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During an ultrasound (US) scan, the sonographer is in close contact with the patient,

which puts them at risk of COVID-19 transmission. In this paper, we propose a

robot-assisted system that automatically scans tissue, increasing sonographer/patient

distance and decreasing contact duration between them. This method is developed

as a quick response to the COVID-19 pandemic. It considers the preferences of the

sonographers in terms of how US scanning is done and can be trained quickly for

different applications. Our proposed system automatically scans the tissue using a

dexterous robot arm that holds US probe. The system assesses the quality of the

acquired US images in real-time. This US image feedback will be used to automatically

adjust the US probe contact force based on the quality of the image frame. The quality

assessment algorithm is based on three US image features: correlation, compression

and noise characteristics. These US image features are input to the SVM classifier, and

the robot arm will adjust the US scanning force based on the SVM output. The proposed

system enables the sonographer to maintain a distance from the patient because the

sonographer does not have to be holding the probe and pressing against the patient’s

body for any prolonged time. The SVM was trained using bovine and porcine biological

tissue, the system was then tested experimentally on plastisol phantom tissue. The

result of the experiments shows us that our proposed quality assessment algorithm

successfully maintains US image quality and is fast enough for use in a robotic control

loop.
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1. INTRODUCTION

Ultrasound (US) image acquisition is a popular medical imaging
method because it does not involve radiation (like x-ray or CT
do), is generally regarded as safe, has a low cost compared to
other medical imaging methods and is widely available. For a
healthcare system that is struggling with COVID-19, US scanning
is a way for COVID-19 diagnosis (Buda et al., 2020; McDermott
et al., 2020), especially in developing countries where access to
the lab kit is very limited. But there are some factors regarding
the US scanning procedure during COVID-19 pandemic that
need to be addressed. The first factor is the close contact between
sonographers and patients; it is very important to minimize
contact between sonographers and patients during the COVID-
19 pandemic. It has been proven that close person/person contact
is the main way for the transmission of the virus (Jarvis et al.,
2020; Jin et al., 2020; Morawska and Milton, 2020; Zu et al.,
2020). The second factor is related to COVID-19 patients with
underlying conditions such as heart conditions. These patients
are at heightened risk, and some of these underlying conditions
need US imaging, like echocardiography. The third factor is
that US imaging can also be quite time-consuming. Most US
scans last between 15 and 45 min (NHL, 2018). For example,
echocardiography takes almost 20 min (Ebadollahi et al., 2001).
Because of this, we need a system that helps a sonographer
to scan tissue and decreases the contact duration (i.e., allows
for greater distancing) between sonographers and patients. This
paper proposes a quick, low-cost, and deployable solution for the
problem mentioned above as a consequence of the COVID-19
pandemic. Robots can be very useful for solving this problem.
The part of the scanning that requires experience and knowledge
of the sonographer can be done the normal way, and the parts
that put the sonographer at an increased risk of contacting the
virus can be delegated to the robotic system just like the way x-ray
systems work. Using robots during the COVID-19 pandemic
can significantly decrease the risk of virus transmission (Tavakoli
et al., 2020) particularly because the proposed robotic system can
be sanitized between each US scanning procedure.

The assessment of image quality is essential in developing
robotic US scanning. Image quality assessment has been a
challenging topic in medical image processing, and different
methods have been proposed in the literature. There are three
different categories of image quality assessment algorithm based
on the availability of reference images or other supplementary
information. The first category is called full-reference image
quality assessment. A reference image (high-quality image) is
available in this category, and the quality assessment metric
is implemented by comparing a given image to the reference
image. The second category is called semi-reference image
quality assessment, in which the algorithm has access only
to some information about the reference image, such as
important features in the image. For instance, Chen et al.
(2020) uses the visual features (statistical features from contourlet
transform) that are critical for both human perception and
object recognition for sonar image quality assessment, but the
reference image is not available. Semi-reference methods are
more challenging than full-reference algorithms, and how to

utilize the additional information is an important question for
these algorithms. The final category is called no-reference image
quality assessment, in which the algorithm does not have access
to the reference image or any additional information related to
it. This category is the most challenging but is very important
and useful for medical image quality assessment (Chow and
Paramesran, 2016). Being as typically we do not have access to
quality reference images, the crucial part of no-reference image
quality assessment is developing the quality metrics. Quality
metrics should be based on features that are present in either
high-quality or low-quality images. The extracted features need
to be combined to build a quality metric that creates an image
quality score.

The problem with US images processing is the inherent noise
in the images, making it difficult for a physician to interpret them.
This makes US image quality assessment a very complicated task.
In this paper, we propose a method for assessing the US image’s
quality when a robotic arm is holding the US probe. We will
incorporate the algorithm in the robot control loop for automatic
scanning of tissue. An admittance-based controller will be used
for the robot and automatically control the probe’s scanning
force applied to the tissue. The admittance controller produces
a desired position using a predefined relationship between the
position and measured force (Zeng and Hemami, 1997; Fong
and Tavakoli, 2018). The US scanning assistant is shown in
Figure 1. The sonographer uses a handle to position the robot by
incorporating a robot’s built-in admittance control, and the robot
adjusts the US scanning force applied to the tissue by analyzing
the quality of the acquired image. This system reduces contact
time and mitigates the risk of virus transmission between the
sonographer and the patient. Being as the system scans the tissue
based on image quality assessment feedback, the sonographer
does not need to be next to the patient for the whole duration
of the scanning.

The outline of the paper is as follows. In section 2, we will
give a brief review of previous medical image quality assessment
algorithms, robot-assisted sonography and robotic admittance
control applications. We will address the contributions of this
paper in section 2.4. We develop our proposed image quality
assessment algorithm in section 3 by giving details of the
algorithm and discussing the specific image features it uses. In
section 4, we will give the details of the robotic admittance
controller used in the system to adjust the US scanning
force applied to the tissue. The experimental setup and the
experimental results are presented in section 5. We will conclude
our method and its advantages in section 6.

2. PRIOR WORK

In this section, we will talk about previous work that has
been done in medical image quality assessment, robot-assisted
sonography, and robotic admittance control. We will talk about
our contribution and novelty in the last paragraph of this section.

2.1. Medical Image Quality Assessment
Medical image quality assessment is a broad topic across multiple
imaging modalities, with each imaging modality having its
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FIGURE 1 | US scanning assistant including Panda robot arm, US probe, handle for sonographer, tissue phantom, frame grabber, and robot base frame.

features and characteristics that need to be considered. A review
of different medical image quality assessment algorithms and
their corresponding imaging modalities can be found in Chow
and Paramesran (2016). The most crucial problem in medical
image quality assessment is the unavailability of reference data,
and most methods are based on no-reference image quality
assessment algorithms. We can classify no-reference medical
image quality assessment methods into model-based and image-
based methods. The algorithm is based on modeling both images
and noise in a model-based image quality assessment algorithm,
such as the method proposed in Zemp et al. (2003). On the other
hand, in image-based quality assessment algorithms, metrics are
present to assess the image’s quality.

In US image quality assessment, different methods have been
proposed for modeling image and noise. In Zemp et al. (2003),
the author uses Noise-Equivalent Quanta (NEQ) that models
noise based on US machine parameters and tissue physical
property information; an improved version of the signal-to-
noise ratio. Structural Similarity Index Measure (SSIM) is a very
famous image quality assessment metric and has been used in
many different applications. The method proposed in Renieblas

et al. (2017) uses SSIM as the main quality assessment criteria
and incorporates specific image features like preserved edges,
structural similarity, and textures in the image.

Image-based quality assessment methods propose criteria that
formalize critical features for quality assessment. The method
proposed in Hemmsen et al. (2010) uses data management and
data acquisition techniques to formalize the quality assessment
metrics for US images. The authors of Abdel-Hamid et al. (2016)
use five important features of transformed images for building
a quality assessment metric. These five features are sharpness,
illumination, homogeneity, field definition, and content. The
method proposed in Abdel-Hamid et al. (2016) uses the
wavelet transform and extracts the five image features from the
transformed image, and combining them to create a formula for
image quality assessment of human retina images.

As one modality of medical imaging, US poses many
challenges in terms of image quality assessment. These challenges
come primarily from the noisy nature of the US images. US
image’s quality is usually defined as an ability to see some tissue
features or organs in the image. The method proposed in Zhang
et al. (2017) developed a method of segmenting the fetus in an US
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image, using a texton method on the image. The texton method
performs segmentation and feature extraction, and a random
forest classifier assesses the quality of the image based on the
extracted features. Schwaab et al. (2016) proposes the extraction
of three features from breast US images and uses a random forest
for classification of those. These features are the nipple position,
the shadow caused by the nipple, and the breast contours’ shape.
Schinaia et al. (2017) used a method similar to Schwaab et al.
(2016), but incorporated 14 features and a correlation matrix
for quality assessment. Deep Convolutional Neural Networks
(CNN) have also proven to perform well for complicated tasks
like this. Wu et al. (2017) uses two deep convolutional neural
networks called C-CNN and L-CNN for quality assessment. L-
CNN finds an ROI (Region Of Interest) in the image, and C-
CNN evaluates the quality of the image based on the extracted
ROI. The output of C-CNN is the binary label segmentation of
the US image. The method proposed in Chatelain et al. (2015)
and Welleweerd et al. (2020) use confidence map, which was
proposed in Karamalis et al. (2012) for orienting and moving
the US probe during scanning of the tissue. Confidence map
methods are based on US signal propagation model inside of the
tissue and the outcome is a map that can be used for feature
extraction. The extracted features are the inputs to the controller
and the output is the control signals for controlling the probe’s
orientation and position.

2.2. Robot-Assisted Sonography
Robots can be very helpful to a sonographer during US scanning.
Many methods have been proposed to facilitate the process of
sonography using robots. Najafi and Sepehri (2011) developed
a robotic wrist to perform US imaging on a patient at remote
sites. This system has four degrees of freedom and has been
used for US imaging of the liver and kidney. The device
developed in AbbasiMoshaii and Najafi (2019) is placed on the
patient’s body by an operator, and US expert controls the device’s
motion to obtain US image. The paper focuses on the robotic
mechanism that performs US imaging. The mechanism keeps
the US probe in contact with the patient’s body and facilitates
the sonographer’s US scanning procedure. Fang et al. (2017)
proposes a cooperatively robotic US system to reduce the force
sonographers apply. This system consists of a six-axis robotic
arm that holds and actuates the US probe. A dual force sensor
setup enables cooperative control and adaptive force assistance
using admittance force control. Antico et al. (2019) prepared a
good review of different methods proposed in robot-assisted US
intervention, and Moshaii and Najafi (2014) is a good review of
the mechanical details of robot-assisted US scanning.

Tele-sonography is developed for scanning the tissue
using remote robot. Sharifi et al. (2017) developed an
impedance-controlled teleoperation system for robot-assisted
tele-echography of moving organs such as heart, chest, and
breast compensating for their natural motions. This system
proposes two impedance models for master and slave robots.
The slave robot follows the master robot’s trajectory but complies
with the oscillatory interaction force of moving organs, and
the sonographer receives feedback from the slave robot. Sartori

et al. (2019) proposes a solution for energy consumption in tele-
echography on the master site based on properly scaling the
energy exchanged between the master and the slave site. There
are many challenges in designing tele-sonography system. The
most important one is the high cost of the system and haptic
feedback required in themaster site. Using haptic feedback causes
time delay in the system that may result discrepancy between
sonographer and US probe during scanning. Our proposed
method can be used as a local controller in the slave site to
overcome this problem.

2.3. Robot Admittance Control
Admittance controller uses a predefined relationship between
force and position. Authors in Carriere et al. (2019) use
admittance control to ensure compliance in a co-manipulated
US scanning system controlling the force applied to the tissue
and reducing exerted force from the sonographer. The method
proposed in Piwowarczyk et al. (2020) uses an admittance
controller to scale the force applied by the user on the
robot in relation to force applied to the environment. The
stability of admittance-controlled robots and their ability to cope
with different environmental forces have been investigated in
Ferraguti et al. (2019). Admittance control was used in Li et al.
(2018) for an exoskeleton robot to create a reference trajectory
based on measured force. Dimeas and Aspragathos (2016)
analyzes the stability of admittance control by detecting unstable
behaviors and stabilizing the robot using an adaptive online
method to tune the admittance control gains. The stabilization
of the robot is based on monitoring high-frequency oscillations
in the force signals. This idea was also used in Landi et al.
(2017) for stabilizing the admittance control when interacting
with humans. The idea of incorporating neural networks and
admittance control for robot trajectory tracking is developed in
Yang et al. (2018), in which the trajectory tracking is guaranteed
by using a neural network while admittance control regulates
torques to follow the desired trajectory. Authors in Keemink et al.
(2018) prepared a very good review of different applications of
admittance control in robotics.

2.4. Contributions of This Paper
As we mentioned in section 2.3, different methods and
applications have been proposed for medical image quality
assessment and robotic admittance control but all of them do
not consider image feedback in admittance controllers. The idea
of combining image feedback and admittance controller in the
US scanning procedure is the first novelty of this paper. We also
allow for collaboration between humans and the robot to keep
the sonographer in the loop during the US scanning procedure.
The proposed method uses a real-time image quality assessment
algorithm to inform the robotic system. The real-time nature
of the proposed image quality assessment algorithm makes it
suitable for the clinician in the loop robot-assisted medical
applications. The combination of admittance control and online
image quality assessment algorithm in the robotic arm ensures
social distancing during the COVID-19 pandemic and has not
been explored before in the literature.
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The second novelty of this paper is to propose a very quick,
low-cost, and deployable solution for the COVID-19 pandemic
that can be trained based on the preferences of the sonographers
in terms of how US scanning is done in different applications.
The training phase requires nothing more than the commodity
hardware (e.g., a personal computer). This is a very important
advantage of the proposed system over the method mentioned
in section 2.1. The proposed method has the ability to consider
the preferences of the sonographers for different applications
by incorporating it in the training phase. The sonographer can
manually classify the training set and the system will tune the
parameters for the sonographer’s preferences. To the best of
our knowledge, this ability has not been investigated in the
previous methods.

The third novelty of the proposed method is the ability to
be used in unilateral tele-sonography as a controller on the
patient side. In a tele-sonography modality, the sonographer
moves the robot to the desired position using a master robot.
The sonographer needs to feel the contact force between the
tissue and the probe during scanning. The system should have
a haptic interface on the master site to enable this feature for
the sonographer. Using a haptic interface could cause a time
delay in the system during scanning as discussed in Najafi and
Sepehri (2011), Sharifi et al. (2017), Moshaii and Najafi (2014),
and AbbasiMoshaii and Najafi (2019). The low-cost and better
solution is using a unilateral tele-sonography system with a local
controller on the patient site that adjusts the force applied to the
tissue during scanning based on acquired image’s quality. Our
proposed method can be incorporated as a local controller in
the slave site to adjust the force applied to the tissue based on
the preferences of the sonographers. This feature will remove the
essence of having haptic feedback in the tele-sonography system
and will decrease the cost of the system.

3. IMAGE QUALITY ASSESSMENT
ALGORITHM

As previously mentioned, US images are usually very noisy, and
therefore, the tissue is not very clear in the images. This problem
makes the automated assessment of US images complicated.
A US image quality assessment algorithm should distinguish
between different features in an image and decide on image
quality based on the acquired features. For our proposed image
quality assessmentmethod, we will use a Support VectorMachine
(SVM) classifier, which is compatible with small training sets and
has proven to have a good ability to solve complicated problems,
especially in medical applications.

3.1. Image Quality Assessment Metrics
We propose three distinct features for estimating the quality of
the image. The first feature is based on the contact between the
probe and the tissue. The second feature computes the level of
compression caused by the US scanning force applied to the
tissue. The third feature is an estimation of the noise level in the
image. The noise level is estimated based on the statistical features

of the noise in the US image. We will discuss each of the features
in-depth in the following sub-sections.

3.1.1. Correlation
We use image correlation for modeling the contact between the
tissue and probe. When there is no contact (or proper contact)
between the probe and tissue, the US image will only consist of
patterns of arcs; see Figure 2A. When we have sufficient contact,
however, actual tissue will be visible in the image. In Figure 2A,
the image captured by the US machine was defined as no-contact
image Inc in the sense that probe is not contacting the tissue
when the image is captured. We define the contact feature as the
correlation of no-contact image Inc with an image captured by the
USmachine Ik in every time step k of the experiment. The contact
feature ck gives us a good estimation of the sufficiency of contact
and ck ∈ [0, 1]. The mathematical details of how the correlation
between the images is calculated and how contact between the
probe and the tissue is defined are as follows:

corr(Ik, Inc)

=

∑M
px=1

∑N
py=1(Ik(px, py)− Ik)(Inc(px, py)− Inc)

√

(
∑M

px=1

∑N
py=1(Ik(px, py)− Ik)2)(

∑M
px=1

∑N
py=1(Inc(px, py)− Inc)2)

(1)

ck =

{

1, ifcorr(Ik, Inc) ≥ tcorr

0, ifcorr(Ik, Inc) < tcorr
(2)

Here, the contact feature ck is the value of the correlation between
the two images. (px, py) is the location of pixels in the image
frame, and M and N are the height and width of input images,
respectively. Ik and Inc are the average of the pixels’ intensities
in the acquired image and the image with no contact with the
tissue, respectively, and tcorr is the threshold for determining the
contact level. Figure 2 shows two images, in which Figure 2Awas
captured when there is not enough contact between the tissue and
the probe, and Figure 2B was conducted with sufficient contact.
The x-y axis in the image frame is shown in Figure 2A and it is
the same for all images in this paper.

3.1.2. Compression

The level of compression is a very important feature in US image
acquisition. When the robot applies force to the tissue, it causes
deformation. More force causes greater distortion/deformation.
This causes pain for the patient, and may lead to wrong clinical
diagnosis (Fang et al., 2017). The proposed compression feature
is the difference between the maximum and minimum index of
the pixels brighter than the threshold tcomp, relative to the image’s
size in the vertical direction. The mathematical expression for
calculating the image compression feature is as follows:

U = max(py), where Ik(py,∀px ∈ Ik) ≥ tcomp

L = min(py), where Ik(py,∀px ∈ Ik) ≥ tcomp

fc =
U − L

M

(3)

In (3), U and L are the maximum and minimum location of
the pixels having intensity higher than tcomp. We define fc as the
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FIGURE 2 | Ultrasound images with and without contact between tissue and probe. (A) Ultrasound image with no contact. (B) Ultrasound image with sufficient

contact.

compression feature in (3). M is the height of the image along
the y direction. Figure 3 shows two images with different levels
of compression. Figure 3A is the US image with a high level of
compression, and Figure 3B is the US image with a low level of
compression. We have also shown a variation of fc with respect to
measured force in the z direction of the force sensor frame FZ|k
(this is aligned with the y direction in image frame) in Figure 4.

3.1.3. Noise

As we mentioned earlier, the US image is very noisy. The noise
comes from the manner in which US captures an image. This
noise feature is also very important for the quality assessment of
US images. As a first step, we use a Wiener filter for removing
speckle noise from the US image. The calculation of the Wiener
filter is based on Lim (1990). The US image’s noise level can be
estimated by the mean and standard deviation of the difference
image between the original image Ik and the filtered image Ik,f .
Equations (5) to (8) show the mathematical explanation of using
a Wiener filter to remove noise from the US image and calculate
the noise feature.

µ =

∑

px∈η

∑

py∈η Ik(px, py)

P × Q
(4)

σ 2 =

∑

px∈η

∑

py∈η Ik(px, py)
2

P × Q
− µ2 (5)

Ik,f (px, py) = µ +
σ 2 − ν2

σ 2
(Ik(px, py)− µ) (6)

In = Ik − Ik,f (7)

fn = In + σn (8)

Here, η is the neighborhood with the size of P × Q around each
pixel of the noisy image and Ik(px, py) is the intensity of each pixel
in the noisy US image. µ is the average of pixel intensity in the
original US image, and σ 2 is the corresponding variance value
in (6). Ik,f (px, py) is the intensity of the US image after removing

the noise using Wiener filter and ν2 is the noise variance in the
image in (7). Equation (8) finds the difference between US image
Ik and filtered image Ik,f to find the US image’s noise. In (8), In
is the average of noise in the image and σn is the corresponding
standard deviation value. Figure 5 shows two images with high
level (Figure 5A) and low level (Figure 5B) of noise. We have
also shown in Figure 6, the variation of the noise feature fn in
the US image with respect to measured force FZ|k.

3.2. Support Vector Machine (SVM)
The compression and noise features mentioned above will be
used as an input to the SVM classifier (e.g, taking the output
of the image feature calculation, Equations (3) and (8), for Ik
we then calculate the SVM score) and the correlation feature
works as a gate. SVM classifier tries to find a line that separates
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FIGURE 3 | Ultrasound images with high and low level of compression. (A) Ultrasound image with high tissue compression. (B) Ultrasound image with low tissue

compression.

FIGURE 4 | Compression feature with respect to measured force.

two classes based on the features in feature space. SVM finds
this line by optimizing a cost function based on the margin
between two classes in feature space. There may be a need to

increase the features’ dimension to find this line in a higher
dimensional space.

We tested the SVM using cross-validation. We used two
different tissue phantoms to train and test the SVM, meaning
we trained the SVM using one of the phantoms and tested it on
the other phantom. The phantoms were biological porcine and
bovine tissue. We trained the SVM using bovine phantom, and
the trained SVM was tested on porcine tissue and vice versa. We
will use the output of the SVM for robotic control.

We created an image database for training and testing the
SVM. To create a database, we used a robot arm to scan bovine
and porcine tissue phantoms by scanning multiple points on
these tissues automatically by increasing force values at each
point. The scanning procedure started from one side of the tissue
and continued by dividing them to many points and increasing
the US scanning force applied to the tissue from 1 to 20 N
with an increment of 0.25 N. The force increment was based on
force control feedback in the robotic arm by increasing the tissue
indentation until the force value reached the desired force. This
procedure was just used for creating a bovine and porcine image
database. The images captured at each point on the tissue and the
forces’ value were saved using a computer. A trained non-medical
user then manually classified all images and a subset of 1,000
images selected with 500 high-quality images and 500 low-quality
images from the tissue phantoms’ US images for different force
values. The images were classified subjectively by the user, and
the images were determined to be high quality if there is sufficient
contact between tissue and the probe and tissue is visible without

Frontiers in Robotics and AI | www.frontiersin.org 7 March 2021 | Volume 8 | Article 645424

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Akbari et al. Robotic Ultrasound Scanning for COVID-19

FIGURE 5 | Ultrasound images with high and low levels of noise. (A) Ultrasound image with a high levels of noise. (B) Ultrasound image with a low levels of noise.

FIGURE 6 | Noise feature with respect to measured force.

significant deformation within the US image. The variation of the
pixel intensity in the frame with respect the background was also
been considered for image classification. The SVM was trained
using 800 images with equal probability weighting in each of the

two classes. The trained SVM was tested on the remaining 200
images. After training, the SVM has reached an accuracy (a ratio
of the number of correct labels to all labels) of 96% on our test
database. Figure 7 shows the procedure of training SVM using
biological porcine and bovine tissue.

The rule for updating the force’s value based on the output
of the image quality assessment algorithm is shown in Equations
(10) and (10). We have also shown a block diagram of the quality
assessment algorithm in Figure 8.

Vsvm = SVM(fc, fn);Vsvm ∈ {0, 1} (9)

FZ|k+1 = FZ|k + δF(1− Vsvm) (10)

4. ROBOT ADMITTANCE CONTROL

Our admittance controller in the x-y-z direction keeps the robot
in the original x-y position and updates the z position based on
the image quality assessment algorithm, as mentioned earlier.
We transform the force sensor data into the base frame of
the robot. Figure 1 shows the robot coordinate system during
the experiments.

We use the output of the quality assessment algorithm in the
loop controlling the force applied by the US probe to tissue.
Figure 9 shows the control loop for the z-axis used during the
experiments. The admittancemodel calculates desired position of
the robot based on the input force. Kθ is the gain for calculating
how much torque should be applied at joints. The control
loop works on two different frequencies. Dash lines in Figure 9

represent image-quality feedback working on 30Hz, and the solid
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FIGURE 7 | SVM training procedure.

lines represent robotic control working on 1 kHz. We reduced the
sampling time of robotic control to 30 Hz to avoid discrepancies
during our experiment.

The value of the force applied to the tissue in the z-direction is
fed to the admittance controller. The transfer function describes
the admittance model in (11). Where Xk(s) is the desired
Cartesian position in the robot base frame, and Fk(s) is the force
applied to the end effector in the robot base frame in the z-
direction. M is the virtual mass matrix specified for the system.
B and K represent specified damping and spring matrices,
respectively. The matrices M, B, and K are shown in section
5. The admittance model in the feedforward finds the desired
position for the system, while the feedback impedance model
calculates the robot’s current position. We multiply the error by
inverse jacobian J−1 and Kθ to find the error in joint space, and
torque should be applied at joints.

H(s) =
Xk(s)

Fk(s)
=

1

Ms2 + Bs+ K
(11)

For the experimental setup and results, which will be covered
in (5), We chose the values of M, B, and K for the parameters
of the admittance model, as shown in the following matrices.

FIGURE 8 | Quality assessment algorithm.

The matrix of K has only one non-zero parameter (in the
z direction) that controls the US force applied to the tissue.
The values of M and K are based on Piwowarczyk et al.
(2020), and they were chosen empirically as a trade-off between
sluggishness and control of the system. We calculated the value
for B to have a critically damped response in the z direction.
The threshold values in our quality assessment algorithm were
found empirically based on the SVM response in our US image
database, these values are tcorr = 0.7 and tcomp = 20.

M =





5.625 0 0
0 5.625 0
0 0 5.625



 kg (12)

B =





33.54 0 0
0 33.54 0
0 0 33.54





N · sec

m
(13)
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FIGURE 9 | Robot control for the z axis.

K =





0 0 0
0 0 0
0 0 50





N

m
(14)

5. EXPERIMENTAL SETUP AND RESULTS

In this study, an Axia80-M20 force-torque sensor (ATI Industrial
Automation, Apex, NC, USA) was mounted on a Panda robotic
arm (Franka Emika GmbH, Munich, Germany), which holds US
probe (see Figure 1). We have used US machine for capturing
images with an Epiphan DVI2USB3.0 (Epiphan Systems Inc,
California, USA) for sending the image to the computer. The
US machine used for the experiment was an Ultrasonix Touch
with a 4DL14-5/38 Linear 4D transducer (Ultrasonix Corp,
Richmond, BC, Canada). For this experiment, we only use the 2D
functionality of the US probe. We used a tissue phantommade of
plastisol as an artificial tissue for our experiment. The setup is
shown in Figure 1.

The admittance controller was programmed and implemented
in MATLAB 2019a (The Mathworks Inc., Natwick, MA, USA)
and ran using Simulink on a PC running Ubuntu 16.04 LTS.
The PC has an Intel Core i5-8400 running at 4.00 GHz. The
communication between robot and computer was done over
UDP, and the Epiphan was connected to the computer using a
USB port.

To evaluate the image quality controller algorithm, we selected
six spots on the surface of the plastisol tissue and ran the
proposed method on those six locations. We then manually
classified the acquired images and found the values of Structural
Similarity Index Metric (SSIM) and Peak Signal to Noise Ratio
(PSNR) between the output of our quality assessment algorithm
and our manual subjective results. The calculation of SSIM
is based on Wang et al. (2004). These values are reported
in Table 1.

The experiments are designed to test the feasibility of
incorporating our quality assessment algorithm into the control
loop. The robot increases the force applied to the tissue by going

TABLE 1 | Similarity metrics’ value between quality assessment algorithm and

subjective classification.

Location SSIM PSNR

First position 0.87 26.85

Second position 0.76 20.60

Third position 0.84 24.30

Fourth position 0.88 28.16

Fifth position 0.86 24.53

Sixth position 0.82 22.54

down in the z-axis using an admittance controller. Figure 10
shows the output of the quality assessment algorithm and the
subjective result by the human operator. Figure 10A is the output
of the quality assessment algorithm in one specific position and
Figure 10B is the output of the manual classification of the image
in that specific position. This will show that our proposedmethod
provides US images of high quality similar to those taken by
a sonographer.

The values reported in Table 1 show the US image captured
using our proposed image quality assessment method is similar
to the result of manual classification. The similarity between
the values of SSIM and PSNR in all six positions proves the
generality of the proposed quality assessment method. Being as
PSNR only compare the values of intensities without analyzing
general features of the image like the shape of the organ inside
the tissue. The SSIM finds the similarities between two images
based on structural analysis. The values of SSIM are high for our
experiment, which proves our algorithm performs very close to a
human operator.

We evaluated the performance of the proposed method
experimentally by recording the values of each feature and
the output of SVM by controlling the force applied to the
tissue. Figure 11 shows the average value of compression value
with respect to the force applied to the tissue during the test
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FIGURE 10 | Output of quality assessment algorithm and human subjective classification. (A) Quality assessment output. (B) Subjective result.

FIGURE 11 | Variation of compression feature during the test experiment in all six spots on the surface of the tissue.

experiment. The values reported in this figure, are the average
compression feature values in six different spots on the surface
of the tissue. The bar in each force value represents the variation
of the compression feature at the corresponding force value at all

six locations on the tissue. We also reported the same variation
for noise feature in Figure 12. Figure 13 shows the variation of
SVM output during scanning of the tissue by increasing the force
applied to it. The threshold value of tSVM divides the graph to
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FIGURE 12 | Variation of noise feature during the test experiment in all six spots on the surface of the tissue.

FIGURE 13 | Variation of SVM during the test experiment in all six spots on the surface of the tissue.

two separate classes in which the top part is associated with class
of high-quality images and the bottom part is related to the low-
quality images. These graphs prove the generality of our proposed
method in different situations as the variation of each feature
across the different levels of force was within the limited range
in all six locations on the tissue.

The experiments conducted in this section shows us that the
level of force applied to the tissue using the quality assessment
algorithm is within a reasonable range, based on the results
shown in Figures 11–13. The general trend and variation of
these features during scanning are consistent with respect to
the applied force, which proves the generality of the proposed
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method. Figure 10 and Table 1 show us that the output of the
quality assessment algorithm is very close to the desire of the
sonographer that all the values reported in Table 1 are within
a reasonable range and the image acquired using image quality
assessment algorithm and the subjective result are very close to
each other in Figure 10.

6. CONCLUSION

This paper has presented US image quality assessment algorithm
used for robotic control of US scanning. Our proposed quality
assessment algorithm uses feature extraction and a SVM classifier
to assess the acquired images’ quality. The algorithm estimates
the US image’s quality based on correlation, compression, and
noise features. These features are input into a SVM classifier
to determine an image is of high quality or low quality. The
algorithm was used as a part of the real-time control loop
in the robotic US image scanning system. The user is able
to put the US probe at a specific location on the tissue, and
the algorithm will modulate the US scanning force applied
to the tissue. An admittance controller was used internally
to modulate the force. We evaluated the performance of the
proposed system using different quality assessment metrics,
showing close agreement between manual subjective assessment
of the captured US image quality and the quality estimation from
our algorithm.

This system is designed to enable isolation between patients
and sonographers during the COVID-19 pandemic. In the future,

we can control the US probe’s orientation in an autonomous
manner to enable six degrees of freedom of the US probe
during scanning. We can also incorporate the quality assessment
algorithm into a teleoperation system to enable remote control
of a US scanning robot. Here, the user can remotely move the
robot to the desired location, with the algorithm appropriately
adjusting the US scanning force automatically.
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