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Abstract: Active inference is an increasingly prominent paradigm in theoretical biology. It frames
the dynamics of living systems as if they were solving an inference problem. This rests upon
their flow towards some (non-equilibrium) steady state—or equivalently, their maximisation of
the Bayesian model evidence for an implicit probabilistic model. For many models, these self-
evidencing dynamics manifest as messages passed among elements of a system. Such messages
resemble synaptic communication at a neuronal network level but could also apply to other network
structures. This paper attempts to apply the same formulation to biochemical networks. The chemical
computation that occurs in regulation of metabolism relies upon sparse interactions between coupled
reactions, where enzymes induce conditional dependencies between reactants. We will see that
these reactions may be viewed as the movement of probability mass between alternative categorical
states. When framed in this way, the master equations describing such systems can be reformulated
in terms of their steady-state distribution. This distribution plays the role of a generative model,
affording an inferential interpretation of the underlying biochemistry. Finally, we see that—in analogy
with computational neurology and psychiatry—metabolic disorders may be characterized as false
inference under aberrant prior beliefs.
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1. Introduction

Common to many stochastic systems in biology is a sparse network structure [1–4]. In
the nervous system, this manifests as many neurons that each synapse with a small subset
of the total number [5]. In biochemistry, similar network structures exist, in which each
chemical species reacts with a small number of other chemicals—facilitated by specific
enzymes [6]. In both settings, the ensuing dynamics have parallels with techniques applied
in the setting of probabilistic inference, where the sparsity is built into a (generative)
statistical model that expresses how observable data are caused by latent or hidden states.
Inversion of the model, to establish the most plausible causes for our observations, appeals
to the conditional dependencies (and independencies) between its constituent hidden
variables [7,8]. This has the appearance of message passing between nodes in a network of
variables, with messages passed between nodes representing variables that conditionally
depend upon one another [9].

The homology between inferential message passing and sparse dynamical systems
is central to active inference—a theoretical framework applied primarily in the neuro-
sciences [10]. Active inference applies to stochastic dynamical systems whose behaviour
can be framed as optimisation of an implicit model that explains the inputs to that system.
More specifically, it treats the dynamics of a system as a gradient flow on a marginal
likelihood (a.k.a., model evidence), that is the minimum of a free energy functional [11].
The internal dynamics of a system are then seen as minimising free energy to find the
marginal likelihood, which itself is maximized through acting to change external processes
so that the system inputs become more probable [12].

In the brain sciences, active inference offers a principled approach that underwrites
theoretical accounts of neuronal networks as performing Bayesian inference [13,14]. How-
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ever, the same mathematics is also applicable to other biotic systems—as has been shown
in the context of self-organisation and morphogenesis [15]—and even to non-biological
systems [16]. This paper attempts to find out how far we can take this approach in the
biochemical domain. This means an account of metabolic principles in terms of generative
models, their constituent conditional dependencies, and the resulting probabilistic dynamics.

Part of the motivation for focusing on metabolism is that it calls for a slightly different
formulation of stochastic dynamics to the Fokker–Planck formalisms [17] usually encoun-
tered in active inference [18]. As chemical species are categorical entities (e.g., glucose
or fructose), discrete probability distributions, as opposed to continuous densities, are
most appropriate in expressing our beliefs about chemical reactions. Systems of chemical
reactions then offer useful concrete examples of a slightly different form of stochastic
dynamics to those explored using Fokker–Planck equations. However, despite attempting
to establish a construct validity in relation to metabolism, the primary focus of this paper is
not biochemical. It is on the applicability of probabilistic dynamics, of the sort employed
in active inference, to systems that are not made up of neuronal networks. Specifically,
it is on the emergence of networks in stochastic dynamical systems, under a particular
generative model, and upon the interpretation of the network dynamics as inferential
message passing.

The argument of this paper can be overviewed as follows. Given an interpretation of
a steady state as a generative model, the behaviour of stochastic systems that tend towards
that distribution can be interpreted as inference. When such systems are formulated in
terms of master equations, they have the appearance of gradient flows on a free energy
functional—the same functional used to score approximate Bayesian inference schemes.
In practice, we may be interested in high-dimensional systems, for which the distribution
can be factorized into a set of lower-dimensional systems. In this setting, a mean-field
approximation can be applied such that we only need work with these lower-dimensional
marginal distributions. When the implicit generative model is sufficiently sparse, steady
state can be achieved through dynamics that involve sparse coupling between the marginal
distributions—analogous to inferential message passing schemes in machine learning.
Under certain assumptions, these probabilistic dynamics have the appearance of chemical
kinetics, licensing an interpretation of some chemical reactions—including biological,
enzymatic, reactions—as if the chemical species were engaged in a form of (active) inference
about one another. An implication of this interpretation is that metabolic pathologies can
be framed in terms of the implicit generative model (i.e., steady state) they appear to
be solving.

The main sections of this paper are organized as follows. Section 2 outlines probabilis-
tic dynamics of a categorical sort, and the relationship between these dynamics and the
notion of a generative model. This includes the use of mean-field assumptions and the
construction of dynamical systems with a particular steady state in mind. Section 3 applies
these ideas in the setting of biochemistry, relating the probability of being in each configura-
tion to the concentrations of the associated chemicals. Here, under certain assumptions, we
see the emergence of the law of mass action, and the Michaelis–Menten equation—standard
results from biochemistry. Section 4 offers an example of a biochemical network, based
on the kinetics developed in the previous sections. This paper then concludes with a
discussion of the relationship between message passing of the sort found in biochemical
and neurobiological systems.

2. Probabilistic Dynamics
2.1. Free Energy and Generative Models

Bayesian inference depends upon an important quantity known as a marginal likeli-
hood. This tells us how probable the data we have observed are, given our model for how
those data are generated. As such, it can be thought of as the evidence afforded to a model
by those data [19]. For stochastic dynamical systems that have a (possibly non-equilibrium)
steady state, the partition function at this steady state can be interpreted as if it were a
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marginal likelihood [12]. This lets us think of such systems as ‘self-evidencing’ [20], in the
sense that they tend over time towards a high probability of occupancy for regions of space
with a high marginal likelihood, and low probability of occupancy for regions with a low
marginal likelihood.

The term ‘marginal’ refers to the summation, or integration, of a joint probability
distribution with respect to some of its arguments, such that only a subset of these ar-
guments remains in the resulting marginal distribution. In Bayesian statistics, we are
normally interested in finding the marginal likelihood, under some model, of data (y).
This is a common measure of the evidence the data affords to the model. However, the
model includes those variables (x) that conspire to generate those data. These are variously
referred to as hidden or latent states. It is these states that must be marginalized out from a
joint distribution.

Variational inference reframes this summation (or integration) problem as an optimi-
sation problem [8,21], in which we must optimize an objective functional (function of a
function) whose minimum corresponds to the marginal likelihood. This functional is the
variational free energy, defined as follows:

F[y, P(x, τ|y)], EP(x,τ|y)[ln P(x, τ|y)− ln P(x, y, ∞)]

ln P(y, ∞)= − min
P(x,τ|y)

F[y, P(x, τ|y)]

P(x, ∞|y)= argmin
P(x,τ|y)

F[y, P(x, τ|y)]
. (1)

The notation P(x,τ) should be read as the probability that a random variable X takes
a value x at time τ, consistent with conventions in stochastic thermodynamics [22]. The
symbol E means the expectation, or average, under the subscripted probability distribution.
Equation (1) says that, if free energy is minimized with respect to a time-dependent
probability density, then self-evidencing can proceed through minimisation of free energy
with respect to y. In neurobiology, minimisation of an upper bound on negative log model
evidence is associated with synaptic communication [10]. This neural activity ultimately
results in muscle contraction, which causes changes in y [23,24].

An important perspective that arises from Equation (1), and from an appeal to free
energy minimisation, is the association between a steady-state distribution and a generative
model. The generative model can be written in terms of prior and likelihood distributions
whose associated posterior and model evidence (marginal likelihood) are the minimizer of
and minimum of the free energy, respectively:

P(x, y, ∞) = P(y, ∞|x)︸ ︷︷ ︸
Likelihood

P(x, ∞)︸ ︷︷ ︸
Prior

= P(x, ∞|y)︸ ︷︷ ︸
Posterior

P(y, ∞)︸ ︷︷ ︸
Model evidence

. (2)

The key insight from Equation (2) is that, when free energy changes such that it comes
to equal the negative log model evidence, the requisite evolution of the time-dependent
conditional distribution tends towards a posterior probability. The implication is that when
we interpret the partition function (i.e., marginal) of the steady-state distribution as if it
were model evidence, the process by which the system tends towards its steady state over
time has an interpretation as Bayesian inference.

2.2. Master Equations

This paper’s focus is upon probabilistic dynamics of a categorical sort. This deviates
from recent accounts [12,18,25] of Bayesian mechanics in terms of Fokker–Planck equations,
which describe the temporal evolution of probability density functions. However, master
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equations [26,27] afford an analogous expression for the dynamics of categorical probability
distributions. The form of these equations can be motivated via a Taylor series expansion:

P(x, τ)= EP(z,t)[P(x, τ|z, t)]

P(x, τ|z, t)= P(x, t|z, t)︸ ︷︷ ︸
δxz

+ ∂tP(x, t|z, t)∆τ + O(∆τ2)

∆τ= τ − t

. (3)

Equation (3) uses the Kronecker delta function. This expresses the fact that, given
X = z at time t, the probability that it is equal to x at time t is one when x is equal to z, and
is zero otherwise. Substituting the Taylor series expansion of the second line into the first
line gives us:

P(x, τ) = P(x, t) +EP(z,t)[∂tP(x, t|z, t)]∆τ + O(∆τ2)

⇒
∂τ P(x = i, τ) = ∑j LijP(z = j, τ)

Lij , ∂τ P(x = i, τ
∣∣∣z = j, τ)

. (4)

The transition rate matrix L determines the rate at which probability mass moves from
one compartment to another. The dynamics of a time-dependent distribution are as follows.
Assuming that it is a categorical distribution, whose sufficient statistics comprise a vector
of probabilities p:

P(x, τ)= Cat(p(τ))
∂τp(τ)= Lp(τ)

. (5)

The elements of p are the probabilities of the alternative states x may assume and must
sum to one. Now that we have an expression for a time-dependent probability distribution,
how do we link this back to the steady state of the free energy minimum from Equation (1)?
One answer to this question comes from recent work that formulates the dynamics of a
master equation in terms of a potential function that plays the role of a steady state [28].
This involves the following decomposition of the transition rate matrix:

∂τp(τ)= (Q− Γ)Λp(τ)

Γ, −1
2

(
A + AT

)
Q,

1
2

(
A−AT

)
A, LΛ−1

Λ, diag(p(∞))−1

. (6)

The steady-state distribution p(∞) is given by the (normalized) right singular vector of
L whose singular value is zero. This follows directly from a singular value decomposition
of Equation (5). Equation (6) decomposes the transition rate matrix into two parts, the
first with a skew-symmetric matrix Q and the second with a symmetric matrix Γ. This
construction resembles the Helmholtz decomposition sometimes applied to continuous
dynamical systems [29]—where the flow is decomposed into a solenoidal (conservative)
and a dissipative component.

We can relate Equation (6) directly to the minimisation of free energy in Equation (1)
when p is a distribution conditioned upon some input variable y. This rests upon a local
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linear approximation to the gradient of the free energy. Using the notation of Equation (6),
free energy and its gradient are:

F(p(τ)) = p(τ) · (ln p(τ)− ln p(∞)) + z(∞)

z(∞) , ln P(y, ∞)
∇p(τ)F(p(τ)) = ln p(τ)− ln p(∞) + 1

= 1 + ln Λp(τ)
≈ Λp(τ)
⇒

∂τp(τ) ≈ (Q− Γ)∇p(τ)F(p(τ))

. (7)

The approximate equality in the fifth line follows from a Taylor series expansion
(around Λp(τ) = 1) of the logarithm in the previous line, truncated after the linear term.
This tells us that Equation (6) is, at least locally, a gradient descent on free energy aug-
mented with a solenoidal flow orthogonal to the free energy gradients. Figure 1 illustrates
this using a randomly generated transition rate matrix for a system with three possible
states. The steady state was identified from the right singular vectors of this matrix, facili-
tating computation of the free energy. Starting from different locations in the free energy
landscape, we see that the combination of the solenoidal and dissipative flows is consistent
with a gradient descent on the free energy landscape. The dissipative flow has a similar ap-
pearance, while the solenoidal trajectories travel along the free energy gradients, eventually
leaving the simplex (violating the conservation of probability).
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shown in white. In addition, it illustrates the free energy landscape (in 2 dimensions) to demonstrate 
the interpretation given in Equation (7). On the left, we see the combination of the dissipative and 
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formulated in terms of a gradient descent on variational free energy. However, these 
dynamics appear limited by their linearity. As nonlinear dynamical systems are 
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Figure 1. Solenoidal and dissipative dynamics in categorical systems. This figure provides a numeri-
cal example of a (three-dimensional) system consistent with Equation (5), and its decomposition as
in Equation (6), starting from a series of random initial states. Each trajectory is shown in white. In
addition, it illustrates the free energy landscape (in 2 dimensions) to demonstrate the interpretation
given in Equation (7). On the left, we see the combination of the dissipative and solenoidal flows
that tend towards the free energy minimum. In the centre, the dissipative part of the flow has been
suppressed, leading to trajectories around the free energy contours. Such trajectories conserve free
energy (but not probability) so do not find its minimum. On the right, the purely dissipative trajecto-
ries find the free energy minimum, but take subtly different paths compared to those supplemented
with the solenoidal flow.

2.3. Mean-Field Models

The above establishes that probabilistic dynamics under a master equation can be
formulated in terms of a gradient descent on variational free energy. However, these
dynamics appear limited by their linearity. As nonlinear dynamical systems are ubiquitous
in biology, it is reasonable to ask what relevance Equation (5) has for living systems. The
answer is that, when x can be factorized, Equation (5) deals with the evolution of a joint
probability distribution. Linear dynamics here do not preclude non-linear dynamics of the
associated marginal distributions that deal with each factor of x individually. This section
unpacks how non-linear behaviour emerges from Equation (5) when we adopt a mean-field
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assumption. A mean-field assumption [30–32] factorizes a probability distribution into a
set of marginal probabilities (Q):

Q(x1, . . . , xN , τ) = ∏i Q(xi, τ)
⇒

∂τQ(xi, τ) ≈ E∏k Q(xk ,τ)[∂τ P(xi, τ|x1, . . . , xN , τ)]
. (8)

Equation (8) depends upon the same steps as Equations (3) and (4). It effectively
decomposes the dynamics of the joint probability into those of a set of linked compartmental
systems. Rewriting this in the form of Equation (5) gives:

∂τqi
j(τ) = ∑klmn... Li

jklmn...q
1
k(τ), . . . , qN

s (τ)

Q(xi, τ) = Cat
(
qi(τ)

) . (9)

This formulation allows for dynamical interactions between the marginal distributions.
Equation (9) can be re-written, using a Kronecker tensor product, to illustrate the savings
associated with a mean-field approximation. Here, we see that, although we retain the
same number of columns as in our original transition rate matrix, the number of rows
reduces to the sum of the lengths of the marginal vectors.

q(τ) = q1(τ)⊗ q2(τ)⊗ q3(τ)⊗ · · ·

Li =

 Li
111... Li

121... · · ·
Li

211... Li
221...

...
. . .

Li
112... Li

122... · · ·
Li

212... Li
222...

...
. . .


∂τqi(τ) = Liq(τ)

. (10)

This formulation is useful, as we can use it to engineer an L that would lead to a
desired steady state. We can do this by defining L in terms of the components of its singular
value decomposition. This involves setting one of the right singular vectors equal to the
desired steady state, and setting the associated singular value to zero:

Li = ASiVi

Si =

 0 0 · · ·
0 λi

...
. . .

, Vi =

 p(∞)T

vi

...


A =

[
1 a · · ·

]
. (11)

In what follows, we will assume we are dealing with binary probabilities, such that
qi(τ) is a two-dimensional vector for all i. To simplify things, we only concern ourselves
with the second column of A and second row of V:

Li = λiavi. (12)

It is worth noting that this choice can result in there being more than one fixed point.
However, some of these will be inconsistent with the simplex that defines allowable proba-
bility distributions and can be safely ignored. Others impose limits on the initial conditions
of a dynamical system for which Equation (12) is valid. The terms from Equation (12) can
be parameterized as follows:
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a=
[

1 −1
]T

vip(∞)= 0

vi= βi



[
1 1

]
⊗
[

1 1
]
⊗
[

1 1
]
· · ·[

1 0
]
⊗
[

1 1
]
⊗
[

1 1
]
· · ·[

1 1
]
⊗
[

1 0
]
⊗
[

1 1
]
· · ·[

1 0
]
⊗
[

1 0
]
⊗
[

1 1
]
· · ·

...[
1 0

]
⊗
[

1 0
]
⊗
[

1 0
]
· · ·


. (13)

Here, the a vector is assumed to be the same for all factors of the probability dis-
tribution. It ensures any change in probability for one of the binary states is combined
with an equal and opposite change in probability for the other state. In other words, it
ensures the columns of the transition rate matrix sum to zero, consistent with conservation
of probability. The v (row) vector is parameterized in terms of a weighted sum of row
vectors, each of returns a different marginal when multiplied with p or q. This leads to the
following expression for the transition probabilities:

Liq(τ) = λia
(

βi
1 + βi

2q1
1(τ) + βi

3q2
1(τ) + βi

4q1
1(τ)q

2
1(τ) + . . .

)
. (14)

There may be multiple combinations of the β coefficients that satisfy the condition that
p(∞) is orthogonal to vT. The next subsection offers one way in which we can constrain
these, based upon the notion of a Markov blanket [33].

2.4. Graphical Models and Message Passing

It need not be the case that all variables in a generative model depend upon all others.
Before moving to a chemical interpretation of the probabilistic dynamics outlined above,
it is worth touching upon their interpretation as message passing when the underlying
model is sufficiently sparse. For this, we need the concept of a Markov blanket [33]. A
Markov blanket for xi is the set of variables that render all other variables conditionally
independent of xi. For example, if the Markov blanket of xi is xj at steady state, the
following relationship holds:

(xi⊥{xk : k 6= i, k 6= j})
∣∣xj

⇒ P(xi, ∞|{xk : k 6= i}) = P
(
xi, ∞

∣∣xj
) . (15)

The implication is that any marginals corresponding to variables outside of the Markov
blanket, under the steady-state distribution, add no additional information as to the steady
state for the variable inside the blanket. As such, we can set the β coefficients from
Equation (14) to zero for all terms except those exclusively comprising variables in the
Markov blanket. Figure 2 shows an example of a generative model, expressed as a normal
factor graph [34], that illustrates an interpretation of the associated dynamics as message
passing among the posterior marginals.

To summarize, so far, the dynamics of a categorical probability distribution can be for-
mulated in terms of a master equation. The steady state of these dynamics is interpretable
as the minimizer of a free energy functional of the sort used in variational Bayesian infer-
ence. Locally, the dynamics of a master equation can be formulated as a gradient descent
on the same variational free energy. Crucially, free energy is a functional of a generative
model. Starting from this model, we can construct master equations that lead to steady
states consistent with that model. One way of doing this is to specify the components of a
singular value decomposition of a probability transition matrix such that the singular value,
corresponding to the right singular vector parallel to the steady state, is zero. For systems
with many components, it is often more efficient to deal with a mean-field approximation
of the dynamics. This lets us formulate the dynamics of marginal distributions for each
variable without reference to the probability of variables outside of the Markov blanket of
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those variables. The next section highlights the points of contact between these mean-field
dynamics and established concepts in biochemistry. These include the law of mass action,
reaction networks, and Michaelis–Menten enzyme kinetics.
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3. Biochemical Networks
3.1. The Law of Mass Action

This section starts by relating the mean-field dynamics of the previous section to
the law of mass action, which specifies the relationship between the rate of a chemical
reaction and the concentrations of the chemical species involved in that reaction [35–37]. A
reversible chemical reaction is expressed as follows:

∑
i

σiSi 
∑
i

ρiSi. (16)

Here, S stands in for the different chemical species (indexed by the subscript), and σ
and ρ for the stoichiometric coefficients (i.e., the number of molecules of S used up by, or
produced by, a single reaction taking place, respectively). The symbol between substrates
and products indicates a reversible transition between the substrates and products.

Our challenge is to express Equation (16) in terms of the joint distribution of chemical
species at steady state (i.e., a generative model), and then to find an appropriate master
equation to describe the route to this steady state. The following shows the form of a steady
state for a system with two substrates and two products:
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P(S1 ⊗ S2, ∞)= Cat




α
0
0

1− α




P(S3 ⊗ S4, ∞|S2)= Cat




0
0
0
1

1
0
0
0




. (17)

Intuitively, the first probability distribution tells us that the only plausible config-
urations of the two substrate molecules are both present and both absent. The second
distribution says that, if the second (and therefore the first) substrates are present, the
products are both absent. However, if the substrates are absent, the products are present.
As all variables of Equation (17) are conditionally dependent upon all other variables, the
resulting master equations must depend upon the marginals for all variables. In selecting
v, we can group these depending upon which side of the reaction they occupy:

vi = β
[

1 1
]
⊗
[

1 1
]
⊗
[

1 0
]
⊗
[

1 0
]

−
[

1 0
]
⊗
[

1 0
]
⊗
[

1 1
]
⊗
[

1 1
]

β ,
(

α
1−α

)
⇒

∂τq1
1(τ)

∂τq2
1(τ)

∂τq3
1(τ)

∂τq4
1(τ)

 = λ


βq3

1(τ)q
4
1(τ)− q1

1(τ)q
2
1(τ)

βq3
1(τ)q

4
1(τ)− q1

1(τ)q
2
1(τ)

q1
1(τ)q

2
1(τ)− βq3

1(τ)q
4
1(τ)

q1
1(τ)q

2
1(τ)− βq3

1(τ)q
4
1(τ)


. (18)

The final line follows from the previous lines via Equation (12). The probabilities
that the chemical species is absent (subscript 2) have been omitted as they are simply the
complement of the probabilities that they are present (subscript 1). Note that the marginals
(at steady state) that result from these dynamics are not consistent with the marginals of the
generative model. This is due to the violation of the mean-field assumption. We can correct
for the discrepancy by raising the numerator of β to a power of the number of substrates,
and the denominator to the power of the number of reactants. This correction is obtained
by setting Equation (14) to zero when the marginals are consistent with those at steady
state and solving for the β coefficients. In addition, these kinetics conserve the summed
probability of species being present (i.e., they conserve mass) so cannot achieve the steady
state from Equation (17) unless the initial conditions include a summed probability of
presence of 1.

By interpreting the probabilities as the proportion of the maximum number (N)
of molecules of each species, and dividing these by the volume (V) in which they are
distributed, Equation (18) can be rewritten in terms of chemical concentrations (u):

∂τu1(τ)
∂τu2(τ)
∂τu3(τ)
∂τu4(τ)

=


κ2u3(τ)u4(τ)− κ1u1(τ)u2(τ)
κ2u3(τ)u4(τ)− κ1u1(τ)u2(τ)
κ1u1(τ)u2(τ)− κ2u3(τ)u4(τ)
κ1u1(τ)u2(τ)− κ2u3(τ)u4(τ)


ui(τ), V−1Nqi

1(τ)

κ1, λN−1V

κ2, λβN−1V

β=
α2

(1− α)2

. (19)
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Equation (19) uses the ‘corrected’ β coefficient. A simulation of this reaction is shown
in Figure 3, represented both in terms of the evolution of probability and as chemical
concentrations. Note the gradual transition from substrates to products, under a generative
model in which the latter are more probable. The free energy of this reaction can be seen to
monotonically decrease, highlighting the consistency with the dynamics of Equation (7)
despite the mean-field assumptions.
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Figure 3. A chemical reaction. This figure illustrates the solution to the generative model outlined
in Equation (17), under the dynamics given in Equation (20). The upper-left plot shows the rate
of change of the substrates and products. The two substrates have equal concentrations to one
another, as do the two products. Under this model, with α = 1

4 , the substrates are converted into
products until the substrates are at a quarter of their maximum concentration, with the remainder
converted to the products. The same information is presented in probabilistic form in the lower right.
Here, black indicates a probability of 1, white of 0, and intermediate shades represent intermediate
probabilities. The plot of free energy over time shows that, despite the mean-field approximation
and the constraints applied to the transition rate matrix, the reaction still evolves towards a free
energy minimum—as in Figure 1. Note that, in the absence of an external input to this system, the
free energy reduces to a Kullback–Leibler divergence between the current state and the steady state.

In chemical systems, the rate of change of some reactants can depend non-linearly
on the concentration of those reactants. We can take a step towards this relationship as
follows. If we then stipulate that two (or more) of the chemical species are the same, we
can re-express this, with suitable modification of the constants, as:

2S1
 S3 + S4

u1(τ) ∝ q1
1(τ) + q2

1(τ)
q1

1(0) = q2
1(0)

}
⇒ ∂τu1(τ)

∂τu3(τ)
∂τu4(τ)

=
 2κ2u3(τ)u4(τ)− 2κ1u1(τ)

2

κ1u1(τ)
2 − κ2u3(τ)u4(τ)

κ1u1(τ)
2 − κ2u3(τ)u4(τ)


. (20)
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This brings an autocatalytic element to the reaction, allowing the substrate to catalyse
its own conversion to the reaction products. Generalising the above, we can express the
law of mass action [35–37] for the generic reaction in Equation (16) as:

∂τui(τ) = (ρi − σi)

(
κ1∏

j
uj(τ)

σj − κ2∏
j

uj(τ)
ρj

)
. (21)

This subsection started with from the mean-field master equation developed in
Section 2 and illustrated how, under certain conditions, the law of mass action for chemical
systems can be obtained. This application of a master equation to chemical dynamics
should not be confused with the chemical master equation, detailed in Appendix A [38].
The key steps were (i) the specification of a generative model for which the marginal
probabilities that each chemical species is present sum to one and (ii) the choice of right
singular vector, orthogonal to the resulting joint distribution, for the transition rate matrix.

3.2. Reaction Networks

In the previous two subsections, all chemical species were assumed to participate in
a single reaction. Here, we extend this, such that we can see how the message passing
from Figure 3 appears in a network of chemical reactions. To do this, we need to be able
to construct a generative model, as we did above, that accounts for multiple chemical
reactions. Figure 4 illustrates an example of a generative model, and associated master
equation, that accounts for a system of two (reversible) reactions. The associated reaction
constants are given, as functions of the parameters of the generative model, in Table 1. As
above, these are obtained by solving for the coefficients of Equation (14) when at steady
state. This serves to illustrate two things. First, the methods outlined in the previous section
are equally applicable to systems of multiple reactions. Second, when multiple reactions
are in play, the generative model can be formulated such that chemical species that do
not participate in the same reaction can be treated as being conditionally independent of
one another. This induces the sparsity that makes inferential message passing possible. A
generic expression of a reaction system obeying the law of mass action is as follows:

∂τui(τ)= ∑
j

Ωijrj(u(τ))

rj(u(τ))= κj∏
i

ui(τ)
σi

. (22)

The stoichiometry matrix Ω indicates the difference between ρ and σ for each chemical
species for each reaction. The r vector function returns all the reaction rates (treating
forwards and backwards reactions as separate reactions). Equation (21) is then a special case
of Equation (22) when there are only two reactions. Equation (22) provides a clear depiction
of message passing in which each element of r is a message, with the stoichiometry
matrix determining where those messages are sent. Figure 4 demonstrates the relationship
between this message passing and the graphical formulation of chemical reaction systems.
Via this graphical notation, Equation (22) has many special cases throughout biology [37,39],
some examples of which are outlined in Appendix B. However, for systems with many
components, it can be very high-dimensional. The next subsection details one way in
which the dimensionality of metabolic networks can be reduced, through an appeal to a
separation of time scales.
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Table 1. Rate constants for the reaction network in Figure 4. This table specifies the κ parameters from
Figure 4 as functions of the α parameters of the associated generative model and a free parameter z.

Rate Constant Function of α

κ1 λN−1Vzα−2
1 α−1

2 (α2 − α1)
κ2 λz
κ3 λ(1− z)
κ4 λN−1V(1− z)α−2

1 α2(1− α2)
−2(α2 − α1)

3.3. Enzymes

So far, everything that has been said could apply to any chemical reaction system.
However, the introduction of enzymes brings us into the domain of the life sciences. Just as
we can group elements on the same side of a reaction to account for autocatalytic dynamics,
we can group elements on opposite sides of the reaction to account for catalytic activity.
Enzymes are biological catalysts that combine with substrates to form an enzyme–substrate
complex, modify the substrate and dissociate from the resulting product. As such, they
appear on both sides of the overall reaction.

More formally, an enzymatic reaction has a stoichiometry matrix of the form:

Ω =


−1
−1

1
0

1
1
−1

0

0
1
−1

1

0
−1

1
−1


⇒ SS + SE 
 SC 
 SP + SE

. (23)
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The rows of Ω are the substrate, enzyme, enzyme–substrate complex, and product.
These are shown in the reaction system using the subscripts S, E, C, and P, respectively. We
can express a generative model for this reaction system as follows:

P(SC ⊗ SE)= Cat




0
α1

1− α1
0




P(SS|SC ⊗ SE)= Cat
([

0
1

α2
1− α2

0
1

α2
1− α2

])
P(SP|SC ⊗ SE)= Cat

([
0
1

1− α2
α2

0
1

1− α2
α2

])
. (24)

The first term gives the proportion of enzyme we expect to be in complex form versus
being free to engage with the substrate or product. The probability of being in both states
simultaneously, and of being in neither of the two states, is zero. When the complex is
present, the substrate and product are both absent. When the enzyme is present, the
substrate is present with some probability, and the product is present with the complement
of that probability. As before, a chemical reaction network can be constructed based
upon the conditional independencies of the associated model, i.e., the independence of
substrate and product conditioned upon the enzyme and complex, which satisfies the
sparse message passing of Equation (23). The requisite rate constants (corrected for the
mean-field assumption) are shown in Table 2.

Table 2. Rate constants for an enzymatic reaction. This table specifies the κ parameters from
Equation (24) as a function of the α parameters of Equation (23) and a free parameter z.

Rate Constant Function of α

κ1 λN−1V(z− α1z + c)α−2
1 α−1

2
κ2 λz
κ3 λ(1− z)
κ4 λN−1V((1− z)(1− α1)− c)α−2

1 (1− α2)
−1

In constructing these messages, we relax the assumption that the steady state is at
equilibrium. This means that detailed balance can be violated and involves using a non-
zero β1 from Equation (14) in some of the terms, such that there is constant production
of, and removal of, certain chemical species from the system. Specifically, we will assume
production of the substrate and removal of the product at equal rate (c). A consequence of
this is that reactions generating products must be faster than reactions using up product
in order for steady state to be maintained. The plots on the left of Figure 5 illustrate the
resulting dynamics. Note the initial decrease in substrate and enzyme concentration as
they combine to form the complex, followed by the slow rise in product concentration.

In metabolic reaction systems, there are many reactions catalysed by enzymes. In
this setting, it is useful to be able to reduce the number of elements of the system to a
manageable dimension through omitting the explicit representation of enzymes. A common
approach to this is to use Michaelis–Menten kinetics [40]. This depends upon a separation
of timescales. The two timescales in question are illustrated in Figure 5 through the rapid
conversion of substrate to complex, and the slower generation of product. Combination of
substrate and enzyme, and dissociation of complex to substrate and enzyme are both faster
than dissociation of complex to product and enzyme. When this is true, a quasi-equilibrium
approximation may be adopted. This means that the rates of the reactions involving the
substrate are assumed to be much faster than those involving the product:
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∂τuP= r(u)− c

κ4uPuE � κ3uC
κ1uSuE � κ3uC

κ2uC � κ3uC

⇒ r(u) ≈ vmax

(
uS

κm + uS

)
vmax, κ1κ3(uE + uC)

κm,
κ2

κ1

c≤ (1− z)(1− α1)

. (25)
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Figure 5. Enzymes, Markov blankets, and chemical inference. This figure illustrates several points.
The plots on the left use the same formats as in Figure 3 to show the evolution of the reaction in terms
of concentration and probability. The plots on the right exploit the Markov blanket structure implicit
in an enzymatic reaction to show the evolution of the ‘beliefs’ implicitly encoded by the expected
value of the substrate about the product, and vice versa. The upper-right plot shows these beliefs,
defined as q̃1

1 = α2 − q2
1 and q̃2

1 = α2 − q1
1, which converge towards q1

1 and q2
1, respectively as the

steady state is attained. The implicit generative models are shown in the free energy plot, with the
enzyme playing the role of the data being predicted. The free energy of each decreases as the beliefs
converge upon the posterior probabilities of substrate and product given enzyme.

Equation (25) specifies the quasi-equilibrium assumption [41], and the resulting
Michaelis–Menten form for the reaction function r. The final line follows from the condi-
tion that the rate constants be non-negative. The rate constants, in terms of the generative
model, are given in Table 2. This lets us consider what the assumptions underneath the
Michaelis–Menten equation mean in relation to the underlying generative model. First,
the assumption that the reaction generating the product from the complex is much faster
than the reverse reaction implies α1 approaches its lower limit. When interpreted from the
perspective of the generative model, this makes intuitive sense, as the implication is that
given sufficient time, most of the enzyme will be in the non-complex form. Second, the
assumption that the forwards and backwards reactions between substrate and complex
are faster than the reaction generating the product implies the z parameter must be close
to one.
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Equation (25) simplifies a system comprising four chemical species into a single
non-linear rate function that depends only upon the substrate. Practically, this means
Michaelis–Menten kinetics can be used to omit explicit representation of enzymes from a
reaction system. This lets us replace the reaction function (r) from Equation (21) with that
from Equation (24), significantly reducing the dimensionality of the resulting system. This
formulation is the starting point for methods for further dimensionality reduction of high-
dimensional metabolic networks [42]. For instance, the extreme pathway method [43,44]
defines extreme pathways as the set of r (normalized by vmax for the rate limiting reaction
in the pathway) for which Ωr returns a vector of zeros. By taking the singular value
decomposition of the matrix of extreme pathway vectors, the left singular vectors can
be used to describe ‘eigenpathways.’ By omitting eigenpathways with sufficiently small
singular values, a simpler representation of the network may be obtained.

This subsection brought the concept of an enzyme into the chemical kinetics of the
previous sections and demonstrated how an appeal to separable timescales results in a
simpler, lower-dimensional, representation of an enzymatic system. The associated rate
function that resulted from this emphasizes the emergence of nonlinear phenomena at
slower scales of a multicomponent system.

3.4. Enzymatic Inference

The enzymatic system of the previous subsection is useful in unpacking an active in-
ferential interpretation of chemical kinetics. The plots on the right of Figure 5 are key to this
perspective. The upper-right plot illustrates a function of the substrate concentration that
converges to the product concentration, and a function of the product concentration that
converges to the substrate concentration. There is a sense in which we could interpret this
as the substrate, on average, representing beliefs about the product and vice versa [15,25].
The plots of variational free energy (averaged under the enzyme and complex probabil-
ities) decrease over time. The implication is that the models determining the evolution
of the substrate and product, both of which predict the enzymatic state, become better
explanations for these data (on average) over time.

Although the interactions between the substrate and enzyme are bidirectional, the
influence of the enzyme on the product is unidirectional. This is a consequence of the
steady state being non-equilibrium. This highlights that there are two ways of optimising
free energy. The first is to do as the distributions encoded by the product, and to change
beliefs to better explain the data at hand. The second is to do as the substrate does, through
changing the data (i.e., enzyme concentration) such that the explanation fits. Note the
initial increase in free energy for the model optimized by the product concentration, as the
enzyme concentration changes. This is then suppressed, much like a prediction error in
neurobiology [45–49], as the product updates its implicit beliefs.

While it might seem a bit strange to formulate the dynamics of one component of a
system in relation to a functional of beliefs about other components, this move is central
to the Markovian monism that underwrites active inference [50]. It is this that offers us a
formal analogy with theoretical neurobiology, and the action-perception loops [51] found
in the nervous system. The distinction between active (e.g., muscular) and sensory (e.g.,
retinal) limbs of these loops derives from the same non-equilibrium property, breaking
the symmetry of message passing, such that beliefs can directly influence active but not
sensory states. Whether something is active or sensory depends upon the perspective
that we take, with enzymes being sensory from the perspective of beliefs encoded by the
product, and active from the perspective of beliefs encoded by the substrate.

4. Metabolism

In this section, we briefly consider a (fictional) biochemical network that exploits
the formulation above. A generative model for the network is illustrated in the upper
left of Figure 6. The pink arrows supplement this model with the directional influences
assumed at the lowest levels of the model. The lowest level of the model reflects the
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‘active’ and ‘sensory’ interactions with another system that is not explicitly modelled here.
All reactions are enzymatic, but with explicit treatment of the enzymes omitted via the
Michaelis–Menten formulation. As such, the factors corresponding to the enzymes in the
model are absorbed into the factors relating the concentrations of reactants. On finding
the kinetics consistent with this steady state, the result is the reaction system shown in the
upper right of Figure 6.
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in a generative model in the upper left, highlighting the directional influences at the lowest level of Figure 6. Metabolic networks and their pathologies. This figure shows the conditional dependencies

in a generative model in the upper left, highlighting the directional influences at the lowest level of
the model with pink arrows. These ensure S3 is a sensory state, while S5 and S7 are active states. In
the upper right is the chemical message passing that solves this model. The two plots in the lower
part of the figure illustrate the relative probability of the marginal probabilities (or concentrations) of
each chemical species. The spatial configuration matches that of the network in the upper right. The
sizes of the circles indicate the relative concentrations once steady state has been attained. The plots
on the left and right show the steady states before and after introduction of a lesion that disconnects
the reaction from S1 to S4. Here, we see a redistribution of the probability mass, resulting in an
alternative (possibly pathological) steady state.

The plots of the steady state shown in the lower part of Figure 6 use the same layout
as the reaction network, but show the marginals (i.e., concentrations) of each species once
it reaches steady state. The larger the circle, the greater the concentration. The initial
conditions involve zero concentration for all species, so their concentrations can only
increase when they receive messages from S3, via the other reactants.

The lower-left plot shows successful convergence to the non-equilibrium steady state
determined by the generative model. The structure of this steady state resembles the
architectures found in metabolic networks in the sense that an external system supplies
some chemical (S3) which is converted through a series of reactions into other chemical
species (S5 and S7) that participate in other reactions external to the system. The glycolysis
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pathway is one example, in which glucose is provided to the system to be converted to
acetyl CoA (taken up by the citric acid cycle) or to lactate (taken up by the Cori cycle) [52].

The lower-right plot in Figure 6 shows the steady state obtained when a lesion is intro-
duced into the message passing, through setting vmax to zero for the reaction converting S1
to S4. Recall that vmax is a function of the reaction constants which themselves are functions
of the parameters of the generative model. For example, when α1 approaches its upper
limit, the enzyme spends little of its time in complex form, so cannot catalyse the reaction.
This effectively induces a disconnection, precluding conversion of S1 to S4. The reason
for inducing this lesion is to illustrate the diaschisis that results. A diaschisis is a concept
from neurobiology [53–55]. It refers to the consequences of a localized lesion for distant
parts of a network. Just as lesions to one neural system can have wide reaching functional
consequences throughout the brain, the consequences of the localized lesion in Figure 6
can be seen throughout the reaction network. In addition to the loss of S4 and S5, there
is a compensatory increase in S2 and S6. This ensures a steady state is attained, as the
loss of output from S5 is offset by increased output from S7. However, it is not the same
steady state as in the pre-lesioned network. A conclusion we can draw from this is that,
as in neurobiology [56], a disconnection can be framed as a change to the parameters of
a generative model representing the steady state. The distributed message passing that
maintains steady state allows for the effects of the disconnection to propagate throughout
the network.

One example (of many) of a disorder in which a new steady state is attained following
an enzymatic disconnection is due to thiamine deficiency (a.k.a., Beriberi) [57]. Thiamine is
a B vitamin that facilitates the action of several important enzymes, including pyruvate
dehydrogenase, which converts pyruvate to acetyl CoA. An alternative fate for pyruvate
is conversion to lactate [52]. If we were to associate S3 with glucose, S1 with pyruvate,
S6 with lactate, and S4 with acetyl CoA, we could interpret the lesion in Figure 6 as result-
ing from thiamine deficiency. The resulting accumulation of lactate is consistent with the
local increases in this toxic metabolite observed in neural tissue following thiamine deple-
tion [58]. This may be one aspect of the pathophysiology of Wernicke’s encephalopathy
and Korsakov’s psychosis [59]. These are forms of ‘dry’ beriberi with profound neurolog-
ical and psychiatric consequences. While associating this with the lesion in Figure 6 is
overly simplistic, it serves to illustrate the way in which the somewhat abstract formula-
tions above could be applied to specific metabolic systems, their disconnections, and the
resulting diaschisis.

5. Discussion

This paper has sought to apply the probabilistic dynamics that underwrite active
inferential approaches to neurobiology to biochemical networks. This started from the
expression of a categorical system in terms of a master equation and the interpretation of
this equation in terms of flows on a free energy functional. As free energy is a functional of
a generative model, this meant the dynamics acquired an interpretation as inference, in
the sense of approximating a marginal likelihood. In what followed, the dimensionality of
the representation afforded by the master equation was reduced, first through an appeal
to a mean-field assumption. The interactions between different factors were simplified by
noting that only those variables in the Markov blanket of a given state are necessary to find
the appropriate steady-state distribution.

The sparse message passing that resulted from this—reminiscent of the approach used
in variational message passing [7]—reduces to the law of mass action under certain assump-
tions. This lets us treat simple chemical reactions as if they were optimising a generative
model. By introducing enzymatic reactions, and working with a non-equilibrium steady
state, a further reduction in dimensionality is afforded by Michaelis–Menten kinetics. This
emphasizes the emergence of increasingly nonlinear dynamics at higher spatiotemporal
scales—something that has been observed in a range of network systems [60,61]. In ad-
dition, the combination of the Markov blanket inherent in an enzymatic reaction and the



Entropy 2021, 23, 606 18 of 23

asymmetric message passing in a non-equilibrium system offered an opportunity to frame
different parts of the system as optimising beliefs about other parts of the system. This
minimisation of free energy through action and ‘perception’ is known as active inference
in neuroscience.

Finally, a simple metabolic network was constructed that exploited the reduced ex-
pression of enzymatic dynamics, and which utilized the asymmetric message passing
associated with active inference. Just as models of inference in the nervous system can be
used to simulate pathology through disconnection [62–64], this metabolic network was
lesioned to illustrate that disconnections, whether axonal or enzymatic, can result in a
diaschisis, i.e., distributed changes in distant parts of the network. Crucially, the system still
attains steady state following a lesion. It is just a different steady state. This offers a point
of connection with approaches in computational neurology [65] and psychiatry [66,67],
motivated by the complete class theorems [68,69], which treat pathology as optimally
attaining a suboptimal steady state [70]. This perspective places the burden of explanation
for pathological behaviour on the prior probabilities associated with the steady state (i.e., it
asks ‘what would I have to believe for that behaviour to appear optimal?’). The advantage
of this approach is that it provides a common formal language (prior probabilities) in which
a range of conditions—from psychosis to visual neglect—can be articulated. The example
in Figure 6 suggests metabolic disorders may be amenable to the same treatment.

There are several directions in which the ideas presented in this paper could be
pursued. Broadly, these include (i) generalising the dynamics beyond Michaelis–Menten
kinetics to include more complex reaction functions, (ii) identifying the generative models
of real reaction systems, and (iii) moving beyond metabolic systems to other forms of
biological dynamics. Taking these in turn, the Michaelis–Menten formulation can be
generalized for molecules (e.g., enzymes) with more than one binding site. This means that
there is more than one enzyme–substrate complex state, and a set of reactions allowing
transitions between these. One of the most prominent examples is the binding of oxygen to
haemoglobin, a protein with four binding sites. The haemoglobin dissociation curve has a
sigmoidal form [71], offering an alternative reaction function to the saturating Michaelis–
Menten reaction function. More generally, the Hill equation [72] can be obtained using an
analogous derivation to the Michaelis–Menten equation and has the latter as a special case.

Identifying generative models in biological chemical networks may be as simple as
finding the steady state. However, the perspective offered in Section 3.4 adds an important
twist to this. The generative model should express beliefs about something external to the
network. To understand the problem a given network is solving, we need to be able to
express a model of the inputs to that network. An active inference account of glycolysis
would have to start from a generative model of the factors outside of the glycolytic pathway
that explain glucose availability. Treating the constituents of the glycolysis pathway as
expressing beliefs about the things causing glucose availability, we would hope to find
the message passing among elements of the pathway emerge from minimising the free
energy of their associated beliefs. Similar approaches have been adopted in neural systems,
demonstrating that it is possible to identify implicit probabilistic beliefs about variables in
a generative model in networks of in vitro neurons [73]. While outside the scope of this
paper, many of these models call for caching of past observations. As highlighted by one
of the reviewers, such models need to incorporate forgetting to ensure steady state and
preclude convergence to a narrow distribution [74,75].

The above emphasizes what may be the most important practical implication of this
paper for metabolic network analysis. Given the scale of such networks in biotic systems,
and their interaction with chemical systems in the wider environment, most analyses are
restricted to a small part of an open system. In most interesting cases, the kinetics within
that system will change when those outside that system change. For instance, the behaviour
of a glycolytic network will vary when the rate of lipolysis increases or decreases. This
suggests that it should be possible to formulate and test hypotheses of a novel kind. In place
of questions about alternative kinetics that could be in play, the inferential perspective
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lets us ask about the problem a biochemical system is solving, with reference to the
probable states of external systems. Practically, this means we can borrow from the (‘meta-
Bayesian’ [69]) methods developed in fields such as computational psychiatry—designed to
ask questions about the problems the brain is solving—and formalize alternative functional
hypotheses about the problem a metabolic network is solving.

There are many biological applications of categorical probabilistic dynamics—sometimes
referred to as compartmental models. For instance, in epidemiology [76,77] the movement
of people between susceptible, exposed, immune, and recovered compartments mimics
the exchanges between different chemical species. Similar mean-field dynamics can be
found in neurobiology [78], immunology [79,80], ecology [81], and pharmacokinetics [82].
In addition, they are common outside of biology, in fields such as economics [83] and
climate science [84]. In principle, a similar treatment could be applied to such systems,
interpreting the interactions between compartments as inferential message passing given a
generative model.

6. Conclusions

This paper sought to illustrate some points of contact between active inference, a well-
established framework in theoretical neurobiology, and the techniques used in modelling
biochemical networks. Specifically, the focus was on the relationship between generative
models, their associated inferential message passing, and the sparse network interactions
in metabolic systems. Under certain assumptions, the master equation describing the
evolution of a categorical probability distribution has the same form as the law of mass
action, from which standard biochemical results may be derived. This enables construction
of a biochemical network, whose rate constants are functions of an underlying generative
model. The kinds of pathology affecting this network can be formulated in terms of
aberrant prior beliefs, as in computational neurology and psychiatry, and manifest as
disconnections whose consequences propagate throughout the network.
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Appendix A

This appendix highlights the point of connection between the formalism advanced
here and the chemical master equation [38]. The chemical master equation deals with a
joint probability distribution over the number of molecules of each species. This can be
expressed in terms of a vector p whose elements are the probabilities of each possible
configuration of N particles. Assuming a ‘one-hot’ vector variable x whose elements
represent every possible configuration of the N particles among the available chemical
species, a reaction k is formulated as a discrete jump of the form:

x(τ + ∆τ) = ξkx(τ). (A1)

In Equation (A1), ξk is a square matrix, with a single one in each column and zeros
elsewhere. Expressing Equation (A1) in the form of a master equation, we have:

https://github.com/tejparr/Message-Passing-Metabolism
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∂τp(τ) = Lp(τ)
Lzx = ∑k∈K γk(x), K = {k : z = ξkx}
Lxx = −∑k γk(x)

⇒ ∂τpx(τ) = ∑k

(
γk(ξ

−1
k x)p

ξ−1
k x(τ)− γk(x)px(τ)

) . (A2)

The first line here is the master equation from Equation (5). The definition of the
transition rate matrix says that if there exists a reaction that leads to a move between two
configurations, there is a nonzero transition rate, specific to that reaction. The transition rate
along the diagonal is negative and includes the sum of all rates of transitions from this state.
For transitions for which there is no associated reaction, the rate is zero. The final line is the
resulting chemical master equation. A common alternative, but equivalent, expression of
this is formulated such that x has elements representing each chemical species, where each
element takes the value of the number of molecules of that species in the configuration
represented by x.

An excellent example of the application of the chemical master equation, highly
relevant to the treatment in this paper, is given in [85]. Focusing on monomolecular
reaction systems, the authors detail the relationship between steady state (i.e., the implicit
generative model) and the associated reaction kinetics. Their results highlight the way
in which a steady state can be determined from the kinetics. This complements the
approach pursued here, in which the kinetics, under certain assumptions, emerge from the
steady state.

In practice, the chemical master equation is often approximated by a lower dimen-
sional system [86], that is easier to solve, often through focusing on the marginals, taking
limits and re-expressing as a Fokker–Planck equation. The key difference between the
chemical master equation and the approach pursued in the main text is that the former
treats the number of particles (and implicitly the concentrations) as stochastic variables.
In contrast, the approach in the main text assumes the concentrations are simply scaled
probabilities, which then evolve deterministically. When dealing in small numbers of
molecules, the chemical master equation is considerably more accurate.

Appendix B

This appendix provides two examples of systems outside of biochemistry that can be
subject to the same analysis. By formulating a reaction system based upon a model of the
conditional dependencies between parts of a population experiencing an epidemic, we can
formulate an SEIR model, of the sort used in epidemiology for communicable diseases.
Similarly, we can formulate a model of predator-prey interactions, using the Lotka–Volterra
equations, using the same formalism.

Starting with an SEIR model [77], the idea is to express the proportion of a population
occupying the susceptible (S), exposed (E), infected (I), and recovered (R) compartments.
Susceptible people become exposed on interaction with an infected individual, and then
transition from exposed to infected as the incubation period expires. The infected popula-
tion gradually transition to the recovered state where, from which they gradually become
susceptible again. The associated reaction system is as follows:

S + I → E + I
E→ I
I → R
R→ S

Ω =


−1

1
0
0

0
−1

1
0

0
0
−1

1

1
0
0
−1

 r(u) =


κ1uSuI
κ2uE
κ3uI
κ4uR

 . (A3)

Equation (A3) expresses the system as if it were a chemical reaction, interpretable via
the law of mass action in terms of the stoichiometry matrix and a reaction function. As
before, these specify the message passing and the messages, respectively. The steady state
to which the system tends is determined by the κ terms (and vice versa). This makes the
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difference between a transient epidemic that decays to (nearly) zero prevalence over time,
or an endemic steady state with a persistently high infection level.

The SEIR system is relatively simple, in the sense that the stoichiometric matrix
includes only zeros and ones. In contrast, the generalized Lotka–Volterra system [81] has a
more complicated stoichiometry:

P→ ρPP
P + H → ρH H

H →
H + C → ρCC

C →

Ω =

 ρP − 1
0
0

−1
ρH − 1

0

0
−1

0

0
−1

ρC − 1

0
0
−1

 r(u) =


κ1uP
κ2uPuH
κ3uH
κ4uHuC
κ5uC

 . (A4)

Equation (A4) deals with a system comprising a plant population (P), a herbivore
population (H), and a carnivore population (C). As plants reproduce, they increase in num-
ber. However, they are kept in check by the herbivorous creatures, who increase their own
population on encountering plants, while causing a decrease in the plant population. The
herbivore population declines through carnivore-dependent and independent processes.
The interaction between carnivores and herbivores mimics that between herbivores and
plants. Again, this can be expressed, via the law of mass action, in terms of a series of
messages (r) and a scheme determining where those messages are sent (Ω).

Interestingly, both biological systems are not at equilibrium, in the sense that the
individual reactions are not reversible. This preserves the active and sensory distinction
found in neurobiology. The purpose of this appendix is to highlight the expression of these
systems in terms of messages passed between nodes of a network. Given the relationship
between these expressions and the steady state dynamics outlined in the main text, a
possible direction for future research is the formulation of such systems in terms of the
generative models their constituents are implicitly solving.
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