip-
tion factor. As a co-activator, Parp-1 plays a role in the reg-
ulation of ligand-induced transactivation of ecdysone
receptor [4], and in the transcriptional control of the tar-
get genes by AP-2 [5], and by MYB [6]. As a co-repressor,
Parp-1 regulates the expression of RXR-regulated genes [7]
and also plays an auto-regulatory role in the transcription
of the Parp-1 gene itself [8]. Parp-1 also modulates the
activity of the transcription factor NF-κB and conse-
quently, the expression of NF-κB-dependent genes,
including inducible nitric oxide synthetase (iNOS) [9]. The
expression of nearly 1% of the genes, including those
involved in cell cycle control and DNA replication was
affected in exon 2 disrupted Parp-1-/- mouse embryonic
fibroblasts (EF cells) [10]. Parp-deficient Drosophila
showed attenuation of gene expression located in puff loci
and also lost puff formation, suggesting a role for Parp in
the induction of genes located at specific chromosomal
loci [11].

Recent studies further suggest that Parp-1 is involved in
the regulation of dynamic changes of gene expression
induced by specific stimuli. Parp-1 is associated with tran-
scriptionally repressed chromatin domains, which do not
overlap with the regions where histone H1 is located [12].
NAD-dependent alteration of chromatin structure
through Parp-1 auto-modification was demonstrated to
lead to activation of estrogen induced estrogen receptor
dependent transcription [12]. In addition, the PARP
inhibitor, 3-aminobenzamide induced hypermethylation
of the Htf9 gene, suggesting the presence of a negative cor-
relation between poly(ADP-ribosylation) and DNA meth-
ylation [13]. In spite of the above evidence, how Parp-1 is
involved in the epigenetic regulation and functions in the
maintenance of basal gene expression profiles of cells are
not well understood.

We previously reported induction of the trophoblast line-
age in exon 1 disrupted Parp-1-/- ES cells during teratocar-
cinoma-like tumor formation [14], as well as in vitro
culture [15]. Simultaneous induction of several trophob-

last marker genes, including placental lactogen I and II, pro-
liferin and Tpbp (4311) in Parp-1-/- ES cells took place
without any stimulus during trophoblast induction [15].
We therefore considered that ES cells as well as tissues in
live mice might be good material in which to study the
effects of Parp-1 deficiency on a basal level of gene expres-
sion, namely epigenetic regulation, at the genome-wide
level. In this study, global gene expression profiles were
studied in exon 1 disrupted Parp-1-/- ES cells as well as in
the livers of mice.

Results and discussion
Gene expression profile in Parp-1-/- ES cells
A comparison of the basal gene expression profiles in
Parp-1-/- ES cells to their wild-type (Parp-1+/+) counterparts,
is presented in Fig. 1A–C and Table 1. We found the
expression of (950/9,907) genes, namely 9.6%, was dif-
ferent by at least 2-fold between Parp-1-/- and Parp-1+/+ ES
cells (p < 0.05) (Fig. 1B and Table 1). Notably, a larger
fraction of the genes, 6.3% (626/9,907) was down-regu-
lated, whereas only 3.3% (324/9,907) of the genes were
up-regulated (see Table 1).

We also made the heatmaps using the gene lists contain-
ing the 928 genes that showed a difference at p < 0.01 in
ES cells (Fig. 2A). Although we used independently iso-
lated Parp-1-/- ES cell clones, a clear common alteration in
the gene expression profile was observed (see Fig. 2A, and
Tables 2 and 3).

We further selected the genes that showed relatively high
expression levels (the "Flag value" in GeneSpring ver. 6.1
of the genes should be either "Present" (high level of
expression) or "Marginal" (moderate level of expression)
in all six replicates of the genotype within the 928 genes
that showed a difference at p < 0.01, see Table 1). Among
the 86 genes that this analysis identified, there were 62
genes, obviously including the Parp-1 (Adprt1) gene itself,
that were down-regulated and 24 genes up-regulated, as
listed in Tables 2 and 3. Reduced expression of Igfbp3
(insulin-like growth factor binding protein 3) and Galnt1
(polypeptide GalNAc transferase-T1) in Parp-1-/- ES cells
was further confirmed by Northern blot analysis (Fig. 3A).
These down- and up-regulated genes in Parp-1-/- ES cells
are involved in a variety of cellular processes, including
transcription, metabolism, signaling, immune response,
cell structure, and other cellular processes (Fig. 3B, and
Tables 2 and 3).

Gene expression profile of the livers and EF cells
In the livers, 3.3% (411/12,353) of genes showed a signif-
icant difference in expression level (p < 0.05) between the
Parp-1 genotypes. In the livers of Parp-1-/- mice, 2.0%
(253/12,353) of the genes were down-regulated and 1.3%
(158/12,353) of the genes were up-regulated (p < 0.05).
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Similar to Parp-1-/- ES cells, a higher percentage of the
genes, 62% (253/411), were down-regulated and the
remaining 38% were up-regulated (Fig. 1D–F, and Table
1). The expression of representative marker genes of the
liver, including albumin (Alb1) and phosphoenolpyruvate
carboxykinase (Pepck) was similarly high in both Parp-1
genotypes.

The heatmaps were constructed using the gene lists con-
taining the 641 genes that showed a difference at p < 0.01
in livers (Fig. 2B). Parp-1 deficiency commonly altered
gene expression profiles in the livers of two mice analyzed
(Fig. 2B, Table 4). Among 641 genes, we identified 26
genes that showed a relatively high level of expression
(genes with "Flag values" of either "Marginal" or "Present"
in each genotype) and were altered 2-fold or greater
between the Parp-1-/- and Parp-1+/+ livers (p < 0.01) (Table
4). Among them, 15 genes were down-regulated and 11
genes were up-regulated.

In the case of the EF cells, the results obtained from these
3 replicates are shown in Table 1. In Parp-1-/- EF cells, 1.7%
(216/12,359) and 1.7% (205/12,359) genes were down-
and up-regulated, respectively (p < 0.05). We were not
able to construct gene lists with a p value less than p <
0.02.

Comparison of the profiles among different cell types
We compared gene expression profiles between Parp-1-/-

ES cells and the livers. There were no commonly up- or
down-regulated genes in Tables 2, 3, 4, namely in the
genes showing relatively high expression levels selected by

Flag values, although we observed that 20 genes including
Eif2s2 (eukaryotic translation initiation factor 2 subunit 2
beta), Parp-1, and 6 genes were commonly down- and up-
regulated in the ES cells and livers (p < 0.05), respectively
(Fig. 2C–F). There was no gene commonly altered in ES
cells, livers, and EFs. Comparison of the affected genes in
the ES cells, livers, and EF cells thus revealed that Parp-1-
deficiency mostly altered the expression level of different
sets of genes depending on the cell types.

Up-regulation of the differentiation pathway to 
extraembryonic tissues in Parp-1-/- ES cells
Among the genes, we found up-regulation of H19, Sparc,
Sox17, and Gata6 in Parp-1-/- ES cells (Table 3). The H19
gene has been suggested to regulate differentiation into
extraembryonic tissues including trophoblast lineage and
extraembryonic endoderms [16-18]. Sparc, Sox17, and
Gata6 are known as marker genes of extraembryonic
endoderms [19-21]. Because we previously reported
induction of trophoblast lineage in untreated Parp-1-/- ES
cells during in vitro culture, we speculated that a higher
level of H19 expression in Parp-1-/- ES cells may be
involved in induction of extraembryonic tissues including
trophoblast lineage. The mouse H19 gene is located on
the distal region of chromosome 7 and encodes the 2.3 kb
untranslated transcript, which is maternally expressed,
and the H19 gene and the insulin-like growth factor 2 (Igf2)
gene are reciprocally imprinted [22].

We analyzed expression of H19 and Igf2 genes in
untreated Parp-1-/- and Parp-1+/+ ES cell lines by semi-
quantitative RT-PCR (Fig. 4A). We confirmed that the H19

Table 1: Differential expression of genes between Parp-1+/+ and Parp-1-/- ES cells, livers, and EFs

No. of genes

Parp-1-/- <Parp-1+/+ Parp-1-/- > Parp-1+/+

p-value cut offa Total Total 2-fold or greater Total 2-fold or greater

ES cellsc

Totalb 9,907 5,464 1,283 4,349 1,406
p < 0.05b 2,273 1,609 626 664 324
p < 0.01b 928 684 259 244 120

Liversd

Totalb 12,353 7,138 1,184 4,860 1,038
p < 0.05b 1,616 1,190 253 426 158
p < 0.01b 641 515 100 126 43

EFse

Total 12,359 5,042 707 7,317 501
p < 0.05 996 390 216 606 205

a Analyzed by One-Way ANOVA (non-parametric test known as Wilcoxon-Mann-Whitney test)
b These genes were presented in Fig. 1 (A)-(F).
c Parp-1+/+ ES cell clone, J1, and Parp-1-/- ES cell clones, 210-58 and 226-47, were used.
d Two mice were used for each genotype.
e Three EFs obtained from three embryos were analyzed as triplicate experiments.
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Effect of Parp-1 deficiency on gene expressionFigure 1
Effect of Parp-1 deficiency on gene expression. Gene expression data from microarray analyses are plotted for Parp-1-/- 

versus wild-type (Parp-1+/+) ES cell lines (A-C) or the livers (D-F). Horizontal and vertical axes represent expression levels nor-
malized for an individual gene. Each point represents normalized expression data for an individual gene. The genes that showed 
standard deviations greater than 2.0 in the normalized data of both genotypes (A and D) were excluded and gene lists were 
constructed with p < 0.05 (B and E), or p < 0.01 (C and F).
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Gene description

Protein kinase C binding protein 1
L2/adenovirus E1B 19 kDa-interacting protein
Insulin-like growth factor binding protein 3

Cyclin G2

ng protein (actin filament) muscle Z-line, alpha 2
Fibronectin type III domain containing 3a
Myosin, heavy polypeptide 9, non-muscle

Plakophilin 2
umor-associated calcium signal transducer 1

eptide GalNAc transferase-T1 (ppGaNTase-T1)
Glutathione S-transferase, mu1

Phosphatidylinostitol glycan, class A
Ribosomal protein S27

Pre-B-cell colony-enhancing factor
Annexin A11

Phosphatidylinositol glycan, class F
Spermidine synthase

ylphosphatase1, erythrocyte (common) type

Insulin degradating enzyme
Ubiquitin specific protease 24

Ring finger protein 19
Ubiquitin-conjugating enzyme UbcM3

Isoleucine-tRNA synthetase
asome (prosome, macropain) activator subunit

Ring finger protein 11

ADP-ribosylation factor-like 7
PPKC, apoptosis, WT1, regulator

togen activated protein kinase kinase kinase 1
Protein tyrosine phosphatase 4a2

Harvey rat sarcoma oncogene, subgroup R
Casein kinase II, alpha 1 polypeptide

SET translocation
Endometrial bleeding associated factor

Poly(ADP-ribose) polymerase 1
eterogeneous nuclear ribonucleoprotein A1
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Table 2: Genes down-regulated in Parp-1-/- ES cells

Fold changea)

Accession No. W vs H J1 vs 210-58 J1 vs 226-47 Symbol Chromosome

Cell cycle/cell proliferation/cell death
AW122355 3.2 5.2 2.3 Prkcbp1 2
AF067395 2.9 2.9 2.9 Bnip3l 14 BC
AI842277 2.7 2.3 3.2 Igfbp3 11
U95826 2.2 2.5 1.9 Ccng2 5
Cell structure/cell adhesion
U16741 4.1 6.3 3.1 Capza2 6 Cappi
AI132380 3.6 3.1 4.3 Fndc3a 14
AI505453 2.9 2.5 3.4 Myh9 15
AW208938 2.4 3.2 2.0 Pkp2 16
M76124 2.4 2.2 2.6 Tacstd1 17 T
Metabolism
U73820 5.5 5.2 5.8 Galnt1 18 Polyp
AI841270 3.4 2.4 6.4 Gstm1 3
AV308550 2.6 4.1 1.9 Piga x
AI851912 2.3 2.2 2.5 Rps27 3
AI852144 2.1 2.9 1.7 Pbef-pending 12
U65986 2.1 1.9 2.5 Anxa11 14
D50264 2.1 1.4 4.1 Pigf 17
AF031486 2.0 2.0 2.0 Sms x
AI845882 2.0 2.5 1.7 Acyp1 12 Ac
Protein biosynthesis/degradation
AI852581 3.0 3.0 3.1 Ide 19
AI414051 3.0 1.8 9.1 Usp24 4
AW121012 2.9 2.8 2.8 Rnf19 15
X92665 2.9 2.5 3.4 Ube2e1 14
AW048882 2.2 2.8 1.8 Iars 13
AA867340 2.2 1.9 2.6 Psme4 11 Prote
AB024427 2.2 2.3 2.1 Rnf11 4
Signaling
AI846023 4.6 2.8 13.1 Arl7 1
AA260005 2.8 2.7 2.8 Pawr 10
AI317205 2.6 2.4 2.7 Map3k1 13 Mi
AF035644 2.3 2.0 2.7 Ptp4a2 4
M21019 2.3 1.9 2.9 Rras 7
AI194248 2.2 2.5 1.9 Csnk2a1 2
AI854006 2.0 2.0 2.1 Set 2
D83921 2.0 1.9 2.1 Ebaf 1
Transcription/replication
X14206 9.9 8.4 12.0 Adprt1 1
M99167 3.0 6.2 2.0 Hnrpa1 15 H
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SRY box-containing gene 11
Forkhead box 03a

ic-helix-loop-helix domain containing, class B2
Notch gene homolog 3, (Drosophila)

Helicase(DNA) B
Transcription factor AP-2, gamma

Inhibitor of DNA binding 2
PHD finger protein 13
Transducer of ErbB2.1

Lectin, mannose-binding, 1
Ran binding protein 5

Hippocampus abundant gene transcript 1

Hypothetical protein

Ankyrin repeat domain 28
Unknown EST

Hypothetical protein

Unknown EST
Hypothetical protein

Unknown EST
Unknown EST

Hypothetical protein

Hypothetical protein

Luecine rich repeat containing 8
TBC1 domain family, member 15

Hypothetical protein

Hypothetical protein

Transmembrane protein 41B
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AW107922 2.8 3.7 2.2 Sox11 12
AI849135 2.5 2.5 2.5 Foxo3a 10
Y07836 2.5 2.3 2.8 Bhlhb2 6 Bas
X74760 2.5 2.3 2.7 Notch3 17
AI447783 2.1 2.4 1.9 Helb 10
X94694 2.1 2.7 1.7 Tcfap2c 2
AF077861 2.1 2.2 2.1 Id2 12
AI605405 2.0 1.9 2.2 Phf13 4
D78382 2.0 1.7 2.6 Tob1 11
Transport
AV356315 4.1 5.5 3.3 Lman1 18
AV298789 2.9 2.6 3.2 Ranbp5 14
D88315 2.2 2.2 2.2 Hiat1 3
Unknown
AI845617 3.5 3.5 3.4 2610019A05Ri

k
11

AI852287 3.2 3.3 3.2 Ankrd28 14
AI836771 3.0 2.8 3.3 2900008M13

Rik
15

AA684456 2.9 2.1 4.5 2310015N07R
ik

7

AI848435 2.8 1.9 4.8 C78339 13
AW123157 2.7 2.5 3.1 1700051E09Ri

k
11

AW124843 2.6 3.1 2.3 C85108 4
AA710439 2.6 2.0 3.6 6230421P05Ri

k
16

AI853444 2.5 1.8 3.9 2610042L04Ri
k

14

AI853444 2.2 2.1 2.3 2610042L04Ri
k

14

AW121353 2.1 1.6 3.1 Lrrc8 2
AI037493 2.1 1.5 3.4 Tbc1d15 10
AI461803 2.1 2.2 1.9 1300006C19Ri

k
9

AW049969 2.0 2.0 2.1 C330005L02Ri
k

9

AI847483 2.0 2.0 2.0 Tmem41b 7

a)W, wild-type cells (J1); H, Parp-1-/- ES cells (210-58 and 226-47).

Table 2: Genes down-regulated in Parp-1-/- ES cells (Continued)



BM
C

 G
en

om
ic

s 
20

07
, 8

:4
1

ht
tp

://
w

w
w

.b
io

m
ed

ce
nt

ra
l.c

om
/1

47
1-

21
64

/8
/4

1

Pa
ge

 7
 o

f 1
6

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

Table 3: Genes up-regulated in Parp-1-/- ES cells

Fold changea)

Accession No. H vs W 210-58 vs J1 226-47 vs J1 Symbol Chromosome Gene description

Cell cycle/cell proliferation/cell death
X58196 3.1 3.3 2.9 H19 7 H19 non-coding RNA
AI842665 3.0 3.1 2.8 Tax1bp3 11 Human T-cell leukemia virus type I binding protein 3
Cell structure/cell adhesion
X04017 2.3 2.3 2.3 Sparc 11 Cysteine-rich glycoprotein SPARC
M26071 2.1 2.5 1.8 F3 3 Coagulation factor III
M91236 2.1 2.1 2.1 Gjb5 4 Gap junction membrane channel protein beta 5
Immune response
U13705 2.3 2.1 2.4 Gpx3 11 Glutathione peroxidase 3
Metabolism
AW120625 2.3 1.9 2.7 Pgd 4 Phosphogluconate dehydrogenase
M64782 2.2 1.9 2.5 Folr1 7 Folate-binding protein 1 (FBP1)
X97755 2.0 2.1 2.0 Ebp x Phenylalkylamine Ca2+ antagonist (emopamil) binding protein
Protein biosynthesis/degradation
W71352 3.9 4.2 3.6 Bag2 1 Bcl2-associated athanogene 2
AI844175 3.4 3.4 3.4 Mrps11 7 Mitochondrial ribosomal protein S11
U16163 2.9 2.9 2.8 P4ha2 11 Prolyl 4-hydroxylase alpha(II)-subunit
D00622 2.5 2.0 3.0 Lrpap1 5 Low density lipoprotein receptor related protein, associated protein 1
X60676 2.3 2.4 2.2 Serpinh1 7 HSP47
AW124432 2.1 1.8 2.5 Mrpl12 11 Mitochondrial ribosomal protein L12
AI839392 2.0 2.0 2.1 Aars 8 Alanyl-tRNA syntase
Transcription/replication
D49473 3.4 3.0 3.7 Sox17 1 SRY-box containing gene 17
U51335 2.5 2.5 2.6 Gata6 18 GATA-binding protein 6
U79962 2.4 2.1 2.6 Tarbp2 15 TAR (HIV) RNA binding protein 2
D49473 2.1 1.9 2.3 Sox17 1 SRY-box containing gene 17
Transport
D14077 2.2 2.1 2.2 Clu 14 Clusterin
Others
M34603 2.6 2.3 3.0 Prg 10 Proteoglycan core protein
AA793009 2.3 2.0 2.7 Tex19 11 Testis expressed gene 19
Unknown
AI846553 3.2 3.0 3.3 1110020C

13Rik
15 Hypothetical protein

AI845664 2.1 2.0 2.2 Grwd 7 Glutamate-rich WD repeat containing 1

a) H, Parp-1-/- ES cells (210-58 and 226-47); W, wild-type cells (J1).
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Comparison of gene expression profiles among cell lines, animals, or cell typesFigure 2
Comparison of gene expression profiles among cell lines, animals, or cell types. Heatmaps of gene expression pro-
files in ES cells (A) and Livers (B). We constructed the heatmaps using the gene lists containing the genes that showed a differ-
ence at p < 0.01 in ES cells and livers, respectively. Each heatmap is constructed using GeneSpring GX ver. 7.3.1. Numbers of 
commonly down- (C & D) or up- (E & F) regulated genes between Parp-1-/- ES cells and livers. The numbers of the genes were 
indicated in Venn diagrams. These genes showed the difference with at least 2-fold between Parp-1+/+ and Parp-1-/- (p < 0.05, C 
& E, or p < 0.01, D & F).
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Confirmation of differentially expressed genes in microarray analysis by northern blot analysis (A), and functional categoriza-tion of up- and down-regulated genes (B)Figure 3
Confirmation of differentially expressed genes in microarray analysis by northern blot analysis (A), and func-
tional categorization of up- and down-regulated genes (B). Ten micrograms of total RNA were used for northern blot 
analysis in (A). Copy numbers were calculated from the radioactivities of the probe control.
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Table 4: Genes down- and up-regulated in Parp-1-/- livers

Fold changea)

Accession No. W vs H W1 vs H1 W1 vs H2 W2 vs H1 W2 vs H2 Symbol Chromosom

Down-regulated

Cell structure/cell adhesion

AA867778 2.1 2.4 2.6 1.7 1.8 Actn1 12

Cell cycle/cell proliferation/cell death

AJ223782 2.0 1.8 1.7 2.5 2.3 Sept7 9

Immune response

X05475 2.1 2.5 1.8 2.6 1.9 C9 15

Metabolism

L42996 3.0 1.7 3.7 2.7 5.8 Dbt 3

AF026075 2.4 1.8 4.3 1.7 4.0 Sult3a1 10
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Signaling
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Up-regulated H vs W H1 vs W1 H1 vs W2 H2 vs W1 H2 vs W2

Cell cycle/cell proliferation/cell death

X95280 3.0 2.8 2.7 3.4 3.2 G0s2 1

Cell structure/cell adhesion
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Metabolism
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a) W, Parp-+/+ livers from two animals (W1 & W2): H, Parp-1-/- livers from two animals (H1 & H2).

Table 4: Genes down- and up-regulated in Parp-1-/- livers (Continued)
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gene is up-regulated, whereas the Igf2 gene, which is recip-
rocally imprinted was slightly down-regulated in both the
two Parp-1-/-ES cell lines.

H19 is highly expressed in extraembryonic tissues, includ-
ing placenta and cells quite similar to the parietal endo-
derm of extraembryonic lineages, during ES cell
differentiation [16]. Because withdrawal of LIF during ES
cell culture causes differentiation of ES cells [23,24], we
further analyzed expression of the H19 gene and other tro-
phoblast marker genes for 7 days after withdrawal of LIF
by semi-quantitative RT-PCR. We observed earlier and
greater up-regulation of the H19 gene in two Parp-1-/- ES
cells compared to wild-type cells (Fig. 4B). We also
observed a higher level of induction of trophoblast stem
cell marker gene caudal-related homeobox 2 (Cdx2) [25].
The induction of trophoblast giant cell marker gene, pro-
liferin (Plf) [26] was only observed in Parp-1-/- ES cell lines
(Fig. 4B). In contrast, POU domain, class 5, transcription fac-
tor 1 (Oct3/4) gene, which is a marker gene of undifferen-
tiated ES cells [27], was gradually down-regulated in both
genotypes during differentiation, although the expression
level of Oct 3/4 gene became slightly lower in Parp-1-/-

than in Parp-1+/+ ES cell lines at day 7 after withdrawal of
LIF (Fig. 4B).

These results suggest that the potential for differentiation
into trophoblasts is increased in ES cells under Parp-1 defi-
ciency.

Possible roles of Parp-1 in global gene expression profiles
Using genome-wide analysis of gene expression in differ-
ent cell types, we showed that the expression of a number
of genes is affected by the loss of Parp-1 in both ES cells as
well as in the liver. The results suggest that Parp-1 may be
involved directly or indirectly in maintenance of their reg-
ulation of expression. The genes that showed altered
expressions in Parp-1-/- ES cells, livers and EF cells are
mostly different depending on the cell type, and are not
apparently clustered at particular loci on specific chromo-
somes, and both house-keeping and inducible genes were
present in the affected gene lists. Functional categoriza-
tion of the altered genes in Parp-1-/- ES cells and livers
showed that these genes are involved in various cellular
processes (Fig. 3B). The Parp-1-/- and Parp-1+/+ ES cells,
which we used showed no difference in growth rate [28]
and cell-cycle distribution [29], and the karyotype is the
same (2n = 40) [28]. In mice, we did not observe any dif-
ferences in body weight nor in the histology of the livers
between Parp-1 genotypes. Therefore, the differences in
gene expression should not be caused indirectly by differ-
ences in growth and cell proliferation but might be intrin-
sic to the absence of Parp-1 molecules. In the case of the
EF cells, about 1% of the analyzed genes showed altered
levels of expression. We did not observe any genes over-

lapping between the report on Parp-1-/- EF cells disrupted
at exon 2 [10], and our present results with the exon 1 dis-
rupted EFs. This may be possibly due to differences in tar-
geting construct, genetic backgrounds or the heterogeneity
of EFs.

Accumulating evidence suggests that Parp-1 regulates
gene expression by modulating transcriptional factors,
including YY1 [30], Oct-1 [31], NF-κB [32], E47 [33], and
TEF-1 [34]. In these cases, Parp-1 stimulates loading of
these transcriptional factors to cognate target sequences
through protein-protein interaction. However, it is note-
worthy that the target genes of these transcription factors
did not show altered expression in this study. Parp-1 is
also able to act as co-activator for retinoic acid receptor
(RAR)-mediated transcription of Rarβ2 gene [35] and β-
catenin/TCF4 complex-dependent transcription [36]. In
the case of RXRα [7], Parp-1 may act as a co-repressor for
ligand-induced gene activation. Again, in this study, the
target genes for Rarβ2 or RXRα genes were not deregulated
in Parp-1-/- ES cells and in the livers. It is thus suggested
that loss of Parp-1 may affect the maintenance of basal
expression level of a wide variety of the genes in ES cells
and the livers through different mechanisms from the reg-
ulation involving these transcription factors.

In addition, PARP-1 binds to the scaffold/matrix attach-
ment region (S/MARs) containing partially unwound AT-
rich sequences that form local non-B structures [37].
PARP-1 binds to other non-B DNA structures including
hairpin, cruciform, and loop, and is catalytically activated
[38]. The variations of gene promoter/enhancer structure
and Parp-1 binding and recruitment in different cell types
may be possibly related to the observed differences in the
effect of Parp-1 deficiency on expression profiles.

Since PARP inhibitors are shown to cause hypermethyla-
tion of particular genes [13], loss of Parp-1 may possibly
cause local changes in DNA methylation pattern during
DNA replication and may further affect histone acetyla-
tion or methylation, thereby causing genome wide altera-
tion of gene expression after rounds of cell division. In
this context, it is notable that similar to the case of Parp-1-

/- cells, the majority (71%) of differentially expressed
genes (153/17,664 genes) was down-regulated in the cells
deficient in Trrap, a co-factor of histone acetyltransferase
[39].

Parp-1 is able to modify histones and contributes to the
opening of condensed highly ordered chromatin struc-
tures [40]. Furthermore, Parp-1 is a structural component
of the transcriptionally repressed state of chromatin, and
transcription is reported to be activated by auto-modifica-
tion activity in an NAD-dependent manner [12]. There-
fore, the roles of Parp-1 as a chromatin-modifying factor
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Semi-quantitative RT-PCR analysis of H19 and other extraembryonic marker gene expression in undifferentiatiated ES cells (A) or during differentiation of ES cells after LIF withdrawal (B)Figure 4
Semi-quantitative RT-PCR analysis of H19 and other extraembryonic marker gene expression in undifferentia-
tiated ES cells (A) or during differentiation of ES cells after LIF withdrawal (B). (A) PCR was carried out using 
cDNA prepared with (+) or without (-) reverse transcriptase (RT) [see Additional file 1 for primers]. (B) Total RNA was pre-
pared using harvested ES cells 3, 5, and 7 days after removal of LIF. RNA samples prepared from untreated ES cells correspond 
to Day 0. Gapdh (glyceraldehyde-3-phosphate dehydrogenase) gene was used as an internal control.

H19
J1

Gapdh

Igf2

21
0-

58

22
6-

47

RT

Parp-1 +/+ -/--/-

J1 21
0-

58

22
6-

47

+/+ -/--/-

Cell line

+ -
(A)

H19

J1

Gapdh

Cdx2

210-58 226-47

Parp-1 +/+ -/--/-

Cell line

0 3 5 7 0 3 5 7 0 3 5 7LIF (-) (Day)

(B)

Plf

Oct 3/4



BMC Genomics 2007, 8:41 http://www.biomedcentral.com/1471-2164/8/41
may contribute to maintenance of global gene expression
during cell proliferation through mechanisms involving
polyADP-ribosylation, protein-protein interaction, and
poly(ADP-ribose)-protein interactions.

Biological impact of Parp-1 deficiency on gene expression 
relating to differentiation
We observed genes involved in the pathway of extraem-
bryonic tissue development, namely H19, Sparc, Sox17,
and Gata6, are up-regulated in untreated Parp-1-/- ES cells
(Table 3). In addition, during differentiation of ES cells
after withdrawal of LIF, expression of H19 as well as other
trophoblast marker genes were further up-regulated in
Parp-1-/- ES cells compared to Parp-1+/+ ES cells (Fig. 4B).
We previously reported that the increase of trophoblast
marker genes, Plf, Prlpa, and Tcfap2 was detected in
untreated Parp-1-/- ES clone (p < 0.05) using GeneSpring
4.2 [15]. In the present paper, these genes were not picked
up by GeneSpring 6.1 using two Parp-1-/- ES clones, prob-
ably because the criteria which we applied in this study
were highly restricted and the expression level of the genes
needed to be relatively high in at least one genotype. This
is consistent with the fact that the gene expression changes
associated with trophoblast induction were observed only
in a subpopulation of ES cells by in situ hybridization
[15]. In fact, Plf gene expression is not detectable in undif-
ferentiated Parp-1+/+ and Parp-1-/- ES cells by RT-PCR (Fig.
4B). In contrast, the differentially expressed genes picked
up in the present study are expected to be the representa-
tive genes affected in a large cell population. H19 is likely
to be one of such genes in Parp-1-/- ES cells.

The biological function of H19 RNA has not been fully
understood yet. Several lines of evidence show that the
H19 gene is involved in extraembryonic tissue develop-
ment as briefly mentioned earlier. The homozygous
mutant animals with a targeted deletion of the maternal
H19 gene are viable and fertile and display an overgrowth
phenotype of fetus and placentae compared with wild-
type [41]. Mouse parthenogenetic embryos showing the
monoallelic expression of the H19 gene exhibit functional
defects in placentae [18], suggesting that the H19 gene
may play an important role in the extraembryonic tissue
development, especially in placentae.

Increased potential of Parp-1-/- ES cells to differentiation
into trophoblasts seemed to reflect preferential differenti-
ation of Parp-1-/- ES cells to trophoblasts triggered by LIF
withdrawal, as shown in Fig. 4B. Early increase of H19
expression suggests that the H19 gene might act as an
upstream regulator for the trophoblast differentiation
pathway.

Conclusion
These results suggest that Parp-1 is required to maintain
transcriptional regulation of a wide variety of genes on a
genome-wide scale. In Parp-1-/- ES cells and livers, we
observed that the majority of the altered genes were
down-regulated. These down- and up-regulated genes are
involved in a variety of cellular processes, including tran-
scription, metabolism, signaling, immune response, cell
structure, and other cellular processes. In this study, we
showed that the pathway of extraembryonic tissues
including trophoblast lineage is potentially up-regulated
at an untreated state and after differentiation stimuli in
Parp-1-/- ES cells. The gene expression profiles in Parp-1-
deficient cells may be useful to delineate the functional
role of Parp-1 in epigenetic regulation of the genomes
involved in various biological phenomena.

Methods
Cell lines and culture conditions
Parp-1-/- ES cell clones, 210-58 and 226-47, established
independently from Parp-1+/- ES cells clones, 210 and 226,
respectively, were used in this study [28]. They were all
derived from male J1 ES cells. The ES cell lines were main-
tained in Dulbecco's modified Eagle's medium (Invitro-
gen) containing 20% fetal calf serum supplemented with
amino acids and leukemia inhibitory factor (LIF), ESGRO
(Chemicon) in the absence of a STO feeder, and total RNA
was prepared as described below. Differentiation of ES
cells by withdrawal of LIF was induced by inoculating 3 ×
l06 of ES cells in suspension in a culture dish (OPTILUX®

Petri dish, Becton Dickinson) containing 10 ml of ES
medium without LIF. Medium was changed at days 3 and
5. At days 3, 5, and 7, all the cells including floating
embryoid bodies were collected. The livers were prepared
from Parp-1+/+ and Parp-1-/- female mice at 13 months of
age [42], and about one-fifth of the amount of livers was
used for total RNA extraction. Primary mouse embryonic
fibroblasts (EFs) were derived from embryos at day 13.5
obtained by sister-brother mating of Parp-1+/- mice with a
129Sv/ICR mixed genetic background as previously
described [43]. Briefly, each embryo was minced,
trypsinized, and dispersed cells were incubated for 1 or 2
days until the EF cells became confluent. The EF cells were
replated on four dishes and when they became confluent,
these EF cells were defined to be at the 3 population dou-
bling level (PDL). When the EF cells reached 6 PDL, they
were harvested when they reached half confluency.

Total RNA isolation
Total RNA was extracted from ES cells, the livers, and EF
cells using Isogen (Nippon Gene). Fifty micrograms of
total RNA were treated with 5 units of DNase I (Invitro-
gen) for 15 min at room temperature, and purified again
with Isogen.
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Oligonucleotide microarray
Sample preparation and microarray processing were car-
ried out according to the protocol supplied by Affymetrix.
Briefly, 5 μg of total RNA sample treated with DNase I
were reverse-transcribed by Superscript II reverse tran-
scriptase (Invitrogen) using T7-(dT)24 primer containing
T7 RNA polymerase promoter sequence. After second-
strand complementary DNA (cDNA) synthesis, the prod-
uct was used in an in vitro transcription reaction to gener-
ate biotinylated complementary RNA (cRNA) using a
BioArray™ HighYield™ RNA Transcript Labeling Kit (Enzo
Diagnostics, Inc). Fifteen micrograms of fragmented
cRNA were hybridized to a murine genome U74A version
2 micro-array (Affymerix) for 16–18 hours at 45°C with
constant rotation at 60 rpm. This high-density oligonucle-
otide microarray contained 12,488 mouse genes/EST.

After hybridization, the microarray was washed and
stained with streptavidin R-phycoerythrin conjugate using
an Affymetrix Fluidics Station. The fluorescence intensity
was measured twice for each microarray and the average
fluorescence intensity was normalized by global scaling to
1,000. The data were saved in Microsoft Excel files, then
imported into a GeneSpring® 6.1 software database (Sili-
con Genetics). The data sets for J1 and 210-58 (Parp-1-/-)
ES cells partially discussed in Hemberger et al. [15] were
included in this study and further analyzed with Gene-
Spring® 6.1.

Data analysis
Data analysis was performed with the GeneSpring® 6.1
software. For statistical analyses, the fluorescence inten-
sity (raw signal) was normalized to the median reading
per chip, and then normalized to median reading per
gene.

We used 6 replicates for each non-parametric tests with
the global standard error model being inactive because
more than five replicates were recommended for the tests.
In the case of Parp-1-/- ES cells, 6 replicates consisting of
triplicate microarray results from two Parp-1-/- ES cell lines
were used. In the case of livers, 6 replicates consisting of
triplicates obtained from two different animals, respec-
tively, were used for each genotype. In the case of EF cells,
3 replicates obtained using three different embryos were
used for each genotype and the global standard error
model was active. We excluded those genes that showed a
standard deviation greater than 2.0 in the normalized data
of both genotypes, therefore, we started analysis with
9,907, 12,353, and 12,359 genes and ESTs for ES cells, liv-
ers, and EFs, respectively (Table 1). We constructed gene
lists only with the genes that showed statistical differences
(p < 0.05 or p < 0.01) and 2-fold or greater differences in
normalized expression levels between Parp-1 genotypes.

To construct heatmaps, we used GeneSpring® GX ver. 7.3.1
(the latest version).

Northern blot analysis
Total RNA samples (10 μg) were used for northern blot
analysis as described elsewhere [15]. We used the 90 bp
(Igfbp3) or the 89 bp (Galnt1) cDNA fragment as a probe.
The membrane was hybridized with the probe and was
washed. The membrane was exposed to a Fuji Imaging
Plate (Fuji film), and the radioactivities were analyzed
using BAS-2500 Bio-imaging analyzer (Fuji film).

Reverse transcription polymerase chain reaction (RT-PCR)
We used Superscript™ III First-Strand Synthesis System for
RT-PCR kit (Invitrogen). First-strand cDNA was synthe-
sized from 2 μg each of DNase I-treated total RNA using
an oligo(dT)20 primer and Superscript™ III reverse tran-
scriptase. After the first-strand cDNA synthesis, PCR
amplification was performed using TAKARA Ex Taq
(Takara Bio) with primers listed in Table S1 (see Addi-
tional file 1). The thermal cycle conditions were as fol-
lows: 94°C for 2 min, then 18 cycles (Oct3/4), 20 cycles
(Gapdh), 22 cycles (Fig. 4B) or 24 cycles (Fig. 4A) (H19
and Igf2). For Cdx2, 30 cycles at 94°C for 30 sec, 60°C for
30 sec, and 72°C for 30 sec were carried out. For Plf, 94°C
for 2 min, then 40 cycles at 94°C for 30 sec, 68°C for 2
min 30 sec, and then 72°C for 3 min. Products were run
on 1.5–3% agarose gel and stained with ethidium bro-
mide. Confirmation of PCR products was carried out by
direct sequencing.
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