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BACKGROUND Coronary microvascular dysfunction (CMD) is a major cause of ischemia with no obstructed coronary

arteries.

OBJECTIVES The authors sought to assess protein biomarker signature for CMD.

METHODS We quantified 184 unique cardiovascular proteins with proximity extension assay in 1,471 women with angina

and no obstructive coronary artery disease characterized for CMD by coronary flow velocity reserve (CFVR) by trans-

thoracic echo Doppler. We performed Pearson’s correlations of CFVR and each of the 184 biomarkers, and principal

component analyses and weighted correlation network analysis to identify clusters linked to CMD. For prediction of CMD

(CFVR < 2.25), we applied logistic regression and machine learning algorithms (least absolute shrinkage and selection

operator, random forest, extreme gradient boosting, and adaptive boosting) in discovery and validation cohorts.

RESULTS Sixty-one biomarkers were correlated with CFVR with strongest correlations for renin (REN), growth

differentiation factor 15, brain natriuretic protein (BNP), N-terminal-proBNP (NT-proBNP), and adrenomedullin (ADM)

(all P < 1e-06). Two principal components with highest loading on BNP/NTproBNP and interleukin 6, respectively, were

strongly associated with low CFVR. Weighted correlation network analysis identified 2 clusters associated with low CFVR

reflecting involvement of hypertension/vascular function and immune modulation. The best prediction model for

CFVR <2.25 using clinical data had area under the receiver operating characteristic curve (ROC-AUC) of 0.61 (95% CI:

0.56-0.66). ROC-AUC was 0.66 (95% CI: 0.62-0.71) with addition of biomarkers (P for model improvement ¼ 0.01).

Stringent two-layer cross-validated machine learning models had ROC-AUC ranging from 0.58 to 0.66; the most pre-

dictive biomarkers were REN, BNP, NT-proBNP, growth differentiation factor 15, and ADM.

CONCLUSIONS CMD was associated with pathways particularly involving inflammation (interleukin 6), blood

pressure (REN, ADM), and ventricular remodeling (BNP/NT-proBNP) independently of clinical risk factors. Model pre-

diction improved with biomarkers, but prediction remained moderate. (JACC Adv 2023;2:100264) © 2023 The Authors.
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ABBR EV I A T I ON S

AND ACRONYMS

ADM = adrenomedullin

AUC = area under the curve

BNP = brain natriuretic protein

CAD = coronary artery disease

CFVR = coronary flow velocity

reserve

CMD = coronary microvascular

dysfunction

GDF = growth differentiation

factor

HFpEF = heart failure with

preserved ejection fraction

IL = interleukin

LDL = low density lipoprotein

LVEF = left ventricular ejection

fraction

NT-proBNP = N-terminal-

proBNP

PCA = principal component

analysis

REN = renin

ROC = receiver operating

characteristics

WGCNA = weighted

correlation network analysis
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C oronary microvascular dysfunction
(CMD) is a common cause of angina.
Up to 50% of patients undergoing

invasive angiography with no obstructive
coronary artery disease (CAD) have abnormal
response to adenosine stimulation.1-3 The
condition is more common in women, in-
creases with age, hypertension and diabetes,
and is associated with impaired cardiovascu-
lar prognosis.1,4

The underlying pathophysiological path-
ways are heterogenous and include intrinsic
vascular dysfunction as well as perivascular
structural remodeling and capillary rarefac-
tion.5 Small studies on selected populations
have found higher levels of the inflammatory
biomarkers interleukin (IL)-6, tumor necosis
factor-alfa, leptin, C-reactive protein, white
blood cell count, intercellular adhesion
molecule-1, and soluble urokinase plasmin-
ogen activating receptor6-10 in patients with
CMD but larger, comprehensive studies of
biomarkers and clustering of biomarkers
in microvascular angina have not been
undertaken.

We have previously shown that in a large
study of women with angina and no
obstructive CAD, CMD is associated with a greater risk
of adverse cardiovascular outcomes,4 and in small-
scaled substudies, we found activation of pro-
inflammatory pathways may be associated with
CMD.11,12

In this study utilizing machine learning and other
data-driven analyses, we aim to: 1) explore how a
large panel of protein biomarkers may contribute to
understanding the underlying pathophysiologic
pathways in CMD; and 2) develop a risk model for the
prediction of CMD using both clinical variables and
protein biomarkers. To our knowledge this is the first
attempt to identify a biomarker signature linked to
CMD in angina.

METHODS

The iPOWER study (Improving diagnosis and
treatment of women with angina pectoris and
microvascular disease) was an investigator-initiated
prospective cohort study. Design, rationale, and
follow-up data have been published previously.2,4,13

All women undergoing invasive angiography be-
tween March 2012 and December 2017 due to sus-
pected angina pectoris were screened for inclusion
and invited if fulfilling criteria (no epicardial stenoses
($50%) and left ventricular ejection fraction (LVEF)
>45%) (Figure 1). Microvascular function was
assessed by transthoracic Doppler echocardiography
measuring coronary flow velocity of the left anterior
descending artery. Blood samples from all patients
were fractionated, stored at �80 �C and processed in a
randomized order. Blood plasma was analyzed by
Olink Proteomics, Uppsala, Sweden, by real-time po-
lymerase chain reaction. Please see Supplemental
Appendix for details. This study was approved by
the Danish Regional Committee on Biomedical
Research Ethics (H-3-2012-005).

STATISTICAL ANALYSIS. We considered all 184 bio-
markers and the following 13 clinical risk factors: age,
history of dyslipidemia or hypertension, systolic and
diastolic blood pressure, body mass index, waist
circumference, low density lipoprotein (LDL)-choles-
terol, diabetes, HbA1c, smoking status, heart rate, and
LVEF. Heart rate and diastolic blood pressure were
specifically included due to potential direct hemo-
dynamic impact on the coronary flow velocity reserve
(CFVR) measure. Missing data on clinical risk factors
were imputed by replacing with the adjacent obser-
vation or the mean (categorical/continuous variables,
respectively). Subjects with missing data on one or
more of the 184 protein biomarkers were excluded.
Stata version 17 and the R-language for statistical
computing version 3.6.014 was used for analysis.

The analytical strategy comprised explorative
pathway analyses and prediction modeling.

EXPLORATION OF CMD PATHWAYS. To achieve an
overview of associations between protein biomarkers
and CMD, we first performed Pearson’s correlations of
CFVR and each of the 184 biomarkers. We depicted
the P value against the correlation coefficient in a
volcano plot and adjusted for multiple testing by the
Benjamini-Hochberg method. We then performed
principal component analyses and weighted correla-
tion network analyses to understand better the un-
derlying biology reflected by the biomarkers in
relation to CMD.
Pr inc ipa l component ana lys i s . We included all
biomarkers significantly associated with CFVR in
univariate analyses in the principal component ana-
lyses (PCAs). Biomarkers were centralized to 0 and
scaled to the standard deviation. We limited the
number of principal components (PCs) to the number
that explained 85% of the variation in the data. From
these, we assigned each observation with a weighted
value for each PC and tested the association with
CFVR and the ability to predict CMD (CFVR <2.25).
Weighted corre la t ion network ana lys i s of
proteomics . Weighted correlation network analysis
(WGCNA) is a widely used data mining method for
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FIGURE 1 Flowchart of the Study Population

7253 eligible pa�ents screened for 
study inclusion

4520 invited

1853 included in iPOWER study

382 missing data: 
172 CFVR 

174 blood sample
36 one or more biomarkers

1471 study popula�on

Inclusion Criteria
• Women with angina referred to coronary

angiography
• Coronary angiography with no steno�c

lesions (>=50%) performed within 1 year of 
inclusion

• Age 18-80
Exclusion Criteria

• No episodes of chest pain within 6 months
before inclusion

• Suspected non-ischemic chest pain
• Ejec�on frac�on <=45%
• Previous verified MI or revasculariza�on (PCI 

or CABG)
• Moderate/Severe valvular heart disease
• Congenital heart disease or cardiomyopathy
• Severe COPD (FEV1<50% of predicted) or 

severe asthma
• Significant co-morbidity (<1 year of expected

survival)
• Pregnancy
• Significant psychiatric disease
• Language barriers
• Travel distance to study site >3 hours

799 could not be contacted
1868 either did not wish to 

par�cipate or had other
exclusion criteria

2733 screening exclusion

CABG ¼ coronary artery bypass graft; CFVR ¼ coronary flow velocity reserve; COPD ¼ chronic obstructive pulmonary disease; FEV1 ¼ forced

expiratory volume; iPOWER ¼ Improving diagnosis and treatment of women with angina pectoris and microvascular disease; MI ¼ myocardial

infarction; PCI ¼ percutaneous coronary intervention.
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studying biological networks based on pairwise cor-
relations between variables to identify highly corre-
lated variables.15,16 A co-expression network analysis
of the circulating biomarkers was performed using
the WGCNA R software package to identify modules
(clusters) of highly co-expressed biomarkers.17 Please
see Supplemental Appendix for details.

PREDICTION MODELING. We applied conventional
multiple logistic regression and machine learning
approaches for prediction modeling with discovery
and validation data sets. The receiver operating
characteristics (ROC) area under the curve (AUC/
C-statistic), sensitivity, specificity, positive predictive
value, and negative predictive value for the valida-
tion set were calculated based on the observed
prevalence of CFVR <2.25.
Logis t i c regress ion . For logistic regression ana-
lyses, data were divided at random into a discovery
(60%) and validation set (40%). All the cardiovas-
cular disease (CVD) risk factors and 184 biomarkers
were tested in univariate logistic regression with
CFVR <2.25 as the dichotomous outcome. For an
objective, data-driven technique to identify the
smallest number of variables required for a practical
prediction model, we applied an entry criterion of
P < 0.05 from the univariate analysis. After
modeling associations in the discovery data set, the
best model was evaluated in the validation set. We
further compared a model including only clinical
variables with a model which included biomarkers,
both developed in the discovery data set and vali-
dated in the validation set.

Machine learn ing . Least absolute shrinkage and se-
lection operator (LASSO) regression, random forest
(RF), adaptive boosting (AdaBoost), and extreme
gradient boosting (XGBoost) models were fitted in R
(version 3.6.0). A two-layer five-fold cross-validation
case-control stratified by CFVR <2.25 was applied for
training and ensuring independent evaluation of 5
test data sets for which the average and 95% CI per-
formance metrics were estimated. Beyond stringent
cross-validation, the machine learning methods apply
regularization and pruning techniques to reduce risk
of overfitting multivariate prediction models and
assist feature selection for prediction. LASSO regres-
sion includes a regularization term on regression co-
efficients to select predictors and shrink coefficients
of less important features to zero. RF, AdaBoost, and
XGBoost are decision tree based with different model
training techniques. All tree-based machine learning
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TABLE 1 Baseline Characteristics of the Patients According

to CFVR

CFVR $2.25
(n ¼ 825)

CFVR <2.25
(n ¼ 646) P Value

Age (y) 61.4 � 9.4 64.5 � 9.5 <0.001

BMI (kg/m2) 27.0 � 5.0 27.2 � 5.7 0.472

Abdominal circumference (cm) 95.8 � 13.8 97.0 � 14.3 0.116

Hba1c 39.0 � 7.4 40.1 � 8.8 0.0134

Diabetes

Yes 83 (10%) 98 (15%) 0.0039

Smoker

Yes 123 (15%) 109 (17%) 0.367

Systolic BP (mHg) 130 � 20.9 131 � 21.1 0.956

Diastolic BP (mHg) 69.4 � 12.0 67.5 � 12.0 0.00278

Hypertension

Yes 402 (49%) 398 (62%) <0.001

Dyslipidemia

Yes 494 (60%) 423 (65%) 0.0483

LDL-cholesterol (mg/dl) 2.83 � 1.04 2.73 � 1.02 0.0739

LVEF 56.4 � 12.6 55.5 � 15.3 0.275

Heart rate (beats/min) 69.8 � 10.4 71.8 � 11.3 <0.001

Values are mean � SD or n (%).

BMI ¼ body mass index; BP ¼ blood pressure; CFVR ¼ coronary flow velocity
reserve; LDL ¼ low density lipoprotein; LVEF ¼ left ventricular ejection fraction.
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approaches were pre-pruned to relatively short trees
andminimum node size to reduce redundant features.

The machine learning models were trained using
all 184 biomarkers and the 13 clinical risk factors. We
conducted a rigorous stability selection procedure to
ensure reliability of the biomarker signature models.
We compared with feature selection based on opti-
mization on sensitivity and on different sizes of data
set by modifying k-fold split in inner and outer test
yielded similar results. A robustness test of the pre-
diction models was conducted to evaluate statistical
validity of the results by comparing performance
metrics for models trained on the actual prediction
labels vs models trained on randomized prediction
labels. We followed a standard procedure where the
outcome variable (ie, CFVR <2.25) was randomly
reshuffled while the corresponding protein profiles
were kept intact. This was repeated in a five-fold in-
ner and outer validation as described above. The
predictive performances of the machine learning
models were evaluated using area under the receiver
operating characteristic curve (ROC-AUC), sensitivity,
positive predictive value, specificity, and negative
predictive value.

More details are given in the Supplemental
Appendix.

RESULTS

BASELINE INFORMATION. The study population
consisted of 1,471 women with angina with mea-
surements on all 184 biomarkers and a valid CFVR
assessment (Figure 1). Baseline information on study
participants by level of CFVR is given in Table 1. Pa-
tients with CFVR <2.25 were older and more likely to
have diabetes, hypertension, and dyslipidemia,
whereas there were no differences in anthropomet-
rics and LVEF. Patients with low CFVR also had
higher diastolic blood pressure and heart rate.

In correlation analyses of CFVR with all 184 bio-
markers, 61 biomarkers were significantly correlated
with CFVR, 55 biomarkers with negative correlation,
and 6 with positive correlation. After adjustment
for multiple testing, 44 biomarkers remained signifi-
cantly associated with CFVR (Figure 2) and after
age-adjustment 38 (suppl volcano plots). The stron-
gest negative correlations were seen for renin
(REN), growth differentiation factor 15 (GDF15), brain
natriuretic protein (BNP), N-terminal-proBNP (NT-
proBNP), and adrenomedullin (ADM) (all P<1e-06).
Positive correlations were relatively weak, the stron-
gest seen for paraoxonase, matrix extracellular
phosphoglycoprotein, epidermal growth factor re-
ceptor, and collagen alpha-1(I) chain (all P < 0.01).
CMD PATHWAY EXPLORATION. Pr inc ipa l component
ana lyses . From PCA of the 61 biomarkers associated
with CFVR in univariate analyses, 28 PCs explained
85% of the variance in biomarkers, and 7 of these
were significantly associated with CFVR. The 10 bio-
markers with highest eigenvectors for each of these 7
PCs are presented in Table 2 (by order of strength of
association with CFVR from left to right) and corre-
lation with the 13 clinical risk factors shown in
Supplemental Table 2. PC5, PC1, PC12, and PC2 were
most strongly associated with CFVR. PC1 had roughly
similar positive loadings across biomarkers and was
associated with all clinical risk factors and thus did
not point toward specific pathways. PC5 had highest
positive loadings from BNP and NT-proBNP; these 2
biomarkers did not have high loading on other PCs.
PC5 was positively associated with age, systolic blood
pressure, and history of hypertension, diabetes and
smoking and negatively with obesity and waist
circumference, consistent with capturing elements of
CMD associated with ventricular remodeling, as also
reflected by the high loading of BNP and NT-proBNP.
PC 12 had highest loading on IL-6 and showed little
association with clinical risk factors, perhaps identi-
fying a pathway to CMD involving inflammation
that is independent of classical risk factors. PC 2
had highest loading from the biomarkers positively
correlated with CFVR: paraoxonase, epidermal
growth factor receptor, matrix extracellular

https://doi.org/10.1016/j.jacadv.2023.100264
https://doi.org/10.1016/j.jacadv.2023.100264
https://doi.org/10.1016/j.jacadv.2023.100264


FIGURE 2 Volcano Plot Showing Correlations Between 184 Biomarkers and

Coronary Flow Velocity Reserve After Adjustment for Multiple Testing

(Benjamini-Hochberg)

Forty-four biomarkers significantly associated with CFVR (P < 0.05) are depicted in

blue: on the left are negative correlations, on the right positive correlations. Explanation

for abbreviations for protein biomarkers is given in the Supplemental Table 1.
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phosphoglycoprotein, and collagen alpha-1(I) chain
and was inversely associated with most clinical risk
factors. PC19, 9, and 10 were weakly associated with
CFVR (P > 0.01) and had several overlapping bio-
markers, most notably REN, which had high loading
on both PC19 and PC9. PC9 was the PC most strongly
associated with smoking.
Weighted protein co-abundance network. WGCNA
was used to construct protein networks and identify
modules of proteins that were studied for functional
enrichments based on protein-protein interactions in
the clusters. The minimum module size was 5; 8
modules were constructed based on the WGCNA
clustering (Supplemental Figure 1, Supplemental
Table 3). Two of these were significantly negatively
correlated with CFVR (blue (r ¼ -0.12, P ¼ 4.2e-06)
and gray (r ¼ �0.11, P ¼ 1.8e-05) (Supplemental
Figure 2). The gray and blue modules showed signif-
icant functional protein-protein interaction enrich-
ment, P ¼ 2.26e-14 and P < 1e-16, respectively.

The gray module included 32 biomarkers with IL-6
having the highest number of interaction partners.
The biomarkers in the gray module had significant
functional enrichment in hypertension and vascular
disease through protein-disease associations,
(Supplemental Figure 3, Supplemental Table 4,
Supplemental Appendix). Of the biomarkers most
strongly associated with CFVR, the module also
included BNP, NTproBNP, REN, serpina12, SCGB3A2,
ADAMTS3, and PSPD. Module trait relationship
(Supplemental Figure 5) showed positive correlation
with age, hypertension, and blood pressure and
negative correlations with obesity, CFVR, and LDL.
Notably, IL6, SCGB3A2, ADAMTS13, CHIT1, and
REN were all among the most informative biomarkers
in PC12.

The blue module included 47 biomarkers and
was linked to immune modulation with CD4 having
the highest clustering coefficients (Supplemental
Figure 4, Supplemental Table 5, Supplemental
Appendix). Of biomarkers most strongly associated
with CFVR, the module included ADM, ACE2,
TRAILR2, MMP12, and PRSS27. The blue module had
significant positive correlations with age, waist
circumference, body mass index, diabetes, systolic
and diastolic blood pressure, dyslipidemia, HbA1c,
heart rate, and hypertension while negatively corre-
lated with LVEF, LDL, and CFVR (Supplemental
Figure 5).

PREDICTION MODELS. Logist i c regress ion in
d iscovery and val idat ion data set . Data were
split at random 60:40 into a discovery and validation
data set. After considering the a priori selected
13 clinical risk factors, the following 3 risk factors
were significantly associated with impaired CFVR in
multivariable adjusted model in the discovery data
set: Age, diastolic blood pressure, and heart rate. The
ROC-AUC in the validation cohort for this model
based on clinical risk factors was 0.61 (95% CI 0.56-
0.66). When adding biomarkers, the best model
retained 5 biomarkers in the model: REN, BNP,
chitinase-3-like protein (CHI3L1, also known as
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TABLE 2 Principal Components Associated With Coronary Flow Velocity Reserve

PC5 PC1 PC12 PC2

Biomarker Loading Biomarker Loading Biomarker Loading Biomarker Loading

1 BNP 0.371400 TRAILR2 0.199113 IL-6 0.374660 PON3 0.311759

2 NTproBNP 0.36120 TNFRSF11A 0.191228 SCGB3A2 0.313553 EGFR 0.292205

3 ADAMTS13 �0.274076 PGF 0.185412 MMP3 0.262252 MEPE 0.272181

4 EGFR �0.273627 TNFRSF10A 0.180614 ADAMTS13 �0.244763 COL1A1 0.257342

5 GDF15 0.216225 SPON2 0.179553 CHIT1 �0.240334 IGFBP2 0.255146

6 BOC �0.214201 ADM 0.176305 FABP2 �0.237533 PLC 0.202806

7 MEPE �0.208370 TNFR1 0.174049 ST2 0.219723 IL18BP 0.201117

8 IGFBP2 0.199133 GDF15 0.169820 AMBP �0.210039 OPG 0.198633

9 PSPD 0.19758 IL18BP 0.166418 REN 0.201904 MMP3 0.198401

10 MMP12 0.191672 PLC 0.164218 CTSL1 0.185104 IL1ra �0.167283

Eigenvalue
proportion

3.42% 30.26% 1.59% 8.13%

P value for
correlation
with CFVR

<0.0001 <0.0001 0.0027 0.006

The table gives the 10 highest loading biomarkers for each of the 7 principal components (PCs) significantly associated with coronary flow velocity reserve (CFVR). Biomarkers are given by order of their
loading from top to bottom and principal components by order of strength of association with CFVR from left to right. For abbreviations of biomarkers please see Supplemental Table 1.

PC ¼ principal component.

Continued on the next page
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YKL 40), protein delta homolog 1(DLK1), and
aminopeptidase N. Higher age, heart rate, REN,
BNP, and CHI3L1 were associated with higher odds
of impaired CFVR while higher diastolic blood
pressure, DLK1, and aminopeptidase N were
associated with lower odds. ROC-AUC in the
validation cohort for this biomarker model was 0.66
(95% CI: 0.62-0.71) (P ¼ 0.01 for model
improvement). However, while the same clinical risk
factors were selected, the biomarkers selected in the
model varied when discovery-validation sets were
resampled. This reflects the strong correlation
between biomarkers and underlines that the
importance of the 5 specific biomarkers listed above
should not be overemphasized.

Cross-validated machine learning algorithms. To get
an unbiased estimate of how well the clinical features
and biomarkers can be applied for diagnosis of CMD,
4 different machine learning models were trained
with similar cross-validation. This included a logistic
regression model regularized by L1 (LASSO), RF,
XGBoost, and AdaBoost. LASSO regression had the
least predictive power for CMD where the mean ROC-
AUC in the cross-fold validation cohort was 0.58
(95% CI: 0.53-0.64), while RF was 0.66 (95% CI: 0.61-
0.71), AdaBoost 0.63 (95% CI: 0.56-0.71), and XGBoost
was 0.63 (95% CI: 0.58-0.67).

The most important features in the models are
listed in Table 3 and corresponding importance plots
in Supplemental Figures 6 to 9. Overall, the bio-
markers most strongly associated with CFVR were
represented in RF, LASSO, and XGBoost (REN, GDF15,
BNP/NTproBNP, and ADM). RF and XGBoost showed
overlapping biomarkers of importance, including
REN, ADM, BNP/NTproBNP, PRSS27, Serpina12, and
MMP12. Age had high importance in RF and XGBoost
but not in LASSO and AdaBoost. The AdaBoost algo-
rithm identified a different set of biomarkers that
interestingly showed considerable overlap with PC1,
perhaps identifying a protein signature for a different
pathway to CMD.

The XGBoost algorithm also identified age, REN,
and BNP among the 10 most important features.
Overlapping with RF or LASSO were PRSS27, serpina
12, MMP12, and heart rate, while the 2 features dia-
stolic blood pressure and LVEF were only represented
in this model.

The 4 different ML models trained provide
different decision boundaries when classifying pa-
tients to low or high CFVR which is reflected in the
difference of the feature importance. Boosting
models, such as XGBoost and AdaBoost, create clas-
sifiers that have specialized strategies to try correctly
to classify the ‘difficult-to-classify’ observations.
AdaBoost works by weighting the predictions from
stumps (short decision trees) higher for observations
that are difficult to classify. This nature of AdaBoost
may explain the notably different feature importance
ranking.

The robustness test of prediction models trained
on a data set with randomized outcome yielded ROC-
AUC ranging from 0.49 to 0.52. Performance metrics
are given in Supplemental Table 6.
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TABLE 2 Continued

PC19 PC9 PC10

Biomarker Loading Biomarker Loading Biomarker Loading

XCL1 0.392075 IL27 �0.310998 ADAMTS13 0.304134

REN 0.389946 REN �0.291131 PIgR 0.252646

CTSL1 �0.352725 FABP2 �0.265492 IL4RA �0.248399

PSPD 0.270867 PSPD 0.262868 COL1A1 �0.232109

CCL3 �0.243718 FGF21 0.254257 XCL1 �0.231514

KIM1 �0.240667 COL1A1 0.245283 AMBP 0.226923

PSGL1 �0.225694 SCGB3A2 0.203058 NTproBNP 0.220057

SCGB3A2 �0.204858 PRSS8 0.201850 MMP3 0.211671

PRSS8 0.184928 Gal4 �0.198421 FABP2 �0.207976

CHI3L1 0.168220 MMP3 �0.191168 PSGL1 0.204125

1.17% 1.94% 1.75%

0.0297 0.0385 0.043
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DISCUSSION

This paper applied data-driven analyses to identify
activated pathways and develop prediction models
for CMD in patients with angina and no obstructive
CAD. Approximately one-third of the 184 cardiovas-
cular biomarkers assessed were significantly associ-
ated with impaired CFVR. The individual biomarkers
and pathway patterns identified indicate links to
inflammation, hypertension, and cardiac remodeling.
The prediction models developed with different sta-
tistical approaches were superior to models with only
clinical data but had only moderate ability to identify
CMD in these patients.

The individual biomarkers most strongly associ-
ated with CFVR that also emerged as biomarkers of
importance in pathways and prediction models
TABLE 3 Ranking of 10 Most Important Variables and Model Perform

Ranking Random Forest (Gini) Random Forest (Accuracy)

1 REN REN

2 Age Age

3 ADM ADM

4 PRSS27 GDF15

5 GDF15 NTproBNP

6 MMP12 BNP

7 PON3 Heart rate

8 SERPINA12 PRSS27

9 vWF MMP12

10 NTproBNP MEPE

AUC 0.66 (0.61-0.71)

Sensitivity 0.47(0.40-0.55)

Specificity 0.73 (0.64-0.81)

PPV 0.57 (0.51-0.63)

NPV 0.64 (0.61-0.67)

AUC ¼ area under the curve; NPV ¼ negative predictive value; PPV ¼ positive predictiv
were REN, GDF15, BNP (and its prohormone, NT-
proBNP), ADM, CHI3L1, TRAILR2, and IL-6. Addi-
tionally, IL-6 was a core protein in the gray module
of protein-protein interaction and loaded highest
on PC12. TRAILR2 scored highest on PC1 and was
the most important biomarker in the AdaBoost
derived prediction model. These biomarkers and
their possible role in CMD are briefly described
below.
RENIN, BNP, AND NT-proBNP. REN, BNP, and
NTproBNP emerged as 3 of the biomarkers most
strongly linked to CMD. Together with IL-6, these
were core proteins in the gray module identified by
WGCNA and prominent biomarkers in PCs associated
with CFVR. REN is well-known for its role in the REN-
angiotensin-aldosterone system as a protein secreted
by the kidneys resulting in downstream vasocon-
ance Metrics for Each of the Algorithms

LASSO XGBoost AdaBoost

REN REN TRAILR2

BNP Age ALCAM

DLK1 PRSS27 PGF

IL-6 ADM EPHB4

PRSS27 SERPINA12 TNFRSF11A

IL17RA Dia BP IGFBP7

vWF LVEF MMP2

PSPD MMP12 MERTK

SELE BNP TNFR1

CHI3L Heart rate SPON2

0.58 (0.53-0.64) 0.63 (0.58-0.67) 0.63 (0.56-0.71)

0.41 (0.31-0.51) 0.45 (0.35-0.54) 0.39 (0.26-0.52)

0.76 (0.65-0.87) 0.72 (0.65-0.79) 0.80 (0.75-0.85)

0.58 (0.47-0.68) 0.56 (0.51-0.60) 0.60 (0.51-0.69)

0.62 (0.58-0.66) 0.62 (0.59-0.65) 0.63 (0.58-0.67)

e value. For abbreviations of biomarkers please see Supplemental Table 1.
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striction and increase in blood pressure and sodium
retention (via angiotensin I and II activation). The
natriuretic peptide BNP may be elevated in response
to REN. REN is also a paracrine antifibrotic factor and
REN, BNP, and NT-proBNP are all raised in patients
with heart failure. Together with the well-established
strong association between hypertension and
microvascular dysfunction, the increased levels of
REN and natriuretic peptides may thus reflect an
ongoing adaptive cardiac remodeling in microvas-
cular angina. An important novel paradigm describes
a possible causal pathway from the mainly metabolic
risk factors obesity, diabetes and hypertension
through low-grade systemic inflammation to CMD,
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cardiac remodeling, diastolic dysfunction and ulti-
mately development of heart failure with preserved
ejection fraction (HFpEF).18 There is some evidence
supporting this paradigm from cross-sectional
studies6,9-12,19-26 and CMD has been linked to
increased future risk of HFpEF development.27

Moreover, studies in mice have found that exposure
to hypertensive and metabolic stress (‘two-hit-
model’) leads to inflammation, impaired CFVR, and
HFpEF.28 The biomarker analyses presented here
confirm associations between CMD and biomarkers
reflecting primarily inflammation, hypertension, and
remodeling. However, the cross-sectional nature of
the current analyses impedes causal inference and
prospective studies that intervene in the causal
pathway are needed to establish this link.

GDF15, ADM, CHI3L1, TRAILR2, AND IL-6. GDF15 is a
well-established cardiovascular risk marker that is
also upregulated with age, in obesity, diabetes,
inflammation, cancer, pulmonary and renal disease.
Biological actions are poorly defined and understood
but GDF15 was increased in patients with atrial
fibrillation,29 heart failure30 and CAD31 and associated
with impaired prognosis.31,32 In previous iPOWER
substudies, GDF15 was associated with impaired
CFVR.11,12 No other study has reported a link between
GDF15 and CMD.

ADM is a circulating vasodilator peptide hormone
with natriuretic effects that also stimulates angio-
genesis and was one of the biomarkers with greatest
importance for CFVR in the RF and XGBoost models.
ADM is increased in acute decompensation, was
recently suggested as a biomarker of prognosis and
risk stratification in heart failure and may prove a
target for pharmacological intervention.30 Together
with GDF15 and YKL40, ADM was associated with
impaired prognosis in a small study of patients with
HFpEF.32 The only previous study to link CMD to
ADM found that in 32 patients undergoing invasive
angiography, coronary flow reserve was associated
with ADM.33

CHI3L1, also known as YKL-40, is a glycoprotein
regarded as a non-disease-specific biomarker of
inflammation and tissue remodeling. CHI3L1 in-
creases with age and is elevated in CAD as well as in
diseases characterized by inflammation, including
heart failure, stroke, and diabetes. CHI3L1 is
expressed in macrophages and smooth muscle cells in
atherosclerotic plaques formation, particularly in
early stages of atherosclerosis. Moreover, higher
levels of CHI3L1 have been associated with throm-
boembolic events.34 No other study has reported on
associations between CMD and CHI3L1.
TRAILR2 is a receptor for the pro-apoptotic protein
tumor necrosis factor-related apoptosis inducing
ligand (TRAIL). Studies have indicated TRAILR2 is
associated with adverse CVD outcomes, but more
studies are needed to understand its precise role.35

No previous studies have linked TRAILR2 to CMD.
CFVR was strongly associated with IL-6 (P ¼ 1.0e-

06) and from a treatment perspective this may be
the most important finding of this study. IL-6 is
acknowledged as a driver of atherosclerosis 36 and
specifically targeting IL-1b upstream from IL-6
lead to improved CVD outcomes in the seminal,
proof-of-concept CANTOS trial (Canakinumab anti-
inflammatory thrombosis outcome study). This is the
first study to link CMD to IL-6 in patients with
angina and no obstructive CAD. Future studies may
test the effect of IL-6 inhibition in this patient group.
PREDICTION OF CMD. A model to predict CMD like-
lihood could be useful as a point-of-care test prior to
referral to invasive or noninvasive diagnostic tests for
CMD. A simple model with clinical risk factors,
including age, hypertension and diabetes, factors all
known to be risk factors for CMD, better-than-random
in predicting CMD with an ROC-AUC of 0.63. Adding
biomarkers to the model significantly improved pre-
diction but the model only performed moderately
well, with ROC-AUC below 0.70. The clinical utility of
a prediction model to rule-in and rule-out CMD from a
panel of biomarkers could thus not be established.
Such a model would need to be refined and further
validated before apt for clinical use.

The aim of studying proteomics in microvascular
angina was twofold and partly overlapping: We
wished to study patterns of protein biomarkers that
might help understand and separate the underlying
mechanisms for microvascular dysfunction. With the
limited availability of noninvasive and invasive
methods to diagnose microvascular angina, we also
wished to develop a predictive model to rule-in or
rule-out CMD in patients with angina and no
obstructive CAD. Although proteomics plays a crucial
role in biomarker discovery, the modest discrimina-
tive ability of this technique indicates that there are
still hidden mechanisms in protein regulatory net-
works that may not be sufficiently elucidated by
biomarkers on the plasma levels. There may be mul-
tiple underlying mechanisms of CMD—structural and
functional and pertaining to vascular function or
cardiac remodeling—that have different protein
signatures.

STUDY LIMITATIONS. Small studies have shown as-
sociations between CMD and selected inflammatory
biomarkers. The present study is appreciably the
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comprehensive characterization of biomarker profile
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consistent with inflammation, hypertension, and

ventricular remodeling being intrinsically linked
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TRANSLATIONAL OUTLOOK: If validated in other

cohorts of patients with microvascular angina, our

findings support considering inflammation as a

therapeutic target in patients with angina and CMD.
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largest to assess biomarkers in CMD, and multiple
protein biomarkers were assessed simultaneously.
Other strengths include an unselected and well-
characterized study population in which CMD has
been shown to be associated with CVD outcomes.4 An
important strength is that we apply multiple methods
to data analyses and we base conclusions on the
combined results.

The main limitation of the study is the cross-
sectional nature of data hindering causal inference.
Some individual biomarker associations will be sub-
ject to type I error, but no conclusions were drawn
from individual associations that were not very
strong. In the more advanced analyses (PCA, WGCNA,
and ML), this limitation because of multiple testing
does not apply and, further, care was taken to draw
conclusions on patterns of results.

We did not perform external validation. To our
knowledge, no similar data population for external
validation exists. We did not include symptom char-
acteristics in the phenotype characterization as we
have previously reported no association between
CFVR and symptom characteristics in the iPower
cohort.2

By inducing maximum hyperemia for CFVR
assessment by dipyridamole infusion, we evaluated
primarily non-endothelium dependent vasodilatation
and results are not comparable to coronary vascular
function assessed by eg, acetylcholine provocation.
We only included women and we do not know
whether results apply also to male peers.

CONCLUSIONS

In this large study of women with angina and no
obstructive CAD, we identified multiple biomarkers
that were associated with CMD. We further identified
potential pathways involving inflammation, hyper-
tension, and cardiac remodeling linking these
biomarkers to microvascular angina (Central
Illustration). Results should be confirmed in other
study populations and prospective studies are
needed to determine whether biomarkers are causally
related to future CMD development and whether
modification of the underlying pathways may lead to
improved coronary microvascular function. Predic-
tion models were significantly improved but predic-
tive abilities remained moderate.
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