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Enhancing thermocouple’s 
efficiency using an electrostatic 
voltage
Tinggang Zhang

An electrostatic voltage is formed in the proposed thermocouple by the induced electrostatic 
potentials at the metallurgical junctions created by the n- and the p-type legs and their semiconductor 
emitters that are embedded on their exterior surfaces. The usable range of the electrostatic voltage 
was defined and used to enhance the output power and the efficiency of the thermocouple. An 
analytical formulation for and the numerical simulation of the thermocouple showed that the 
electrostatic voltage, as an addition to the Seebeck voltage, could enhance the output power and 
the efficiency up to four times those of the original thermocouple design with the same leg doping 
densities. Furthermore, the numerical simulation showed that for a given n- and a given p-type leg 
doping densities, an optimal combination of the emitter doping densities could always be found so 
that the output power and the efficiency of the thermocouple could be enhanced up to four times 
those of the thermocouple without the emitters.

The development of an efficient and an affordable thermoelectric power generator is of broad interests both in 
energy efficiency (waste heat utilization) and in electricity generation, but faces significant challenges in both 
material science and engineering and device technologies as indicated from the historical progress of the figure 
of merit, zT, of typical thermoelectric materials1,2 and the reviews of advances in device technologies3,4. zT is 
a dimensionless parameter that characterizes the efficiency of a thermoelectric material and is calculated by 
zT = α2 σ/κ , where α is the Seebeck coefficient, σ the electrical conductivity, and κ the thermal conductivity. 
Recent progress in the synthesizing technology of polycrystal SnSe has remarkably improved the material’s effi-
ciency so that a zT as high as 3.1 was obtained at 783 K5. This new development in thermoelectric material lights 
up the expectation that an effective thermoelectric generator will soon be a reality. However, many progresses 
remain to be made in transforming a high efficient material into an equivalent efficient device, including material 
synthesizing, device packaging, system integration, and working condition consideration.

Current development in device technologies has largely relied on finding high-efficient thermoelectric mate-
rials to improve the device efficiency through “tuning” a thermocouple’s geometrical size and shape, module 
fill factor, functional graded thermoelectric legs, and device architecture to optimize its electrical and thermal 
transport properties. For example, giving the electrical resistivity ( ρ ), and the thermal conductivity ( κ ) of the 
n- and the p-type legs of a thermocouple, tuning the length (L) and the cross-sectional area (A) to satisfy the 
relation, (Ap Ln)/(An Lp) =

√

κn ρp/(κp ρn) , where the subscripts n and p are leg types, an optimal ZT can 
be realized6. This analytical relation was confirmed in a numerical simulation which showed even when the 
temperature-dependent transport properties of the materials and the electrical and thermal contact resistances 
were accounted for7. The simulation further showed that a similar output power per unit module area obtained 
with a greater number of longer legs could be obtained with a smaller number of shorter legs when the thermal 
contact resistance was neglected.

Different shapes with constant cross-sectional areas along a leg had showed little effect on the output power 
and the efficiency of a module8. However, as the cross-sectional area varies along a leg improved output power 
and efficiency were obtained9,10. Among various leg shapes investigated11–13, pyramidal leg was predicted to have 
a higher output power density10,14 and has showed 67% increase in output power of a laboratory-scale module in 
comparison to a module made of cuboid legs15; and a hourglass shaped leg showed more than doubled electrical 
potential and the maximum power output compared to the cuboid leg under the given boundary conditions 
in the finite element simulation16. These improvements are mainly attributed to the reduction of the thermal 
conductance of the legs and the presence of the phonon drag effect.
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Functionally graded thermoelectric leg was conceived by taking the advantage of the thermoelectric materi-
als having optimal zTs at different temperature ranges. The fundamental concept is to synthesize a leg to have 
an optimum zT all the way from the hot-end to the cold-end through locally selecting a particular material, 
microstructure, or composition. It was demonstrated 13.8% generator efficiency was achieved using piece-wised 
functional (segmented) leg17. Following the same principle, cascade module uses several functional thermocouple 
stages and separated electric circuit for each stage to improve its efficiency within a large working temperature 
range.

Practically, when all the electrical and thermal energy losses and material compatibility issues at all the inter-
faces are accounted for, the improvements in device’s efficiency achieved at current scale are clearly insufficient 
for the realization of an efficient and an affordable device, hardly to replace traditional power generation systems. 
Furthermore, current device design and optimization can only work around the efficiency at the level dictated 
by the legs’ materials’ zT which is yet below the anticipated level, zT > 3 within a working temperature range. 
Thus, the improvement of the efficiency has to be significant and beyond that limited by the material’s zT. In the 
author’s earlier work2, a new thermocouple design approach was proposed in an attempt to achieve its output 
power and efficiency beyond those of the legs’ materials’. A preliminary thermocouple design that uses low dop-
ing legs and high doping semiconductors as external carrier injectors surrounding the legs was then introduced 
and its potential in enhancing the device efficiency was demonstrated through an example.

In the current work, the proposed design approach is further elaborated with a new concept and the design 
details. In stead of enhancing the thermocouple’s ZT, an electrostatic voltage based on the p-n junction theory18–21, 
in addition to Seebeck voltage, is created in the thermocouple using the metallurgical junctions formed between 
the n- and the p-type legs and between the leg and the carrier emitters that are embedded on the legs’ exterior 
surfaces. A usable range of this electrostatic voltage and its effect on the output power and the efficiency were 
studied for different combinations of legs’ and emitters’ doping densities. Among these doping densities, an 
optimal combination was found, which yields the maximum output power and efficiency.

Results
New thermocouple design.  Electrostatic voltage.  The proposed thermocouple design is different from 
the conventional designs as shown in Fig. 1. It is composed of an n-type and a p-type semiconductor legs and 
four semiconductor emitters that act as carrier injectors of the two legs. The n- and the p-type legs, with their 
doping densities being denoted as Nd0 and Na0 , respectively, are connected directly at their cold ends so that a 
metallurgical junction (p-n junction) forms at the interface. Based on the p-n junction theory18–21, a built-in 
potential exists at such a junction and is determined by the induced electrostatic potentials ( �n and �p , re-
spectively) in the neutral regions on the two sides of the junction as shown in the center of the figure. The four 
emitters are embedded on the exterior surface of these two legs, thus there exist two other p-n junctions formed 
at the interfaces between the legs and the emitters. One is at the hot-end of the n-type leg between the leg and a 
p-type emitter with a doping density Nah . The induced positive electrostatic potential, ψn , in the neutral region 
on the leg side is shown in the figure. The other is at the hot-end of the p-type leg between the leg and an n-type 
emitter with a doping density Ndh . It induces a negative electrostatic potential, ψp , in the neutral region on the leg 
side as shown in the figure. The other two metallurgical junctions are formed between the same type semicon-
ductor materials with different doping densities. One is at the cold-end of the n-type leg between the leg and a 
high-doping ( N+

dc ) n-type emitter. Under the large gradient of carrier concentration between the two sides of the 

Figure 1.   Diagram of the proposed new thermocouple design. The external carrier injectors or emitters 
surround the leg exterior surfaces. These emitters are labled by their doping densities and are enlarged for better 
illustration.
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junction, electrons of the high-doping emitter diffuse through the junction and move into the low-doping leg. As 
a result, some uncompensated positive ions left behind in the emitter near the junction, thus a built-in potential 
is formed at the junction. The induced electrostatic potential in the neutral region on the leg side, φn , is negative 
as shown in the figure. The other is at the cold-end of the p-type leg formed between the leg and a high-doping 
( N+

ac ) p-type emitter. Following the same mechanism as the n-type one, a positive electrostatic potential, φp , is 
induced in the neutral region on the leg side. These induced electrostatic potentials form an electrostatic voltage 
between the two hot ends of the thermocouple.

Based on the p-n junction theory, these induced electrostatic potentials are determined by the following 
equations. The electrostatic potentials at the p-n junction between the legs are calculated by: 

 where kB is the Boltzmann’s constant (in J/K), qe the electric charge (in Coulomb), Tc the cold-end temperature 
(in Kelvin), ni the intrinsic carrier concentration (in cm−3).

The electrostatic potentials at the two hot p-n junctions between the legs and their emitters are calculated by 
the same equations as Eq. (1) but at different temperatures: 

 where Th is the hot-end temperature.
For the electrostatic potentials at the two metallurgical junctions with the same n- or p-type semiconductor 

materials with different doping densities, it is assumed that the carrier density on leg side of the junction is the 
same as that of its emitter’s. These potentials are therefore calculated approximately by: 

The electrostatic potential difference (denoted as electrostatic voltage) between the two hot ends of the pro-
posed thermocouple shown in Fig. 1 can then be determined by:

This electrostatic voltage ( Vi ) is created by those metallurgical junctions formed between the n- and the 
p-type legs and between the legs and their emitters without any involvement of the thermoelectric phenomenon. 
Thus, it is an addition to the Seebeck voltage ( α �T ) and can boost the efficiency of the thermocouple without 
resorting to “tune” the thermoelectric transport properties. Assuming the leg doping density is independent of 
temperature, ψn is actually smaller than �n considering ni increases with temperature. Under such a scenario, 
φn plays an important role in contributing to the enhancement of output power and efficiency of the proposed 
thermocouple as will be discussed in the late sections.

Electric and heat currents.  Within a thermoelectric leg which behaves like a battery, there exist both the induced 
electrostatic field ( �E ) and the non-electrostatic force ( �K ) that drives the carriers to move through the leg from 
its hot-end to its cold-end. The direction of the non-electrostatic force is opposite to that applied by the induced 
electrostatic filed. The Ohm’s law for the current flux density (j) in the leg can thus be expressed as:

where σT is the isothermal electrical conductivity.
The electromotive force ( E ) of a battery is defined as: the work produced by a non-electrostatic force to move a 

unit positive charge from the negative terminal to the positive terminal through the battery, i.e.,

where l− and l+ are the negative and the positive terminal positions, respectively, and d�l  is the incremental length 
vector of the circuit.
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The terminal potential is defined to be equal to the work used to move a unit positive charge from the positive 
terminal to the negative terminal, i.e.,

Since in the battery �E = − �K +�j/σT , Eq. (7) becomes:

where I = j S is the electric current, S is the cross-sectional area of the circuit and RI =
∫ l+
l− ρdl/S the internal 

electrical resistance, where ρ is the electrical resistivity.
In the proposed new thermocouple design, the electromotive force is the sum of the Seebeck voltage ( α �T ) 

and the electrostatic voltage induced by the metallurgical junctions, i.e.,

For the external circuit with load resistance RL , U = IRL . Introducing U = IRL into Eq. (8), the Ohm’s law 
is realized,

where RT = RL + RI.
The heat current equation thus becomes

where Knp is the leg thermal conductance and �T = Th − Tc.

Enhanced output power and efficiency.  Assuming the external load resistance RL = mRI , the output power can 
then be expressed as: 

where

is the output power of the original thermocouple design without any external carrier injection.

is the output power generated by both Seebeck voltage and the electrostatic voltage induced by metallurgical 
junctions.

is the output power generated by the electrostatic voltage alone.
The efficiency of the thermocouple is calculated by:

where Qh is the input heat rate. It need to emphases that among the three efficiency terms, only the Pα is totally 
generated through Qh . The second term, PαVi is partially generated through Qh . The third term, PVi is not gener-
ated through Qh . Thus, the efficiency of the proposed thermocouple could be greater than the following theo-
retical efficiency:

(7)U = U+ − U− =
∫ l−

l+
�E · d�l.

(8)
U =

∫ l−

l+
(− �K +�j/σT ) · d�l =
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l−
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l−
(ρj)dl cos θ

=
∫ l+

l−
�K · d�l −

∫ l+

l−
(jS)

ρdl

S
cos θ = E−IRI

(9)E = α�T + Vi

(10)I = E

RL + RI
= E

RT

(11)Iq = αTI + Knp�T = αT

RT
(α�T + Vi)+ Knp�T

(12a)
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]
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Depending on the value of Vi , four different cases can be expected for the output power of the new thermo-
couple design. (1) When Vi < 0 , the built-in potential between the two legs ( �np = �n −�p , positive) is larger 
than the compensating potential ( φnp = φn − φp , negative). This will raise the thermoelectric potentials at the 
cold ends and thus lower the Seebeck voltage. The equation, Eq. (12), for the output power becomes:

Eventually, the output power will be less than that generated by the original thermocouple design if 
−α�T � Vi < 0 . if Vi < −α�T , the output power will be produced by the Vi against the thermoelectric driv-
ing force, which will not be discussed in the current work. For a proper combination of the doping densities of 
those emitters, such a condition can always be avoided. (2) When Vi > 0 , �np � |φnp| . As a result, the potentials 
ψnp = ψn − ψp and φnp −�np have the same polarities as the thermoelectric potentials. The output power is 
determined by Eq. (12), which will be larger than that of the original thermocouple design. This condition can be 
easily met without much effort in selecting a proper combination of the doping concentrations of those emitters. 
(3) When Vi = α �T , ψnp − (φnp +�np) = α�T . Equation 12 becomes:

 The output power will be four times that generated by the original design. In the late section, it will demonstrate 
that this condition can always be realized for different doping densities of the n- and the p-type legs through 
optimizing the doping densities of their emitters. Among these optimal doping combinations, there exists an 
optimum doping combination that can yield the maximum output power. (4) When Vi > α�T , the electric 
field force induced by the potentials of ψn and φn +�n will outbalance the thermoelectric driving force ( ∇T ) 
and pushs the carriers toward the direction opposite to the current flow driven by the thermoelectric driving 
forcei. With the reduction of the electric current, this condition will eventually lower the output power and 
should be avoid by a proper selection of the combination of doping concentrations of those emitters. In this 
case, Eq. (12) can not be directly used to determined the output power. Since the third condition, Vi = α�T , 
is the main interest of the current work and in practical application as well, the calculation of the output power 
for this condition will not be covered here.

The following equation can be used to evaluate the improving rate of output power:

It is clear that when Vi = α �T , the maximum improving rate of 3 can be obtained. The same improving rate can 
also be obtained for the thermocouple efficiency if the input heat rate is the same for both the original and the 
new thermocouple designs. This conclusion will be validated in the numerical simulation of the thermocouple 
in the late section.

Thermocouple model description.  Heat balance equation.  Let us assume that all the parameters of 
the thermocouple shown in Fig. 1 are independent of temperature. The heat rates supplied to the hot side of the 
thermocouple ( Qh ) and pumped out from its cold side ( Qc ) are, respectively, given by: 

 where KH is the thermal conductance of the components from the heat source to the hot-end of the leg and KL 
is the thermal conductance of the components from the cold-end of the leg to the heat sink, TH is the heat source 
temperature, Th is the temperature at the hot end of the leg, Tc is the temperature at the cold-end of the leg, and 
TL is the heat sink temperature.

The heat flow rates enter the hot-end and exit from the cold-end of the thermocouple are given by22,23: 

 where Knp is the leg thermal conductance. The net heat flow rate through the thermocouple is calculated by 
subtracting Eq. (19b) from Eq. (19a):

Introducing Eqs. (18a) and (18b) into Eq. (20), one obtains:
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1

2
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2
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2
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where KTHL = KHTH + KLTL and KT = KL + KH . Introducing Eq. (18b) into (19b) and rearranging the terms, 
one obtains:

Finally, the following two equations are obtained to solve for �T and Tc : 

 Substituting Tc obtained from Eq. (23b) into (23a) and rearranging the terms give the following equation:

Denoting n = KH/KL and χ = KL/Knp , Eq. (24) can be further reduced to:

Substituting the electric current given by Eq. (10) and combining common terms, a cubic equation in terms of 
�T is obtained: 

where

 Dividing all its coefficients of Eq. (26a) by a, a standard cubic equation is obtained: 

where

where
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Solving the cubic equation for �T.  There exists a standard method for solving a cubic algebraic equation. Here, 
a brief description is given for finding �T from Eq. (27a). The discriminant of the cubic equation is calculated 
by: 

where

If discr > 0 , �T is given by: 

where

If discr <= 0 , the smallest difference of DT − ri is used as �T , where DT = TH − TL , ri is the roots of the 
cubic equation, and i = 1, 2, 3, i.e., 

where

or

Once �T is determined, Tc can be calculated by Eq. (22). The output power and the efficiency of the proposed 
thermocouple is calculated by Eqs. (12a) and (13), respectively.

Discussion
A thermocouple with its leg length of 2 mm and its leg cross-sectional area of 0.267 cm2 is used to study the 
output power and the efficiency of the proposed thermocouple design. Silicon semiconductor has mostly been 
used in making p-n junctions, thus is used for the study of the new thermocouple. For both n- and p-type Si 
semiconductors, their Seebeck coefficients measured at different doping concentration are given in Fig. 2a24. 
Their electrical resistivity as function of doping concentration are given in Fig. 2b25. Considering their thermal 
conductivity are relatively independent of their doping concentrations when the temperature is beyond 300 K, a 
constant value is assumed in the current study. For the n-type leg, its thermal conductivity is 100 W/m-K. For the 
p-type leg, its thermal conductivity is 200 W/m-K. The emitters in the new thermocouple design are only used for 
carrier injection, their doping concentrations are the only relevant parameters in the current study. Their doping 
concentration vary between 5× 1014 cm−3 and 5× 1021 cm−3 . Since leg doping concentration has to be less than 
its emitters, it varies between 1014 cm−3 and Ndc for the n-type leg and between 1014 cm−3 and Nac for the p-type 
leg. The parameters used in solving Eq. (26a) are: TH = 500 K, TL = 300 K, χ = 5, n = 1, and m = 1. For the cases 
considered in this work, the temperature difference between Th and Tc obtained from Eq. (26a) is around 142 K.

Variation of V
i
 with doping concentration.  Based on Eq. (4), the electrostatic voltage of the proposed 

thermocouple is a function of the electrostatic potentials at all its metallurgical junctions. For a given doping 
density of the emitter at the cold-end of the n-type leg, Ndc = 1016 cm−3 and three n-type leg doping densities, 
Nd0 = 5× 1014 cm−3 , 3 ×1015 cm−3 , and 6.25× 1015 cm−3 , Vi was calculated and its variation and variations 
of all the electrostatic potentials at their metallurgical junctions with the p-type leg doping density ( Na0 ) are 
shown in Fig. 3. The label for each line identifies its electrostatic potential and the related doping densities used 
to obtain the line. Let us firstly consider the six solid electrostatic potential lines (for Nd0 = 5× 1014 cm−3 ) in 
this figure for their characteristics. These lines are the variations of the electrostatic potentials of (from the top 
to the bottom), φp , �n , ψn , ψp , �p and φn , respectively with Na0 . Since φp , �n , ψn , and φn are independent of Na0 , 
they show the straight lines along the axis of p-type leg doping density. Only ψp and �p vary with Na0 and they 
decrease with the p-type leg doping density as shown. The vertical lines drawn between each pair of the potential 
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lines of φp and φn , �n and �p , and ψn and ψp mark the potential differences between each pair of the electrostatic 
potentials. The potential difference between �n and �p is the built-in potential of the p-n junction between the 
two legs. As it can be observed graphically, this built-in potential increases with Na0 and becomes quite large at 
higher p-type leg doping density. While this built-in potential, on one hand, can assist carrier transport through 
the thermocouple, it can also lower the magnitude of Seebeck voltage ( α �T ) on the other hand. Hence, it has to 
be compensated by the potential difference φp − φn to a degree that the electrostatic voltage can play a large role 
in enhancing the power production of the thermocouple. The electrostatic voltage of the thermocouple is hence 
the algebraic summation of these three potential differences, i.e.:

(31)Vi =
(

|ψn| + |ψp|
)

+
(

|φn| + |φp|
)

−
(

|�n| + |�p|
)

Figure 2.   (a) Seebeck coefficients measured at different doping concentrations (data points)24. Lines are the 
coefficient fitting functions used in the thermocouple simulations. (b) Electrical resistivity measured at different 
doping concentrations and then fitted into the analytical functions (data points)25. Lines are the resistivity piece-
wise fitting functions used in the thermocouple simulations.

Figure 3.   Variations of the electrostatic potentials and the electrostatic voltages with p-type leg doping 
concentration for a given doping concentration of the emitter at the cold-end of the n-type leg and three n-type 
leg doping concentrations and their corresponding doping concentrations of the emitter at the cold-end of the 
p-type leg.
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This electrostatic voltage of the thermocouple is shown in red solid line in the figure, which increases with 
p-type leg doping density and its slope is opposite to that of the Seebeck coefficient versus doping density that is 
decreases with leg doping density as shown in Fig. 2. Such a relationship between Vi and the Seebeck coefficient 
is the key in enhancing the efficiency of a thermocouple.

As the n-type leg doping density Nd0 and the emitter doping density Nac vary, the electrostatic potentials 
related to these doping densities, φp , �n , ψn , ψp , ψp and φn vary as shown in the dashed lines for Nd0 = 3 ×1015 
cm−3 and Nac = 7.5×1016 cm−3 and the dot-dashed lines for Nd0 = 6.25×1015 cm−3and Nac = 4.5×1016 cm−3 in 
the figure. Since φn , �p and ψp are independent of both Nd0 and Nac , they remain the same as Nd0 and Nac vary 
as shown. ψn and �n depend only on the n-type leg doping density. They both increase with Nd0 as shown in 
brown and blue lines. φp depends only on Nac and increases with the emitter doping density. Since �p remains 
the same while �n increases with Nd0 for the given Ndc , the potential difference between �n and �p increases with 
Nd0 . Similarly, the potential difference between ψn and ψp also increases with Nd0 . However, for the potential 
difference between φn and φp , the results are slightly different. This is because a maximum output power occurs 
when Nd0 is large and Nac is small as can be noticed from the line labels (this is due the doping density rules to be 
discussed subsequently). As Nd0 increases, Nac has to decrease to attain an optimal output power. As a result, the 
potential difference between φn and φp decreases as Nd0 increases. Thus, Vi decreases as Nd0 increases as shown 
in red dashed and dot-dashed lines in the figure. These two lines are overlapped.

The decrease of the potential difference between φn and φp with Nd0 is originated from the rules in determin-
ing a valid Vi for enhancing the efficiency of the proposed thermocouple. These rules are designed as following. 
(1) Vi has to be less than or at most equal to Seebeck voltage ( α �T ). This is because when Vi > α�T , carriers 
will move against thermoelectric driving force ( �T ), thus lower the Seebeck voltage and the output power of 
the thermocouple. (2) The n-type leg’s doping density has to be less than that of its emitter, i.e., Nd0 < Ndc to 
maintain correct polarity of the electrostatic potentials of the metallurgical junction. For the same reason, p-type 
leg’s doping density has also to be less than that its emitter, i.e., Na0 < Nac . (3) The minimal leg’s doping density 
should be greater or equal to the doping density where Seebeck coefficient attains maximum value.

Following these rules, the electrostatic voltage Vi determined for different combinations of the doping densi-
ties, two legs and two emitters, will be valid and can make contribution in enhancing the output power and the 
efficiency of the proposed thermocouple.

Output power and efficiency.  The output power, the efficiency, and the power improving rate of the pro-
posed thermocouple were calculated via Eqs. (12), (13) and (17) for different legs’ and emitters’ doping densities. 
The results for output power are shown in Fig. 4. For a given Ndc and a given Nd0 , there exist numerous electro-
static voltages along the Seebeck voltage versus doping density curve, each corresponds to a specific Nac , within a 
finite doping range of the p-type leg, Na0 , as shown in Fig. 4a. These Vi lines parallel with each other and can thus 
be represented by a single linear function of log(x) and differ with one another only by a constant. Since these 
Vi s have a positive slope in the log(Na0)-V i  coordinate system, they intercept with the curve of Seebeck voltage, 
i.e., α �T which essentially has a negative slope. The Seebeck voltage curve separates the Vi lines into upper and 
lower regions in the Vi ’s slope direction. The Vi s located in the upper region are greater than α �T , thus are inva-

Figure 4.   (a) Variations of Seebeck voltage and the electrostatic voltage with p-type leg doping density, Na0 . (b) 
Output power versus Na0 for the emitter doping density, Ndc = 5.5×1015 . (c) Output power versus Na0 for Ndc = 
1016 . (d) Output power versus Na0 for Nac = 5 ×1016.
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lid based on the rules discussed in the previous section, while the Vi s in the lower region are less than α �T , thus 
are valid and can make contribution in enhancing the power production and efficiency of the thermocouple. 
Clearly, the Vi s on the Seebeck voltage curve have the equal values as α �T at the interception points. At these 
interception points, the output power and efficiency reach their maximum values. Based on Eq. (12a), the output 
power (or efficiency) at the interception point is four times that of the conventional thermocouple design for the 
given legs’ doping densities. In Fig. 4a, there also exist two other regions in the direction perpendicular to the 
Vi ’s slope, in which Vi lines cannot find the interception with the Seebeck voltage curve based on the rules. These 
regions are either with invalid Vi s or with lower Vi s and are of no interest in the current study.

The output power at those Vi = α �T points were calculated typically for Ndc = 5.5×1015 cm−3 , 1016 cm−3 , 
and 5 ×1016 cm−3 and the results are shown, respectively, in Fig. 4b–d. There is a common characteristics among 
these three plots, that is, for a low doping n-type leg ( Nd0 ), a peak output power exists along the power-Na0 curve 
(the output power increases with Na0 to a maximum value and then decreases with further increase of Na0 ). 
This characteristics can be clearly observed particularly in Fig. 4b with low emitter doping density Ndc = 5.5×
1015 cm−3 . For all the n-type leg doping densities showed in this figure, a peak output power can be reached in 
all the power-Na0 curves. For Ndc = 1016 cm−3 , five out of the six power-Na0 curves have the peak output power. 
For Ndc = 5 ×1016 cm−3 , three out of the seven power-Na0 curves have the peak output power. The rest of the 
power-Na0 curves do not have a peak point (or the peak point is at the end of the curve). By examining these three 
plots, Fig. 4b–d, it can be recognized that the largest output power occurs in Fig. 4c with Ndc = 1016 cm−3 , Nd0 = 
6.25×1015 cm−3 , Nac = 4.125×1016 cm−3 , and Na0 = 3.994×1016 cm−3 . These output power extrema depend on 
the relationship between the thermoelectric transport properties (Seebeck coefficient, electrical resistivity, and 
thermal conductivity) and the leg doping density. Thus, in this proposed thermocouple design, the output power 
and the efficiency not only depend on thermelectric transport properties but also depend on the electrostatic 
voltage ( Vi ). The electrostatic voltage should be a semiconductor device phenomenon and is independent of the 
thermoelectric phenomenon. Theoretically, it should not affect the thermoelectric transport properties. Under 
such a scenario, thermoelectric transport properties and the electrostatic voltage can be optimized individually 
to achieve a high-efficient thermoelectric generator.

From these results, it can be concluded that for a thermocouple with the given thermoelectric transport 
properties, an optimal combination of the emitter’s doping concentrations can always be found so that its output 
power and efficiency can be four times that of its conventional design.

An other common characteristics among these three plots, Fig. 4b–d, is that as Ndc increases, the power-Na0 
doping density curves form two trends depending on the magnitude of Nd0 . One is that for low n-type leg dop-
ing, the output power increases gradually with Na0 from lower value to a maximum power and then decreases 
with further increase of Na0 , thus has a peak point (or P-Na0 is a concave curve). The other is that for large Nd0 , 
the output power increases monotonically with Na0 without level off and attains a maximum P at the end of 
the curve (or P-Na0 is a convex curve). This characteristics can be explained by examining the relations of the 
Seebeck coefficient, the electrical resistivity, the figure of merit, and the electrostatic voltage Vi versus the p-type 
leg doping density as shown in Fig. 5. In Fig. 5, all the values, except Ri , are normalized with respect to the values 
corresponding maximum one of Nd0 = 6.25×1015 cm−3 . This plot shows the results for the emitter doping density 
Ndc = 1016 and three typical Nd0 s that show different trends in the output power-Na0 curves. Let’s firstly examine 
the results for the thermocouple group with Nd0 = 5 ×1014 cm−3 , showed in blue dashed lines in the figure. This 
thermocouple group has the largest Seebeck coefficient, electrical resistivity, and electrostatic voltage among 
those of the three thermocouples groups as shown. Its figure of merit (ZT) is the smallest one among the those 
of the three thermocouple groups. It increases gradually with Na0 from lower values to a maximum ZT at Na0 = 
2.284×1016 and then decreases with further increase of Na0 . Its Vi line intercepts with its Seebeck coefficient 
curve right at its maximum ZT point, which implies that the magnitude of the maximum output power of the 
thermocouple, the curve with square legends shown in Fig. 4c, is limited by the maximum figure of merit of the 
thermocouple. The thermocouple group with Nd0 = 3 ×1015 cm−3 is represented by the red double-dot dashed 
lines. Its Seebeck coefficient, electrical resistivity, and electrostatic voltage are at the middle among those of the 
three thermocouple groups. Its ZT gradually increases with Na0 and then level off and attains a maximum value 
right at the peak point of the curve (the peak point is also the last point in this case). Its Vi line intercepts its 
Seebeck coefficient curve also right at the maximum ZT point, which means that its maximum output power is 
also limited by its maximum figure of merit. Since its ZT is much higher than that of the thermocouple group 
with Nd0 = 5 ×1014 cm−3 , thus a larger output power is obtained. The third thermocouple group with Nd0 = 6.25×
1015 cm−3 is represented by the black solid lines in the figure. Its Seebeck coefficient, electrical resistivity, and 
electrostatic voltage are the lowest among those of the three thermocouple groups, but its ZT is the highest. Its 
ZT increases monotonically with Na0 up to the point where the maximum output power is reached. Its ZT does 
not reach its maximum value and can still increases with further increase of Na0 but is cut off by the rule that Na0 
has to be smaller than Nac . Its Vi line intercepts its Seebeck coefficient curve right at the ZT cut off point. For this 
thermocouple group, the maximum output power is limited by the p-type leg doping concentration. Since the 
ZT value of this thermocouple at cut off point is much higher than those of the other two thermocouple groups, 
the highest output power is generated by this thermocouple.

As it can be observed in Fig. 5, the p-type leg doping density ( Na0 ) at which the maximum ZT is attained 
increases with the n-type leg doping density ( Nd0 ) as marked by the vertical lines in the figure until it reaches a 
maximum value at which a maximum ZT can be attained with concave P-Na0 curve without cutting off by Na0 . 
Afterwords, the p-type leg doping density starts to decrease with the increase of the n-type leg doping density. 
This characteristics is showed by the blue, red, and black vertical lines in Fig. 5. This characteristics can also be 
observed in Fig. 4b–d.

The output power showed in Figs. 4b–d actually varies with both Na0 and Nac . Thus, if continuous Nd0 , Na0 
and Nac are considered for a fixed Ndc , the trends of the output power can be described mathematically. For a 
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fixed Ndc , Nd0 , Na0 , Nac , and ZT form a 3D ZT-region with a mountain-like shape. Na0 and Nac form the plane 
and ZT is the elevation. Each vertical cut section along a path of Nac and Na0 , L (Nac ,Na0) , represents the 
variation of ZT(Na0,Nac) for a constant Nd0 . Since for each Nd0 , there exist a lower and an upper bound Nac s 
and their corresponding Na0 s, as Nd0 varies in a given range, the bounds of Nac and Na0 form a plane domain 
in which Vi , ZT and P are valid. This Nac-Na0 plane domain will cut the 3D ZT-region vertically into two sub-
regions: valid and invalid. Within the valid ZT-region, the top ZT portion is cut off and certain local peaks on 
the hill remain. Thus, for large Nd0 , the ZT-Na0 curve cannot reach its peak ZT while for lower Nd0 , a partial full 
ZT-Na0 curve can still be obtainable. The output power can only be obtained within this valid ZT-region. As a 
result, the optimal doping density will be shifted from the original peak ZT to a position in the valid ZT-region 
where the maximum output power is achieved. Since within the valid ZT-region, Vi can be added to the α �T , 
the maximum output power is higher.

Using the solution of �T , Eqs. (29a) or (30), in the valid ZT-region, the maximum output power, Eq. (16), 
can be expressed as:

where S and Y are defined by Eq. (29b). The optimal output power can be found by solving the following equation:

where NL
a0 and NU

a0 are the lower and upper bounds of Na0.
The concave P-Na0 curve can be expressed as:

where N0
a0 is a turning point.

The convex P-Na0 curve can be expressed as:

The border between these two trends is defined as:

(32)P = 4m [α (S + Y − B/3)]2
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Figure 5.   Thermoelectric transport properties, α , resistance, ZT, and Vi vary with the p-type leg doping density 
for three typical n-type leg doping densities.
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Conclusion
An electrostatic voltage can be formed through the electrostatic potentials at the metallurgical junctions created 
by the n and the p-type legs and their semiconductor emitters. This electrostatic voltage is an addition to the 
Seebeck voltage, thus can increase the output power and the efficiency of the proposed thermocouple up to four 
times those of the conventional thermocouple with the same leg doping densities.

For the given n- and p-type leg doping densities of a thermocouple, an optimal combination of the emitter 
doping densities can always be found such that the output power and the efficiency of the thermocouple with 
those emitters can be increased up to four times those of the conventional thermocouple without the emitters.

Since the heat rate supplied to the thermocouple is used by the thermoelectric driving force to move the 
carriers through the thermocouple and is not used by the electrostatic voltage to generate the output power, the 
efficiency of the proposed thermocouple can be greater than the theoretical efficiency derived from the laws of 
thermodynamics for thermoelectric generator.

Methods
Seebeck coefficients obtained from experiments24 for both the n- and the p-type Silicon semiconductor materials 
were fitted into analytical functions for the use in the proposed thermocouple simulation. For the n-type Si, the 
fitting function is given by:

where x is the doping density (in cm−3 ) of the material. Similarly, the fitting function for the p-type Si is obtained 
as:

These fitting functions were used in the simulation to calculate the effective Seebeck coefficient of the thermo-
couple by αe = |αn| + αp for a given n-type and a given p-type leg doping densities.

The electrical resistivity measured from experiments25 for both the n- and the p-type Silicon semiconductor 
materials were also fitted into analytical functions piece-wisely using a linear interpolation of log(x) and log(y) 
functions, where x is the doping density of the material and y is the electrical resistivity. Using the piece-wisely 
fitting functions, the electrical resistivity for both the n- and the p-type Si were calculated in the simulation. The 
effective electrical resistivity of the thermocouple is then calculated by ρe = ρn + ρp.

Considering the thermal conductivity of both the n- and the p-type Silicon materials are nearly independ-
ent of the materials’ doping densities beyond 300 K, constants were used both the n- and the p-type Silicons in 
the simulation. For the n-type Si, κn = 200 (W/m-K) while for the p-type Si, κp = 100 (W/m-K). The effective 
thermal conductivity of the thermocouple is then given by κe = κn + κp = 300 (W/m-K).

For a given n-type leg doping density, Nd0 and a given doping density of its emitter, Ndc , using these thermo-
electric transport properties of the thermocouple and the electrostatic voltage calculated from Eq. (4), the cubic 
equation (27) were solved for �T for a given range of doping desnity of the p-type leg, Na0 , and a given range 
of doping density of its emitter, Nac.

From these calculations, variation of the effective Seebeck voltage with the p-type leg doping density can be 
determined. At the same time, variation of a group of electrostatic voltages for a range of emitter doping density, 
Nac , with the p-type leg doping density were also obtained in these calculations. Both the Seebeck voltage and the 
group of electrostatic voltage were fitted into analytical functions. From these fitting functions, the interception 
points between these two voltages can be determined for each Nac . A typical result is shown in Fig. 4a. Using 
these exact positions of the interception points of α �T-Vi for each Nac in the specified range, an other simula-
tion was conducted to determine the output power and the efficiency of the thermocouples at the interception 
points for the given Nd0 and the Ndc . The combination of these doping densities, Nd0 , Ndc , Na0 , and Nac at each 
interception point yields the maximum output power and efficiency of the thermocouple. The largest one among 
these maximum output power gives an optimal combination of the doping densities for the given Nd0 and Ndc . 
These output power-Na0 curves are shown in Fig. 4b–d for different Nd0 and Ndcs.

The largest output power among these curves yields the optimum combination of the doping densities, which 
gives the final thermocouple design.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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