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Objective: We aimed to investigate whether enhanced CT-based radiomics can predict
micropapillary pattern (MPP) of lung invasive adenocarcinoma (IAC) in the pre-op phase
and to develop an individual diagnostic predictive model for MPP in IAC.

Methods: 170 patients who underwent complete resection for pathologically confirmed
lung IAC were included in our study. Of these 121 were used as a training cohort and the
other 49 as a test cohort. Clinical features and enhanced CT images were collected and
assessed. Quantitative CT analysis was performed based on feature types including first
order, shape, gray-level co-occurrence matrix-based, gray-level size zone matrix-based,
gray-level run length matrix-based, gray-level dependence matrix-based, neighboring
gray tone difference matrix-based features and transform types including Log, wavelet
and local binary pattern. Receiver operating characteristic (ROC) and area under the
curve (AUC) were used to value the ability to identify the lung IAC with MPP using
these characteristics.

Results: Using quantitative CT analysis, one thousand three hundred and seventeen
radiomics features were deciphered from R (https://www.r-project.org/). Then these
radiomic features were decreased to 14 features after dimension reduction using the
least absolute shrinkage and selection operator (LASSO) method in R. After correlation
analysis, 5 key features were obtained and used as signatures for predicting MPP within
IAC. The individualized prediction model which included age, smoking, family tumor
history and radiomics signature had better identification (AUC=0.739) in comparison with
the model consisting only of radiomics features (AUC=0.722). DeLong test showed that
the difference in AUC between the two models was statistically significant (P<0.01).
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Compared with the simple radiomics model, the more comprehensive individual
prediction model has better prediction performance.

Conclusion: The use of radiomics approach is of great value in the diagnosis of tumors by
non-invasive means. The individualized prediction model in the study, when incorporated
with age, smoking and radiomics signature, had effective predictive performance of lung
IAC with MPP lesions. The combination of imaging features and clinical features can
provide additional diagnostic value to identify the micropapillary pattern in IAC and can
affect clinical diagnosis and treatment.
Keywords: lung adenocarcinoma, micropapillary pattern, radiomics, early diagnosis of cancer, computer tomography
INTRODUCTION

Lung cancer is the most common cause of cancer-related death
worldwide. Non-small cell lung cancer (NSCLC) accounts for
approximately 85% of all cases of lung cancer, and with the most
common histological subtype of NSCLC being adenocarcinoma
(1). Currently, surgical resection is the main treatment for lung
adenocarcinoma (2).

According to the 2015World Health Organization Classification
of Lung Cancer (3), based on prognosis, lung adenocarcinoma is
classified into five histopathological subtypes. Micropapillary type is
a high-risk subtype which has the potential for rapid metastasis and
a poor prognosis (4, 5). Micropapillary pattern (MPP) refers to the
free central cluster of cells lacking fibrous vessels (6). It has been
reported in published literature that the micropapillary pattern of
lung adenocarcinoma also has a negative effect on prognosis and
survival after postoperative radiotherapy and chemotherapy (7, 8).
According to Lee G et al., even a small proportion of MPP
specifically <5% of the entire tumor volume has a significant
negative prognostic impact on the overall survival (OS). Thus, the
negative prognostic impact of MPP plays an important role in the
clinical treatment plan and the early diagnosis of MPP in the lung
IAC become very important (9).

Currently, the common preoperative diagnostic methods of
lung cancer are histological puncture biopsy and CT imaging
methods. However, histological biopsies are invasive and
conventional CT imaging diagnostic methods are subjective
and qualitative (10, 11). Moreover, most lung adenocarcinomas
do not have high-grade components, and so radiographic
features may not be obvious in identifying these cases (12–14).

Radiomics is a non-invasive and quantitative methods for
describing the biological characteristics and heterogeneity of the
tumor and we aimed to use this for the early diagnosis of
pulmonary micropapillary lesions. Radiomics has become one
of the research hotspots due to its high patient-specific and non-
invasive comprehensive advantages. Possibly, radiomics has
potential application for the precise treatment of NSCLC.
Radiomics is expected to be used to judge biological
characteristics of tumors such as benign or malignant
pulmonary nodular, lymph node metastasis and tumor gene
phenotype, to reflect tumor response to treatment, and to predict
prognosis and radiation-induced lung injury and provide
an objective basis for individualized treatment (11, 15, 16).
2

This study is based on the features from CT imaging data over
a given region of interest (ROI).

Previously, we investigated the diagnosis of micropapillary
type of lung adenocarcinoma to some extent by radiomic
methods (17) and the purpose of the current study is to further
study the use of CT-based radiomics to preoperationally predict
MPP in lung invasive adenocarcinoma.
MATERIALS AND METHODS

Patients
A total of 170 patients between July 2014 and July 2020 were
included in our study. 121 cases of single lung adenocarcinoma
diagnosed by pathology were included as the training cohort,
including 46 cases with MPP and 75 cases without MPP, aged
45-87 (67.7 ± 8.8) years old. Inclusion criteria: (1) no treatment
before enhanced CT examination; (2) complete surgical resection
with pathological confirmation; (3) complete DICOM data.
Exclusion criteria: (1) clinical data were incomplete or could not
be statistically analyzed; (2) preoperative chemotherapy or
radiotherapy; (3) other malignant tumor or a history of malignant
tumor; (4) radiomics analysis of CT images was not possible. In
addition, forty-nine cases of single lung adenocarcinoma were
collected and used as an independent testing cohort, including 22
cases withMPP and 27 cases withoutMPP, aged 26-85 (63.2 ± 12.1)
years old. Inclusion criteria and exclusion criteria were the same as
the training cohort. The flow chart is shown in Figure 1. The study
is approved by the ethics committee of the author’s medical
institution and informed consent was obtained.

Image Acquisition and Segmentation
Helical CT images were gained by a 16-row CT scanner (GE
Ultra) after deep inhalations. The examination parameters were
as follows: voltage, 120KV; tube current, 150mA; layer thick,
1.25mm; and matrix, 512×512mm. A power syringe was used to
inject contrast agent (60-85ml iodioxitol or iodipamil) at a rate of
2.5-3.0ml/s, and rapid scanning was performed after a delay of 30
seconds to obtain arterial CT images for the study. Two
radiologists read the images and sketched the ROI layer
independently and blindly with each other using ITK-SNAP
(www.itksnap.org/). Then radiomic features were extracted from
those volumes for further analysis.
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Clinical Data Collection
Clinical data were collected via electronic medical records.
Clinical features were assessed at the time of diagnosis.
Gender, age, smoking status, drinking status, family tumor
history, UICC stage, type of surgery, and treatment history
were recorded. Clinic characteristics are shown in Table 1.

Extraction of Radiomics Characteristics
Artificial Intelligent Kit (A.K., version V3.2.0. R) was used for
image processing and feature extraction. The original DICOM
images and the ROI files were separately resampled by the Image
Preprocessing module of A.K., and the resampling voxel size was
set as 1.000 × 1.000 × 1.000. Then the two types of enhanced CT
images were matched to extract radiomics features which
included features types and transform types by A.K. platform.
The former types included first order, shape, gray-level co-
occurrence matrix (GLCM), gray-level size zone matrix
(GLSZM), gray-level run length matrix (GLRLM), gray-level
dependence matrix (GLDM) and neighboring gray tone
difference matrix (NGTDM), and the latter types included log,
wavelet and local binary pattern (LBP).
Frontiers in Oncology | www.frontiersin.org 3
Selection of Relevant Features and
Establishment of Individualized
Prediction Model
The least absolute shrinkage and selection operator (LASSO) was
applied for dimensionality reduction screening to produce
reproducible and stable features that would be used to screen for
the predictive performance studies. And the “corrplot” package
was used for correlation analysis (Supplementary Material). The
cor-function of R software was used to further analyze the potential
correlation between radiomics features and clinical features in the
differentiation of MPP within lung adenocarcinoma. Finally, the
most relevant features were selected and used to develop prediction
models for MPP of lung IAC.

Statistical Method
R software (version 4.0.0, http://www.Rproject.org) was used for
statistical analysis. The “glmnet” and “pROC” packages were
used for LASSO reduction and ROC curve plotting. The LASSO
method was used for features dimensionality reduction and the
selection of the discriminative features. The cor-function was
used to detect whether the differences of variables or indicators
FIGURE 1 | The flow chart of patient selection.
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among different classifications and different sets were statistically
significant. Intra-class correlation coefficient (ICC) values were
compared to estimate the reproducibility and stability of tumor
segmentation and feature extraction (ICC > 0.75 indicating good
consistency). The receiver operating characteristic (ROC) curve
and area under the curve (AUC) are used to evaluate the
predictive effectiveness of models, and DeLong test was used to
compare whether the efficiency differences between the models
were statistically significant. Calibration curves were used to
evaluate the correction effect of the nomograms.
RESULTS

Extraction and Selection of Radiomics
Features and the Establishment of
Radiomics Signature
Data preprocessing was performed by R software. After deleting
meaningless and empty data, 1317 radiomics features remained.
Then, LASSO was used for dimension reduction of these features
Frontiers in Oncology | www.frontiersin.org 4
and the resulting lambda.1se=0.074 is obtained (Figures 2A, B).
According to the results, 14 relevant radiomic features were
selected. Then correlation analysis was conducted for the 14
features by the cor-function of R software and 5 key features were
selected (Figure 3). They are referred to in this article as
“Features 1-5”, as shown in Table 2.

Predictive Efficacy of Radiomics Signature
The mean of each feature of the radiomics signature is shown in
Table 2. Correlation test showed that the median difference of
radiomics signatures between the lung IAC with MPP and lung
IAC with non-MPP was statistically significant (P<0.05). As
shown in Figure 5A, the efficacy of radiomics signature for
differential diagnosis was good in the training cohort (AUC =
0.889, 95% CI: 0.843 – 0.944) and in the test cohort (AUC =
0.722, 95% CI: 0.574 – 0.870).

Establishment of Individualized Diagnostic
Prediction Model
Correlation analysis was conducted for clinical features including
age, gender, smoking status, drinking status and family tumor
TABLE 1 | Patient characteristics.

Variables Training cohort (N=121) Test cohort (N=49)

Age, mean ± SD (range) 67.7 ± 8.8 (45-87) 63.2 ± 12.1 (26-85)
Gender, n
Female 52 33
Male 69 16
Smoker, n 34 10
Family tumor history, n 11 11

Histologic subtypes within a tumor, n
One subtype
Acinar pre* 38 17
Micropapillary pre 5 1
Solid 7 0
Papillary 2 0
Adherent 14 4

Two subtypes
Acinar + micropapillary 20 13
Adherent + micropapillary 1 0
Solid + micropapillary 3 2
Papillary + micropapillary 2 1
Adherent + papillary 1 1
Acinar + papillary 6 2
Acinar + solid 1 1
Acinar + adherent 6 1

Three subtypes
Acinar + papillary + micropapillary 8 0
Adherent + papillary + micropapillary 1 1
Acinar + solid + micropapillary 6 3
Acinar + adherent + micropapillary 0 1
Acinar + adherent + solid 0 1

TNM stage*, n
IA 80 36
IB 11 4
IIA 1 0
IIB 12 5
IIIA 14 2
IIIB 3 0
IV 0 2
August 2021 | Volume
*“pre” means to take the ingredient as the main ingredient.
*TNM stage is based on the eighth edition lung cancer TNM staging of International Association for the Study of Lung Cancer (IASLC) (18).
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history, which was the same as the radiomic features selection
above. There was no statistically significant difference in gender
and drinking between the lung IAC with MPP and lung IAC
with non-MPP in the training cohort and the test cohort. These
clinically significant features were combined with the previously
selected radiomic features to establish a personalized diagnostic
prediction model for lung IAC with MPP, which is shown by a
nomogram Figure 4.
Comparison of Predictive Performance
Between Radiomics Model and
Individualized Diagnostic Model
For the individualized diagnostic model, the AUC in the training
cohort was 0.885 (95% CI: 0.829 – 0.941), and in the test cohort,
the AUC was 0.739 (95% CI: 0.594 – 0.885) (Figure 5B). In the
test cohort, the diagnostic prediction effect of the individualized
diagnostic model was relatively better than that of the radiomics
model alone.
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

Recently, there has been some reports that lung IACs with MPP are
associated with poor prognosis, such as the possible propensity for
recurrence and metastasis (11, 19). MPP is considered to be
associated with a high rate of lymphatic invasion, visceral pleural
invasion and lymph node metastasis as well (20–23). Previous studies
have shown that patients with neoplasmswith anMPP component of
5% or more have a higher recurrence rate after limited resection than
similar patients with lobectomies (24), suggesting that MPP may
influence the choice of surgical approach. Therefore, preoperatively
diagnosing lung IAC with MPP is very important for the clinic.

CT is the most widely applied method to diagnose lung cancer,
but it is subjective for doctors to judge the nature of lesions and the
sensitivity and specificity of detecting lymph node metastasis is also
low (25, 26). Radiomics provides an more objective method for
diagnosis. Recent developments in radiomics have made it possible to
extract high-throughput imaging features, making it easier to obtain
more accurate information about individual patients and their
A

B

FIGURE 2 | Dimension reduction to find 14 relevant radiomics features by LASSO. (A) The cross validation was performed by LASSO regression and the parameter
l was adjusted to find the best set of functions. The vertical dotted line on the left indicates that the logarithm (l) corresponds to the optimal l. The selection criterion
is the minimum deviation value. (B) The texture parameter coefficients varied with l. The vertical line represents the 14 features selected when the LASSO cross
validation coefficients is non-zero. (l=0.074).
August 2021 | Volume 11 | Article 704994
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treatment options. Many studies have developed models of different
clinical features for prediction based on radiomics, including
prognosis and the conditions of lymph node metastasis. In
addition, some researchers believe that radiomics analysis is
Frontiers in Oncology | www.frontiersin.org 6
valuable in predicting the clinical characteristics and molecular
background of brain tumors (27–32). Our study also shows that
radiomic features can be applied to determinate lung
adenocarcinoma with MPP from other lung IAC and it is helpful
not only for follow-up therapy but also suggests that radiomic
analyses could be used to guide the selection of therapy for specific
tumors (27). Radiomics may have a bigger role in the future.

We have studied the diagnosis of micropapillary type of lung
IAC by means of radiomics before (17), and this study is a
supplement and extension on the basis of the previous research.
In this study, we investigated radiomics features to differentiate lung
IAC with MPP from lung IAC with non-MPP based on enhanced
CT images. In our previous study, only radiomics signature based
on CT images were obtained, and this study added a comprehensive
model combining clinical features and a comparison between the
two models. The results showed that the radiomics features of CT
images may be used to identify micropapillary pattern of lung
invasive adenocarcinoma, and that the predictive efficiency of the
personalized diagnostic model combined with clinical features was
better than that of the omics label alone.

The clinical sample selection of our study is closely linked to
postoperative pathology, which shows the reliability of the research
results. CT images were used validate the radiomics nomogram.
Reliable imaging characteristics are necessary for radiomics analysis
(28). Previous studies have selected certain 3D imaging features and
put them into application (33, 34). They showed the visual
representation of tumors (27, 28). To construct the radiomic
features, the correlation of prediction results was detected by
LASSO, and the large numbers of radiomic features were reduced
FIGURE 3 | Heatmap of radiomics features which showed the correlation
between the 5 radiomics features and lung invasive adenocarcinoma (IAC)
with micropapillary pattern (MPP).
TABLE 2 | Five characteristic predictive parameters in the radiomics signature.

Code name Full name MEAN (SD) W value P value

Feature 1 wavelet.LLL_glszm_LowGrayLevelZoneEmphasis 0.39 (0.19) 1855.00 <0.01
Feature 2 wavelet.LHL_glrlm_LongRunLowGrayLevelEmphasis 4.21 (1.22) 5040.00 <0.01
Feature 3 wavelet.LLH_firstorder_RobustMeanAbsoluteDeviation 9.68 (4.52) 5156.00 <0.01
Feature 4 wavelet.LHL_glrlm_LongRunEmphasis 6.14 (1.39) 5198.00 <0.01
Feature 5 original_firstorder_InterquartileRange 18.9 (9.23) 5372.00 <0.01
August 2
021 | Volume 11 | Article
FIGURE 4 | Based on the training cohort data, the nomogram of radiomics was established, and the statistical analysis showed that the nomogram consisted of
radiomics signature, age, smoking and family tumor history, which could predict the risk of micropapillary pattern within lung invasive adenocarcinoma.
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to 14 potential predictors. This method is not only better than the
method of selecting predictors based on the univariate association
strength of predictors and results, but also can combine the selected
feature panels for performing predictive function (30).

There are some limitations in our study. First, this was a single-
center study with a lack of external validation. Secondly, the sample
size needs to be expanded for more reliable results. Third, texture
features were extracted frommanually segmented data, which made
it difficult to exclude small vessels and bronchus inside the lesions,
and may affect the accuracy of some features, and the development
of a more reliable and repeatable automated segmentation method
seems necessary. Moreover, the current study did not include
genomics studies. It has been reported that radiogenomics can
offer a practical way to leverage limited and incomplete data to
generate knowledge that may lead to improved decision making,
and as a result, improve patient outcomes (35). Other studies have
shown that EMT-related molecules, EGFR, KRAS and Ki67 have
some relationship withMPP (36–38). In the future, we will combine
the genetic characteristics for further research and exploration.

In conclusion, radiomics has an important role to play in the
diagnosis of tumors. The individualized predictive model, which
consists of clinical features and radiomic signatures, expressed in
the form of a histogram, can provide a non-invasive, rapid,
inexpensive, and reproducible method for the individualized
preoperative prediction of micropapillary pattern within lung
invasive adenocarcinoma to determine the presence of
micropapillary components and facilitate clinical management.
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