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Abstract: The accumulation of unknown polymorphic composites in the endocardium damages
the endocardial endothelium (EE). However, the composition and role of unknown polymorphic
composites in heart failure (HF) progression remain unclear. Here, we aimed to explore composite
deposition during endocardium damage and HF progression. Adult male Sprague–Dawley rats
were divided into two HF groups—angiotensin II-induced HF and left anterior descending artery
ligation-induced HF. Heart tissues from patients who had undergone coronary artery bypass graft
surgery (non-HF) and those with dilated cardiomyopathy (DCM) and ischemic cardiomyopathy
(ICM) were collected. EE damage, polymorphic unknown composite accumulation, and elements
in deposits were examined. HF progression reduced the expression of CD31 in the endocardium,
impaired endocardial integrity, and exposed the myofibrils and mitochondria. The damaged endocar-
dial surface showed the accumulation of unknown polymorphic composites. In the animal HF model,
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especially HF caused by myocardial infarction, the weight and atomic percentages of O, Na, and N
in the deposited composites were significantly higher than those of the other groups. The deposited
composites in the human HF heart section (DCM) had a significantly higher percentage of Na and S
than the other groups, whereas the percentage of C and Na in the DCM and ICM groups was signifi-
cantly higher than those of the control group. HF causes widespread EE dysfunction, and EndMT
was accompanied by polymorphic composites of different shapes and elemental compositions, which
further damage and deteriorate heart function.

Keywords: endothelial endocardium; heart failure; mineral deposition; dilated cardiomyopathy;
ischemic cardiomyopathy; unknown polymorphic composite

1. Introduction

According to the American College of Cardiology (ACC)/American Heart Associ-
ation (AHA) guidelines for heart failure (HF), HF due to left ventricular dysfunction is
categorized according to the left ventricular ejection fraction (LVEF) into HF with reduced
ejection fraction (HFrEF; usually considered LVEF 40% or less) and HF with preserved
ejection fraction (HFpEF) [1]. Dysfunction of the endocardial endothelium (EE) leads to
the progression of HF [2]. The endocardium is the innermost layer of the heart covered
with thin endothelium filled with fibrous connective tissue. Therefore, endocardial dys-
function is associated with cardiovascular diseases [3]. Typical endocardial endothelial
lesions have been implicated in inflammation, thrombosis, sepsis, atrial fibrillation, is-
chemia/reperfusion injury, myocardial infarction (MI), cardiac hypertrophy, and HF [2,4].
The EE is a critical source of cardiomyocytes, and it can periodically release nitric oxide
into the subendocardial space. Exogenous NO, or NO produced by the EE, can reduce
myocardial oxygen consumption and increase myocardial perfusion, further protecting
the myocardium [5,6]. In HF, high concentrations of neurohormones induce oxidative
stress and cause selective damage to the EE, reducing the mechanical performance and
contractility of the adjacent cardiomyocytes. Partial damage or complete loss of EE can
reduce cardiomyocyte contractility and affect cardiac contractile performance [7,8].

The endothelial-to-mesenchymal transition (EndMT) is a process in which endothe-
lial cells undergo several molecular transformation events and show a mesenchymal or
fibroblast-like phenotype [9,10]. Thus, EndMT is an adverse reaction to disease compensa-
tion and plays a role in adaptive remodeling in a new pathological cardiac environment [10].
EndMT is associated with the development of the heart and contributes to the initiation and
progression of pulmonary hypertension, atherosclerosis, valvular disease, cardiac fibrosis,
and HF [11,12]. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are
common causes of HF [13]. They have similar pathological characteristics, such as mod-
erate to severe myofibril degeneration, vacuolation of the interstitial of the cardiac tissue,
and fibrosis of cardiomyocytes through EndMT. EndMT contributes to the progression of
HF through the activation of the Wnt and Snail signaling pathways and by increasing the
expression of mesenchymal markers such as Wnt, β-catenin, and Snail [14,15]. In addition,
accumulating evidence suggests that EndMT actively responds to valve injury, stress, and
disease during heart valve development [10,16] and mediates valvular endothelial cell
osteogenesis, leading to aortic valve calcification and mineral deposition [17].

The accumulation of composites often results in physical damage to the underly-
ing endocardium. Currently, the known sources of endocardial deposits include lipid
droplets [18], calcium [19], iron [20], fibrotic complex [21], amyloidosis [22], sarcoidosis [23],
carcinoid heart disease [24], and Fabry disease [25]. Studies on composite accumulation in
the damaged endocardium during HF are scarce. The mechanism underlying composite
deposition during endocardium damage and HF progression is poorly understood. In this
study, we aimed to analyze the elements and role of unknown composite deposition in the
EE in HF progression.
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2. Materials and Methods
2.1. Heart Failure Animal Model

The animal procedures were conducted in strict compliance with Taiwanese legislation.
All animal experiments were approved by the Institutional Animal Care Committee of
Kaohsiung Medical University and performed according to the ARRIVE guidelines set by
the National Institutes of Health for the care and use of laboratory animals (IACUC106182,
106039). Male Sprague Dawley rats (8 weeks old; weighing 240–250 g) were purchased
from BioLASCO (Taiwan Co., Ltd., Taipei, Taiwan), were provided with food and water
ad libitum, and maintained on hardwood bedding under a 12 h light/dark cycle. All
rats were weighed weekly. All animals were housed and cared for in a pathogen-free
facility at the Kaohsiung Medical University. There were two experimental groups (n = 6
for each group: (1) PBS (vesicle); (2) Ang II (1 mg/kg/day) (Merck, Kenilworth, NJ,
USA) administered via a subcutaneously implanted Alzert osmotic pump (infusion rate,
0.5 µL/h) over 28 days [26]; and (3) left anterior descending coronary artery (LAD) ligation
for 28 days [27]. After 28 days, the rats were euthanized with CO2 and their hearts were
immediately harvested for further analysis.

2.2. Scanning Electron Microscopy

The collected cardiac tissues were fixed overnight in 2.5% glutaraldehyde at 4 ◦C.
The tissues were washed three times with 1× phosphate-buffered saline (PBS) for 10 min,
post-fixed in 2% osmium tetraoxide (OsO4) for 2 h at 4 ◦C, washed three times with PBS
for 10 min, and dehydrated using ascending grades of alcohol (50%, 75%, 85%, 95%, and
100%). The tissues were dried using a critical point drier (CPD 030; Bal-TEC, Pfäffikon,
Switzerland) for 1 h, and the tissues were coated with gold and monitored by SEM (Hitachi-
8010; Hitachi, Tokyo, Japan) at an accelerating voltage of 10–25 kV.

2.3. Energy-Dispersive X-ray Spectroscopy (EDS)

The existence and percentage of ions in the cardiac tissue samples were examined us-
ing an SEM equipped with an energy dispersive X-ray spectrometer. The SEM system (cold
field emission SEM) (JSM-7000F, JEOL; Akishima, Tokyo, Japan) contained a scientific-grade
high-resolution in-lens detector equipped with variable pressure and energy dispersive
X-ray spectrometer for characterizing the elemental composition of a specimen. Imaging
and elemental analyses were carried out in a specimen chamber filled with nitrogen gas at
a variable pressure of 60 Pa with an accelerating voltage of 17.5 kV using INCA (Oxford
Instruments, Abingdon, UK) software for the EDS analysis (peak identification, elemental
composition assessment, and processing of the measured signal). For intracellular ion
assessment, Point & ID (a feature of the INCA software) (Oxford, High Wycombe, UK) was
used to specify a rectangular region of interest covering the sediments, identify spectral
peaks, and determine the percentage of the identified elements.

2.4. Human Sample Collection

We collected samples from 11 subjects with HF, six with DCM, five with ICM, and three
healthy donor auricle tissues (from coronary artery bypass grafting patients, Table S1). All
end-stage HF patients were treated with heart transplant surgery in the Tri-Service General
Hospital in Taipei from August 2018 to July 2020. Furthermore, the research protocol for the
clinicopathological assessment of end-stage HF in explanted heart inpatients was reviewed
and approved by the institutional review board (IRB) of the Tri-Service General Hospital
(TSGHIRB No: 2-106-05-141).
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2.5. Immunohistochemistry Staining

To quantify CD31, E-cadherin, VE-cadherin, Tropomyosin, and β-catenin expression,
tissue sections were incubated in blocking buffer (0.5% bovine serum albumin, BSA, 0.05%
Tween-20, and PBS) for 1 h, followed by blocking with specific primary antibodies: CD31
(1:100, sc53411; Santa Cruz, Santa Cruz, CA, USA), E-cadherin (1:100, sc8423; Santa Cruz),
VE-cadherin (1:100, sc9989; Santa Cruz), β-catenin (1:100, GTX101435; Gene Tex, Irvine,
CA, USA), and tropomyosin (1:100, sc58868, Santa Cruz) for 1 h. Antibody staining was
performed using a fluorescence detection system (Ventana Medical System; Invitrogen,
Carlsbad, CA, USA) for 1 h. After washing, the sections were mounted and examined
using a confocal laser microscope (Leica, Baca Raton, FL, USA).

2.6. Statistical Analysis

The data are presented as mean ± standard error of mean (SEM) and analyzed using
the ANOVA and Dunnett’s tests. Statistical analyses were performed using SigmaStat
version 3.5 (Systat Software Inc., Chicago, IL, USA), and the results with p < 0.05 were
considered statistically significant.

3. Results
3.1. HF-Induced EE Injury Led to Myocardium Myofibril Fragmentation and
Mitochondrial Rearrangement

Irrespective of whether it is hypertensive or ischemic HF, EE dysfunction initiates
the progression of HF [28]. We established animal models of HF induced by Ang II
(hypertensive HF) and MI (ischemic HF) treatment. We also collected non-HF atrial
specimens and specimens of HF caused by DCM and ICM for further examination. SEM
data demonstrated that the endocardium in the control group was intact and that there was
no damage or cracking. In contrast, the endocardium in the MI and Ang II groups showed
severe myofibril damage and fracture with a lower number of mitochondria filled between
the broken myofibrils. In addition, the HF group also had an unidentified composite
deposited on the damaged endocardium (Figure 1A). In the human specimen, we found
that the DCM and ICM groups had apparent endocardial damage and were accompanied
by the deposition of unknown composites on the EE (Figure 1B). Next, immunostaining
was used to confirm whether the integrity of the endocardial structure was damaged during
HF. The expression of CD31 (EE marker protein) was significantly reduced in the animal
and human HF groups (Figure 1C,D) indicating EE dysfunction, which causes myofibril
fragmentation, mitochondrial dysfunction, and unidentified composite deposition.

3.2. HF-Induced Endothelial-to-Mesenchymal Transition in the Endocardium

EndMT is a pathological process in which fibroblast-like cells replace the original
endothelial cells. It is common after endocardial ischemia or damage due to the disease.
This process is also essential for the progression of HF [11]. Figure 2 shows the HF-induced
EndMT in the endocardium. Immunofluorescence labeling of the control group showed a
higher expression of endothelial-specific marker von Willebrand Factor (vWF) combined
with the endothelial marker E-cadherin and VE-cadherin in the endocardium; however,
the mesenchymal markers α-SMA and β-catenin were not upregulated. In the HF groups,
mesenchymal markers α-SMA and β-catenin were highly expressed in combination with
vWF, significantly reducing the expression of endothelial markers E-cadherin and VE-
cadherin. These data show that HF induced EndMT in human and mouse endocardial
endothelial cells.
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Figure 1. Endocardial endothelial dysfunction in HF. Immunostaining of CD31 (endocardium marker, red), tropomyosin
(myocardium marker, green), and DAPI (DNA, blue) in rat HF heart model (A) and human HF heart tissues (B). Scanning
electron microscopy (SEM) images of rat HF heart model (C) and human HF heart section (D). Red arrow indicates the
mitochondria. Scale bar: 10 µm.
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Figure 2. Endothelial-to-mesenchymal transition (EndMT) in the endocardium in HF. Immunostain-
ing of vWF (endocardium marker, red), E-cadherin (green), VE-cadherin (green), α-SMA (green),
β-catenin (green), and DAPI (DNA, blue) in the rat HF heart model (A) and human HF heart section
(B). Scale bar: 10 µm.

3.3. Unknown Composite Accumulation in the Endocardium of the HF Model

Research on the deposition of unknown substances in the endocardium in HF diseases
is limited. Figure 3 shows the deposition of unknown substances in the endocardium.
The HF samples showed the deposition of multiform unknown composites, including
flower-like structures (in the NR group) (Figure 2A). In the HF group, the appearance
of multiform unknown composites included sponge-like, hedgehog-like, mushroom-like,
grass-like, brushwood-like, ball containing stingers such as asparagus-like, underbrush-
like, scarecrow-like, moss-like, star-like, and hydrangea-like structures (Figure 2B,C). These
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data showed that the endocardial surface covering may have unknown composite accu-
mulation of different shapes, especially in HF compared with the control, and that the
composition elements and functions may vary.
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Figure 3. Scanning electron microscopy images of mineral deposition in Ang II- and ischemia heart-induced HF model.
(A) Control group endocardium. (B) Ang II group endocardium. (C) LAD ligation-induced MI group endocardium.

3.4. Elemental Analysis of Unidentified Composite on the Endocardium in HF Models

SEM, ESEM-EDS, and EDS mapping were used to characterize the unknown com-
posite elements in the HF endocardium (Figure 4). The surface topography of a partial
cross-section of unknown composite deposit was assessed by SEM (Figure 3A). ESEM-EDS
and EDS mapping images of C, O, Na, S, and N are shown in Figure 3B–3D. The corre-
sponding C, O, Na, S, and N bright spots indicate mineral-like sediments and illustrate
the distribution of these elements. The unknown composite element weight percentage
and atomic percentage were analyzed in the three groups (Table 1). The unknown com-
posite element percentage in the control group was C > O > Na > S. Unknown composite
element percentage in the Ang II group was C > O > Na > S. Unknown composite element
percentage in the MI group was O > C > Na > N > S. Our findings indicate that the weight
percentage and atomic percentage of C were significantly reduced in the MI group and
there was little decrease in the Ang II group. The percentage of O and Na increased in the
HF group, especially in the MI group. The weight percentage and atomic percentage of
S were only reduced by Ang II, whereas N was detected only in the composite of the MI
group. These data showed that the composition and ratio of the sedimentary materials of
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the control group and different HF groups were variable. Hypertensive HF increases the O
and Na elements. However, in the ischemic HF group, the percentage of O, Na, and N was
significantly increased, and the ratio of C decreased in the current residence. This result
indicates a correlation between the increase in the S/N concentration caused by ischemic
HF and the production of composites.
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II- and ischemia heart-induced HF models. (A) SEM images of HF animal model. (B) SEM-EDS mapping. (C) Secondary
electron image and analogous elemental mapping of carbon (C), oxygen (O), sodium (Na), sulfur (S), and nitrogen (N).

Table 1. Quantification of area spectrum for the weight and atomic percentage of various elements in
Ang II- and ischemia heart-induced HF models. * p < 0.05; ** p < 0.001.

Element Control Ang II MI

C
Weight% 61.83 ± 4.81 53.8 ± 1.61 * 4.47 ± 0.59 **

Atomic% 71.31 ± 4.38 63.27 ± 1.26 * 6.48 ± 0.85 **

O
Weight% 25.27 ± 4.24 33.236 ± 0.31 * 59.31 ± 1.39 **

Atomic% 21.93 ± 3.98 29.35 ± 0.34 * 64.52 ± 1.46 **

Na
Weight% 6.88 ± 0.56 9.51± 1.30 * 25.72 ± 3.2 **

Atomic% 4.554 ± 0.4 6.713 ± 0.85 * 21.884 ± 2.41 **

S
Weight% 6 ± 0.9 3.44 ± 0.47 * 5.03 ± 2.06

Atomic% 2.59 ± 0.42 1.52 ± 0.21 * 2.73 ± 1.13

N
Weight% ND ND 5.46 ± 1.1 **

Atomic% ND ND 6.79 ± 0.77 **
ND: not detectable.
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3.5. Unidentified Composite Accumulation on Endocardium in Human HF

Figure 5 shows the accumulation of unknown substances in the human HF endo-
cardium observed by SEM. A small number of deposits that looked like stalactites or
stalagmites were found in the endocardium of the right atrial appendage without HF (in
control tissue groups 1–3) (Figure 5A). In the DCM HF group, a significant accumulation
in the endocardium was found, and it resembled bushes or crystal clusters (Figure 5B). In
the ICM HF group, many accumulations of lichen or crystal clusters were found in the
endocardium (Figure 5C). The results of this study and the pattern of deposits in the animal
HF model confirm that the endocardium in humans without HF may have a small number
of stalactite-like deposits, whereas the composites on the endocardium in the HF group
might appear as bushes or lichens.
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3.6. Elemental Analysis of Unidentified Composite on Endocardium in Human HF

Figure 6 shows the SEM, ESEM-EDS, and EDS mapping data used to characterize the
elements in the unknown composite in the human HF endocardium. Figure 6A shows the
surface topography of a partial cross-section of the unknown composite deposit assessed by
SEM. ESEM-EDS and EDS mapping images of C, O, Na, N, and S in unknown composites
are shown in Figure 6A–C. The element weight percentage and atomic percentage of the
unknown composites were analyzed in the three groups (Table 2). The proportion of
elements in the unknown composites in the control tissue group was O > C > N > Na >
S; DCM group was O > C > Na > N > S; and ICM group was O > C > N > Na > S. Our
findings indicated that the weight percentage and atomic percentage of C were significantly
increased in the HF group, and there was no difference between the DCM and ICM groups.
The weight percentage and atomic percentage of N were only reduced in the DCM group.
The weight percentage and atomic percentage of O and Na were increased in the HF group;
however, there was no difference between the DCM and ICM groups. The Na concentration
increased significantly in the DCM group, which was different from that in the other two
groups. The weight percentage and atomic percentage of S significantly increased in the
HF group. This finding indicates a correlation between the increase in Na/S concentrations
caused by HF and the production of composites.
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Table 2. Quantification of area spectrum for the weight and atomic percentage of various elements in
DCM and ICM. * p < 0.05; ** p < 0.001.

Element Control Tissue DCM ICM

O
Weight% 20.22 ± 4.75 30.08 ± 3.42 * 30.79 ± 3.99 *

Atomic% 17.25 ± 4.29 29.13 ± 3.69 * 27.66 ± 3.91 *

C
Weight% 54.96 ± 5.8 34.29 ± 2.53 ** 42.77 ± 1.73 *

Atomic% 62.32 ± 5.86 44.15 ± 2.59 ** 51.23 ± 1.28 *

Na
Weight% 4.3 ± 0.67 13.17± 1.04 ** 7.29 ± 0.93 **

Atomic% 2.94 ± 0.39 9.69 ± 0.81 ** 5.19 ± 0.63 **

S
Weight% 3.82 ± 0.73 11.15 ± 1.63 ** 5.03 ± 2.24 *

Atomic% 1.62 ± 0.31 5.38 ± 0.35 ** 2.26 ± 0.13 *

N
Weight% 16.69 ± 4.63 11.29 ± 3.97 14.06 ± 6.17

Atomic% 16 ± 2.51 12.45 ± 2.22 14.38 ± 3.27

4. Discussion

Cardiomyopathies are an important and heterogeneous group of diseases that con-
tribute to HF [29]. The main types of primary cardiomyopathy are hypertrophic car-
diomyopathy (HCM), DCM, restrictive cardiomyopathy, arrhythmogenic right ventricular
dysplasia, and transthyretin amyloid cardiomyopathy [30]. HCM is the most common pri-
mary cardiomyopathy (prevalence of 1:500) [31], and the presence of DCM (prevalence of
1:2500) primarily indicates the need for heart transplantation [32]. Ischemic cardiomyopa-
thy (ICM) is the most common type of DCM and is an essential etiology of HF associated
with a heart attack or coronary artery disease (CAD). In this study, the human HF samples
were collected from DCM and ICM heart transplant recipients.

Animal models that mimic human HF, such as myocardial infarction (LAD ligation)-
induced HF and pressure-overload (Ang II treatment)-induced HF, are standard models
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to study cardiac fibrosis and HF progression [33]. Interstitial fibrosis is an essential patho-
logical process in human HF. Compared with the extensive interstitial fibrosis in the Ang
II model, the cardiac fibrosis caused in the TAC model is less rapid, and the effect is not
systemic or extensive [34,35]; therefore, to establish a model of non-ischemic HF, we used
Ang II instead of the transverse aortic constriction (TAC).

EE dysfunction plays an essential role in facilitating HF and has a significant prognostic
value for clinical outcomes. Previous studies have indicated that biomarkers of EE, such
as platelet endothelial cell adhesion molecule (PECAM-1/CD31), vascular cell adhesion
molecule-1 (VCAM-1), soluble thrombomodulin, and von Willebrand factor (vWF) [2],
were significantly decreased in HF. Our experimental results indicated that hypertensive
or ischemic HF directly damages the integrity of the EE with reduced CD31 expression,
leading to the fragmentation of the myocardial fibers under the endocardium and exposure
of the mitochondria initially located in the myocardium.

EndMT is a complex pathological progression in which the original features of en-
dothelial cells (EC) are lost, and they develop mesenchymal features of fibroblasts or
myofibroblasts during embryonic or cardiac disease remodeling [36]. Recent studies have
demonstrated that EndMT may be an important pathogenic mechanism in fibrotic dis-
orders, including pulmonary, kidney, cardiac fibrosis, and HF [37]. The process of heart
remodeling during HF often involves the activation of several ECs and mesenchymal cell
transition-related pathways. These pathways include the cell–cell junction reconstruc-
tion [38], increased nuclear factor-κB (NF-κB) transcription factor activity [39], activation of
the transforming growth factor β (TGF-β)/fibroblast growth factor (FGF) axis coordinating
the endothelial cell plasticity and smooth muscle cell migration motility [40], activation
of the Smad2/3-Snail signaling pathway to increase EndMT protein expression [41], and
the regulation of microRNA (miRNA) expression for a positive or negative mediation of
HF progression [42]. Our results showed that hypertensive or ischemic HF significantly re-
duced the E-cadherin and VE-cadherin expression and increased vimentin and fibronectin
expression in the human and rat HF endocardium. In addition, our research showed that
during hypertensive and ischemic HF, EE is damaged, accompanied by EndMT, indicating
that the EE damage and EndMT play an essential role in the progression of HF.

EndMT contributes to extracellular matrix remodeling and collagen-deposition-induced
cardiac fibrosis [43]. However, we found that the endocardial deposits in HF are signifi-
cantly different from the currently known endocardial or valve deposits. The vascular calci-
fication, valve calcium, mineral deposits or the formation of calcium phosphate complexes
in the endocardium layer on the vasculature or valve are the most common endocardial de-
posits [44]. Vascular calcification or valve calcium is associated with chronic kidney disease,
hypertension, hyperphosphatemia, aging, and diabetes mellitus [45]. Unlike the contents
of the cardiac deposits formed in other diseases, the deposits found in the HF groups in
our experiments were organic complexes rich in Na. To the best of our knowledge, this
is the first report related to the study of endocardial deposits. We found various types of
composites on the surface of the HF endocardium but not on the normal endocardium. In
the normal group, the endocardium was complete and smooth, and there were few cases
of endocardial damage. However, the number of composites was small, and mostly flower-
like. In the HF group, the endocardium was damaged, myocardial fibers were fragmented,
and various types of deposits were intertwined and stacked on the endocardium. However,
the appearance of the composites in the HF animal models was significantly different from
that of the composites in the human HF heart sections. Regardless of Ang II or ischemic
HF, the composites were generally enormous and had a solid sponge-like structure. There
were not many differences between the two HF animal models. The composites in the
human HF groups were mostly shrub, stalk, or crystal shaped.

Elemental analysis shown many deposits of different shapes rich in Na on the endo-
cardium of HF. In the animal model of HF, compared with the other two groups, the MI
group presented significantly reduced C concentration, whereas the percentage of O and
Na was significantly increased. It is worth mentioning that the MI group was the only
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group with deposits containing N, whereas the concentration of S did not differ among
the three groups. Our findings showed a correlation between the increase in Na and N
concentrations in the ischemic HF group. In the Ang II group, the C and S concentrations
in the composites marginally decreased compared with those in the control group except
for an increase in the Na and O concentrations. In human HF heart sections, the composites
of the ICM group showed a reduction in O concentration and an increase in C, S and
Na concentrations. This trend was not like that observed in the MI group in the animal
experiments. However, the concentration of N was not different in the composites among
the three tissues. In the DCM group composites, the percentage of O decreased, whereas
that of C, Na, and S increased. Our finding showed a correlation between the increase in
Na and S concentrations in the DCM group.

The deposits in the DCM and ICM groups contained a significantly higher concentra-
tion of Na than those in the other groups. However, the reasons for the formation of Na-rich
composites in the damaged endocardium, the pathological mechanism, and the effect on
the clinical prognosis of HF have not been explored to date. The non-osmotic arginine
vasopressin (AVP), the renin-angiotensin-aldosterone axis, and the sympathetic nervous
system activate vascular resistance and enhance sodium and water renal retention, lead-
ing to hyponatremia in hospitalized patients with HF [46]. Hypervolemic hyponatremia
(serum sodium concentration < 135 mEq/L) is a frequent electrolyte imbalance encountered
with poor short- and long-term clinical outcomes (1.5–1.7-fold increased risk of 30-day
mortality) in hospitalized patients with HF [47,48]. However, it is unclear whether there is
a direct correlation between hyponatremia and the accumulation of Na-rich composite in
the endocardium in HF; therefore, further research is warranted.

Our study had a few limitations. First, owing to the difficulty of obtaining patient spec-
imens, the tissue specimens used in the normal group were from the right atrial appendage
and not ventricular tissue. However, this does not affect the integrity of the endocardium,
EndMT, or deposition. In the evaluation of physical performance, compared with other HF
groups, morphological differences still exist in the structure of the ventricles. Furthermore,
EE dysfunction and EndMT activation are required for HF progression. However, culturing
the ventricular endocardial endothelial cell line is challenging, limiting the research needed
to understand the pathological mechanism. This may be solved using the rat primary
ventricular endocardial endothelial cells. Our results showed that the accumulation of
sodium-rich composites, EE dysfunction, and EndMT activation were indispensable in the
progression of HF. However, the use of these three phenomena for predicting HF progres-
sion is still not established. The sodium-rich composite deposition can be detected using 3D
imaging, SEM, and EDS analysis. However, this experimental strategy cannot be used in
the early stages of HF diagnosis or disease progression. Developing new imaging detection
systems may overcome these limitations. HF is often accompanied by hyponatremia, and
the composites on the endocardial surface accumulated primarily in the damaged part
of the endocardium. Importantly, in this study, the level of Na in the plasma was not
measured regardless of animal or human model results. Overall, we demonstrated that
hypertensive and ischemic HF leads to EE dysfunction and EndMT and that the deposition
of unknown composites in the endocardium promotes HF progression.

5. Conclusions

In summary, our study demonstrated that HF induces composite accumulation in
the endocardium in association with EE dysfunction and EndMT. Polymorphic compos-
ites differ in shape and elemental composition and can further damage and deteriorate
heart function. In the animal HF model, the weight and atomic percentages of Na were
significantly higher than those of the control group, especially HF caused by MI-induced
Na/N-rich composites. The deposited composites in the human HF tissue showed a sig-
nificantly higher percentage of Na and S than those in the control group, especially DCM
HF-induced Na/S-rich composites (Figure 7).
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