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Abstract Treatment for osteochondral defects remains a great challenge. Although several
clinical strategies have been developed for management of osteochondral defects, the recon-
struction of both cartilage and subchondral bone has proved to be difficult due to their
different physiological structures and functions. Considering the restriction of cartilage to
self-healing and the different biological properties in osteochondral tissue, new therapy stra-
tegies are essential to be developed. This review will focus on the latest developments of
bioactive scaffolds, which facilitate the osteogenic and chondrogenic differentiation for the
regeneration of bone and cartilage. Besides, the topic will also review the basic anatomy, stra-
tegies and challenges for osteochondral reconstruction, the selection of cells, biochemical fac-
tors and bioactive materials, as well as the design and preparation of bioactive scaffolds.
Specifically, we summarize the most recent developments of single-type bioactive scaffolds
for simultaneously regenerating cartilage and subchondral bone. Moreover, the future outlook
of bioactive scaffolds in osteochondral tissue engineering will be discussed. This review offers
a comprehensive summary of the most recent trend in osteochondral defect reconstruction,
paving the way for the bioactive scaffolds in clinical therapy.
The translational potential of this article: This review summaries the latest developments of
single-type bioactive scaffolds for regeneration of osteochondral defects. We also highlight a
new possible translational direction for cartilage formation by harnessing bioactive ions and
propose novel paradigms for subchondral bone regeneration in application of bioceramic scaf-
folds.
ª 2018 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking
Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Osteochondral defect is a common disease caused by se-
vere traumas, athletic injuries or physical diseases (osteo-
arthritis), which results in joint pain and deformity, as well
as functional disability [1]. Injuries of joint caused by
traumas and sports are always developing into osteoar-
thritis (OA); thus, OA is the major cause of osteochondral
defect [2]. It was reported that there were about 31 million
Americans who suffered from OA by 2012, among them,
9.2% had osteochondral defects [3]. As the number of OA
patients is growing, it is estimated that by 2030, approxi-
mately 67 million of Americans will suffer from OA [4]. At
the early stage of cartilage lesion in OA, it is characterized
by pain and swelling of articular joint. In the natural
structures of osteochondral tissue, the articular cartilage is
well integrated with subchondral bone, and the defects of
cartilage always extend deeply into subchondral bone and
further develop into osteochondral defects [5]. Although
cartilage has no lymphatic and vasculature, it possesses a
complex hierarchical structure including both of micro-
structure and nanocomposites [6]. Thus, the treatment of
cartilage lesion is a great challenge in clinics. Biochemi-
cally, cartilage is a complex tissue that consists of water,
chondrocytes and protein network (proteoglycan and type II
collagen), whereas subchondral bone comprises water, hy-
droxyapatite (HA) and collagen fibre bundles (type I
collagen) [7]. Moreover, cartilage and subchondral bone
possess different physiological properties and natural
structures, and thus, osteochondral regeneration remains a
significant challenge in clinics [8]. Previously, the regen-
eration of osteochondral defects was mainly concentrated
on cartilage layer. There were few studies focused on both
the cartilage and subchondral bone [6]. Based on the depth
of understanding of osteochondral structure, scientists
have a new perspective on osteochondral defects regen-
eration. Currently, several surgical options, such as micro-
fracture, auto/allograft and joint replacement, are
available for the treatment of osteochondral defect [9,10].
Although these therapies can reduce pain and improve the
quality of patients’ lives, there is no surgical therapy
available which could facilitate complete healing of
osteochondral defects, especially for complete cartilage
regeneration [11,12]. Recently, several tissue engineering
materials, such as biochemical factors-incorporated bio-
materials and structure mimic biomaterials, have been
raised to address this issue. Previously, most of the reviews
were focused on the biomimetic multi-phasic structures for
the regeneration of osteochondral tissue [7]. This review
will concentrate on the latest developments of bioactive
scaffolds for regenerating both of cartilage and sub-
chondral bone and highlight the most recent advances in
biological regeneration of osteochondral defects.

Anatomy of osteochondral structure

With the advances of scientific technologies, more and
more details of osteochondral structure were discovered.
Structurally, the osteochondral structure consists of
cartilage, osteochondral interface and subchondral bone
[6]. Articular cartilage is a translucent tissue in
appearance, which appears smooth and exhibits light blue
morphology [7]. The main component of cartilage contains
chondrocytes and extracellular matrix (ECM), and the ECM
consists of water, proteoglycan and collagen
fiber network. Physiologically, cartilage can be divided
into four different zones: the superficial, middle,
deep and calcified cartilage zones [13]. Each zone has a
unique composition and organization of chondrocytes as
well as ECM proteins [14]. With well-organized collagen
fibrils, the superficial zone has a strong tension that could
resist powerful shear forces. The chondrocytes in this
zone exhibit a small and circular morphology. With
increasing depth, morphology of chondrocytes changes
from round sphere to oval sphere at the deep zone [15].
Furthermore, the proteins in superficial and deep layers
have notable differences in both of quantitative and
qualitative means. The matrix protein network in the
interterritorial zone composes of type II, IX and XI
collagen, and the protein components in the pericellular
matrix consist of type VI collagen, matrilin 3 and fibro-
modulin [13]. Thus, as compared with the superficial zone,
the deep zone possesses a higher compressive strain.

Beneath the calcified zone of articular cartilage is the
subchondral bone. The underlying subchondral bone is an
important part of osteochondral tissue, which is responsible
for maintaining the outline shape of articular bone and
creating an appropriate biomechanical environment for the
differentiation and development of cartilage [16]. It is
different from cartilage in that the main components of
subchondral bone include HA and glycoproteins (type I and
V collagen, fibronectin and laminin) [7]. The considerable
amount of HA and type I collagen fibres provides powerful
compressive strength and strong stiffness for subchondral
bone [17]. As compared with cartilage, subchondral bone
possesses a higher compressive modulus and a lower elas-
ticity modulus. The significantly distinct biomechanical
properties, morphological compositions and physiological
functions of subchondral bone and cartilage demonstrate
the complexity of cartilageebone interface.

Anatomically, the cartilageebone interface is the
connection hub of articular cartilage and subchondral bone,
which plays a key role in the load transfer between these
two tissues. As the cartilageebone interface is a complex
structure with multicomponents, the wavy tidemark, a
golden line, is used to divide cartilage and subchondral
bone in anatomy [18]. The tidemark is a complex three-
dimensional structure, which intersects between articular
cartilage and calcified cartilage and prevents the articular
cartilage from the invasion of vasculature and nerves [19].
Calcified cartilage is the transition between cartilage and
subchondral bone, which acts as a physiological barrier
between these two tissues [20]. As the main component of
osteochondral interface, calcified cartilage possesses
considerable amount of HA and collagen. The vertical
orientation of collagen fibrils has a positive effect on
dispersal of shear force and compressive strength [21].
Furthermore, calcified cartilage has a lower permeability
than hyaline cartilage, which allows only the molecules
lower than 500 Da move unidirectionally from subchondral
bone to cartilage [22]. With the existence of calcified
cartilage and tidemark, subchondral bone and cartilage
maintain independent physiological environments. Hence,
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osteochondral interface plays a crucial role in balancing the
structures and functions of cartilage and subchondral bone.
Current strategies and challenges for treating
osteochondral defects

Osteochondral defects involve articular cartilage, osteo-
chondral interface and subchondral bone, and three tissues
have significantly different bioactive properties. On the
basis of the Outerbridge classification system, cartilage
lesions are classified as Grade 0 (normal cartilage), Grade II
(partial thickness defect), Grade III (fully thickness
defect) and Grade IV (osteochondral defect) (Figure 1).
Histologically, articular cartilage has no vasculature, ner-
vous and lymphatic systems, whereas subchondral bone is
rich in blood supply, nerves and lymphatics [23,24]. Nutri-
tionally, articular cartilage has a hypoxic environment, and
chondrocytes obtain energy via glycolysis; subchondral
bone exchanges nutrients through blood vessels and
lymphatic vessels, and aerobic respiration is the primary
way for the energy intake of subchondral bone [20].
Furthermore, articular cartilage and subchondral bone have
different mechanical and biological properties [25]. In
addition, there is an interdependent and interact rela-
tionship between articular cartilage and subchondral bone.
Consequently, the most difficult challenge for osteochon-
dral regeneration is to regenerate articular cartilage, sub-
chondral bone and osteochondral interface simultaneously.
Figure 1 Osteochondral defect category. Visual representation f
tem: (A) Grade 0, normal cartilage; (B) Grade II, partial thickne
osteochondral defect.
Current strategies for osteochondral treatment can be
categorized as palliative treatment, reparative treatment
and restorative treatment (Figure 2). In clinics, palliative
treatment, such as arthoscopic debridement, abrasion
arthroplasty and chondroplasty, was developed for the
minimally invasive treatment of osteochondral defects
[12,26,27]. However, there are some limitations. Debride-
ment and arthroplasty are not suitable for patients who
have lesions smaller than 0.0127e0.0254 m2. The high
temperature during chondroplasty treatment may result in
the death of chondrocytes. As compared with palliative
treatment, the reparative treatment methods, such as
microfracture, autografts and allografts, are much more
invasive. The reparative treatment attends to regeneration
of osteochondral defects by drilling subchondral bone or
transplant-donated bone to reach the defect regions
[28,29]. However, there are several disadvantages,
including postoperative rehabilitation, slower remodelling,
immune reaction and transmission. Superior to the pallia-
tive treatment and reparative treatment, the restorative
treatment, such as autologous chondrocyte implantation,
matrix-assisted chondrocyte implantation and DeNovo
natural tissue/engineered tissue (NT/ET), is performed via
transplanting autologous chondrocytes or cartilage tissue to
generate neotissue to heal the defects [30,31]. Although
these strategies are typical engineering methods for
osteochondral defects regeneration, the secondary trau-
matization, long recovery time and slow tissue maturation
time limit their application in clinics. Hence, there is no
or cartilage defects by using an Outerbridge classification sys-
ss defect; (C) Grade III, full-thickness defect; (D) Grade IV,



Figure 2 Developments of clinical methods for treatment of osteochondral defects. Current strategies for osteochondral treat-
ment can be categorized as palliative treatment methods, reparative treatment methods and restorative treatment methods. The
future strategies for treatment of osteochondral defects will be intelligent methods, which may involve nanobots, 3D printing,
artificial intelligence and structural and biological functionalization materials. Structural and biological functionalization strategies,
which apply 3D printing technique and artificial intelligence, are promising methods for regeneration of osteochondral defects.
3D Z three-dimensional.
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proper method available in clinics which facilitates com-
plete healing of articular cartilage, osteochondral interface
and subchondral bone simultaneously.
Cells and biochemical factors for
osteochondral repair

In tissue engineering method, cells and growth factors are
important components for osteochondral tissue engineering
strategies. Previously, the autologous chondrocytes were
applied in autologous chondrocyte implantation treatment.
However, during the expansion process, chondrocytes may
be dedifferentiated into fibroblasts. Beside chondrocytes,
umbilical stem cells and specifically mesenchymal stem
cells (MSCs) are used for osteochondral regeneration. It is
well known that MSCs have the capability to differentiate
into articular cartilage, subchondral bone, tendon and ad-
ipose tissues [11]. Previously, bone marrow mesenchymal
stem cells (BMSCs) were embedded in biomaterials, such as
collagen gel and platelet-rich fibrin glue, and then trans-
planted into osteochondral defects to reconstruct articular
cartilage and subchondral bone [32,33]. Although the
osteochondral defect symptoms were improved, the defect
regions were filled with fibro cartilage instead of hyaline
cartilage tissue. Furthermore, BMSC treatment required
donor sites which can cause secondary trauma and pain, as
well as infection. Besides the MSCs derived from the syno-
vial membrane, the adipose stem cells (ASCs) obtained
from adipose tissue are another choice for osteochondral
regeneration. It was reported that ACSs could differentiate
along distinct tissues, such as cartilage, bone, muscle,
nerve and adipose tissue [34]. In long-term cultures, ASCs
were proved to be immune privileged and more genetically
stable than BMSCs [35]. There are several challenges, such
as low cell yields and slow adipogenesis, before ASCs can be
applied in clinics. Another alternative source to obtain
stem cells is the umbilical cord blood (UCB). As compared
with BMSCs and ACSs, UCB-derived stem cells were re-
ported to have more chondrogenic potential [36]. However,
there is no global standard for the isolation, purification
and amplification of UCB-derived stem cells in clinics.

Moreover, growth factors and cytokines are used to
facilitate the formation of osteochondral tissue. Previous
studies reported that the application of bone morphoge-
netic protein (BMP-2 and BMP-7), insulin-like growth
factor-1 (IGF-1) and fibroblast growth factor-2 (FGF-2) can
support the maturation of cartilage and that platelet-
derived growth factor, IGF-1, IGF-2, transforming growth
factor beta and BMP (BMP-2, BMP-4,BMP-6 and BMP-7) have
the capability to induce osteogenic differentiation
[5,37e39]. Generally, the common administration routes of
growth factors include direct injection and systemic
administration. However, many growth factors have a short
half-life in blood circulation. The scaffolds that utilize
physical or chemical properties to control the release of
growth factors were developed to address this issue [40].
There are several challenges, such as burst release, diffi-
cult storage and easy inactivation.
Bioactive materials for osteochondral
regeneration

For a long time, auto/allograft was a golden standard for
osteochondral regeneration [41]. However, there are some
drawbacks such as insufficient donator, donor-site pain, sec-
ondary traumatization and immune rejection, although arti-
ficial bone materials, such as polymers, metallic materials,
inorganic materials and the mixture of the three kinds of
materials, were prepared to overcome the challenge [42].
There was few artificial materials that could offer dual
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bioactivities for both of cartilage and subchondral regenera-
tion. With the development of scientific technology, the
osteochondral tissue engineering appeared and brought new
hopes for patients with osteochondral defects [43].
Materials for cartilage regeneration

Articular cartilage is a highly organized tissue, which can be
regarded as an organic solid matrix [44]. Furthermore,
cartilage possesses a hierarchical structure including both
of micro and nanoscale structures. In view of the compo-
nents and structures of cartilage, most of the materials
designed for cartilage layer regeneration were organic
matters, including polymers and ECM-based materials.
Considering cartilage is saturated with water and bioactive
ions, bioceramics that could constantly release bioactive
ions were developed to repair cartilage lesions.

Polymers
Many specific materials for cartilage regeneration are made
up of biocompatible and biodegradable polymers. The
polymers used in the cartilage layer can be divided into
natural polymers and synthetic polymers. Natural polymers
can be sourced from gelatin, chitosan, hyaluronic acid,
collagen, alginate, glycosaminoglycan, starch and
bacterial polymers. Most of the natural polymers contain
specific molecular domains that could facilitate the prolif-
eration and differentiation of chondrocytes [7]. However,
as compared with other materials, natural polymers possess
low stiffness and weak biomechanics [45]. Superior to
natural polymers, the synthetic polymers possess
controlled degradation kinetics and regulated mechanical
properties. The poly (D, L-lactic-co-glycolic acid), poly
(caprolactone), poly (ethyleneglycol) and poly (glycolic
acid) are commonly used as a source of synthetic polymers
for cartilage regeneration [46]. Although some of the syn-
thetic polymers can be developed into different shapes for
cartilage tissue regeneration, their hydrophobic surface is
not beneficial for attachment and proliferation [47]. Sur-
face treatments with bioactive factors, such as growth
factors (BMP and transforming growth factor beta), alka-
line, chondroitin sulphate and silicate, could enhance hy-
drophilicity and provide an appropriate environment for
cell differentiation and tissue ingrowth [48e51].

ECM-based materials
ECM is an important part of cartilage which could provide
nutrient and mechanical support for chondrocytes. After
decellularization or devitalization, cartilage ECM can serve
as a structural foundation and biosignals for cartilage
regeneration [52]. Generally, chemical or physical methods
were applied to remove DNA and cell components, whereas
cellular membranes and nuclei may not be fully devitalized
[53]. Currently, both physical and chemical methods are
effective ways to devitalize ECM [54]. As a source of ECM,
native cartilage matrix and cell-derived matrix (CDM) are
commonly used. Native cartilage matrix comes from human
or animal joints, and their compositions largely depend on
the species, health status, age and other genetic factors of
the donors. Furthermore, certain disease states and zonal
variations in cartilage structure are also key factors that
affect the composition of the harvested ECM. The in vitro
and in vivo results revealed that ECM has the possibility to
facilitate the chondrogenic differentiation of stem cells
and stimulate cartilage defect repair. However, decellula-
rization may reduce the content of glycosaminoglycan
(GAG), and the effect of residual cells and nuclei compo-
nents on ECM is unknown. Superior to native cartilage ma-
trix, CDM can be generated from an autologous source that
could reduce the immunological response [55]. The CDM is
obtained from cell grown in monolayer or three-dimen-
sional (3D) culture in vitro, and the CDM from synovium-
derived stem cells has shown significant favourable re-
sponses on stem cell proliferation and differentiation [56].
Owing to the limitations of being time-consuming and
expensive and resulting in impure products, the clinical
application of CDM is restricted.

Bioceramics
It is well known that bioceramics possess excellent osteo-
conductivity and bioresorbability. Over the past few years,
bioceramics and the mixture of polymer/bioceramics have
been developed for cartilage regeneration. Considering the
poor elasticity and high stiffness of bioceramics, polymers
were used to improve their elasticity modulus. Previously, a
nonmineralized collagen/tricalcium phosphate scaffold was
prepared for cartilage regeneration, and the in vivo results
demonstrated that considerable amount of hyaline-like
cartilage was formed in the defect region [57]. As compared
with polylactic acid polyglycolic acid copolymer (PLGA) scaf-
fold, PLGA/nano hydroxyapatite hybrid scaffold distinctly
improved cartilage regeneration [58]. Furthermore, incorpo-
ration of nanoscale hydroxyapatite (HAp) notably improved
the bioactivity, osteoconductivity and osteoinductivity of
poly-L/D-lactide scaffolds [59]. As bioactive ions, such as
lithium, zinc, strontium,manganese and silicon, are essential
factors for tissue regeneration, more and more studies are
focused on the development of bioactive ionsedoped bio-
ceramics for osteochondral regeneration. Recently, our study
showedthatmanganese-incorporatedb-tricalciumphosphate
(Mn-TCP) was efficient to regenerate cartilage and sub-
chondral bonebyharnessing thebioactivity of the releasedMn
ions from Mn-TCP scaffolds [60].
Materials for subchondral bone reconstruction

Subchondral bone supports the main compressive strength
to the joint and has a lower modulus of elasticity; thus, it is
important that the materials for subchondral bone regen-
eration possess initial mechanical strength. Furthermore,
subchondral bone is a highly vascularized tissue that could
provide nutrients for both of itself and articular cartilage.
Hence, materials that could facilitate bone ingrowth and
promote the integration of bone and cartilage are
preferred. Considering the requirements of mechanics in
subchondral bone, materials with adequate compressive
strength, such as metallic materials, bioglass and bio-
ceramics, are commonly applied. Moreover, natural or
synthetic polymers, which have appropriate load-bearing
capacity, could be combined with metallic materials and
bioceramics or used alone in subchondral bone tissue en-
gineering [61e63].
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Metallic materials
Metallic materials are widely used in orthopaedic
transplants because of their excellent mechanical proper-
ties. As a source of metallic materials, titanium, titanium
alloys, cobalt-chromium alloy and stainless steel are
commonly used. As the first generation of metallic mate-
rials for bone substitute, they have a common feature of
biological inertness. Titanium and its alloys are common
metallic materials in orthopaedic applications because of
their good compatibility and integration with bone tissue
[64]. Although sufficient in mechanical strength, most of
the metallic materials are inert. By the mid-1980s, the
study of metallic materials began to shift its focus from
inertness to bioactivity and biodegradability. Previously,
nanosized bioceramic particles, such as calcium phosphate,
TCP and HA, and bioceramic coatings on metallic materials
facilitated formation of apatite mineralization and further
helped implant fixation with subchondral bone [65].
Recently, magnesium-based alloys have been successfully
used in orthopaedic implants because of their excellent
mechanical properties and good bioactive and biodegrad-
able properties [66]. However, inappropriate degradation
rate, possibility of corrosion and wear particle release are
the limitations.

Bioceramic and bioglass
It is well known that bioceramics and bioglasses could
promote biomineralization because of their excellent
osteoconductivities. According to the ability to bond with
surrounding living tissue after surgery, bioceramics can be
divided into three different categories (Figure 3). The first
category is bioinert ceramics, such as alumina and zirconia.
Although bioinert ceramics could provide adequate me-
chanical properties for subchondral bone regeneration,
they have no distinct biological interaction with the sur-
rounding living tissue. As bioactive ceramics, bioglasses and
glass-ceramics bond directly with their surrounding tissue in
a bonding osteogenesis way. Moreover, bioactive ceramics
offer reasonable fracture toughness and chemical corrosion
or wearing resistance after implantation. The third cate-
gory is bioresorbable ceramics, which include calcium
phosphates, calcium carbonates, calcium phosphate ce-
ments and calcium silicates. With increasing time, bio-
resorbable ceramics are gradually absorbed and substituted
by neobone tissue in vivo. HA, TCP and 45 S bioglass are
commonly used for bone tissue engineering, and the in vivo
and in vitro studies indicated that these materials could
stimulate the formation of bony tissue and promote inte-
gration of materials to surrounding tissue [67e69]. How-
ever, there are some drawbacks, such as low elasticity,
heavy brittleness, extremely high stiffness and poor frac-
ture toughness. The incorporation of ductile materials,
such as gelatin, collagen, chondroitin sulphate and poly-
lactide acid, may enhance the mechanical properties of
bioceramics. Previously, collagen/HA scaffolds possessed
better mechanical properties and osteoinductivity than HA
or collagen scaffolds [70]. To fulfil significantly different
biological and mechanical requirements of cartilage and
subchondral bone, biphasic and multilayered scaffolds have
been developed. In most of the biphasic and multilayered
scaffolds, polymers such as gelatin, collagen and poly-lac-
tide acid serve as the cartilage layer, and
bioceramics including HA and TCP serve as the subchondral
bone layer. Although biphasic and multilayered constructs
may provide a similar mechanical environment for osteo-
chondral regeneration, it is difficult to biologically mimic
the natural microstructure and physiological properties of
cartilage and subchondral bone with currently available
biotechnologies. Furthermore, the adhesive strength be-
tween the adjacent two layers in biphasic or multilayered
scaffolds is often insufficient, which leads to the delami-
nation of the adjacent two layers. Hence, a smart single-
phase scaffold that possesses bilineage functions for
simultaneously regenerating both of cartilage and sub-
chondral bone was developed [60]. The Mn-TCP scaffolds
were fabricated by a 3D printing method, and an in vitro
study demonstrated that ionic products from Mn-TCP
distinctly promoted the proliferation and differentiation
of chondrocytes and MSCs. The in vivo study indicated that
Mn-TCP scaffolds significantly facilitated the regeneration
of both cartilage and subchondral bone tissues in a rabbit
osteochondral defect model. Furthermore, the Mn2þ ions
released from the bilineage scaffolds could protect chon-
drocytes from inflammatory osteoarthritis environment by
activating autophagy. Based on the aforementioned study,
lithium- and silicon-containing biomaterials scaffolds,
which could continuously release of Li and Si ions, were
prepared for osteochondral regeneration [71]. In vitro,
lithium-calcium-silicate extracts distinctly facilitated the
proliferation and maturation of chondrocytes, as well as
stimulated the osteogenic differentiation of rabbit bone
mesenchymal stem cells (rBMSCs). Moreover, Li and Si ions
synergistically protected chondrocytes via inhibiting the
Hedgehog pathway in an osteoarthritis model. In a rabbit
osteochondral defect model, lithium-calcium-silicate scaf-
folds significantly stimulated osteochondral regeneration
by harnessing the synergistic effect of Li and Si ions. It is
well known that the interface between cartilage and sub-
chondral bone is quite complicated, and the regeneration
of osteochondral interface remains a great challenge in
clinics. Recently, 3D printing Sr5(PO4)2SiO4 (SPS) scaffolds
were successfully developed for the complex osteochondral
interface regeneration [72]. The in vivo study showed that
SPS scaffolds distinctly promoted the regeneration of
cartilage and subchondal bone via activating hypoxia-
inducible factor (HIF) pathway and Wingless/Integrated
(Wnt) pathway, respectively. Furthermore, SPS significantly
reconstructed the osteochondral interface and preserved
chondrocytes from osteoarthritis via activating autophagy
and inhibiting the Hedgehog pathway by harnessing the
synergistic effect of Sr and Si ions.
Preparation strategies of bioactive scaffolds
for osteochondral regeneration

Over the past few decades, a variety of technologies for 3D
scaffolds manufacturing have sprung up in osteochondral
tissue engineering research. Traditional methods such as
electrospinning, phase separation, gas-foaming, template,
freeze-dry, sol-gel method and space holder method were
successfully developed. However, the traditional methods
for the regeneration of both cartilage and subchondral
bone remain to be complex and of low efficiency because



Figure 3 The category of bioceramic materials applied in bone tissue engineering. Based on the ability to bond with living tissue
after surgery, bioceramics can be divided into three different categories: bioinert ceramics, bioactive ceramics and bioresorbable
ceramics [70,71,84e86].
TCP Z tricalcium phosphate.
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they cannot biologically mimic the original microstructure
of cartilage and subchondral bone. These issues may be
solved with the application of 3D printing technology, which
can highly mimic the anisotropic nature of ECM and het-
erogeneity of osteochondral tissue.

Traditional methods

Because it is an inexpensive and versatile method for
forming ECM-mimicking scaffolds, electrospinning has
been proved to be a powerful technique for preparing
osteochondral tissue engineering scaffolds [73]. Consid-
ering the insufficient mechanical properties and cell
infiltration hindrance of electrospinning structure, a va-
riety of methods for addressing these issues have been
proposed. The phase separation is a process of thermally
inducing or using a nonsolvent to fabricate porous scaf-
folds with uniform pore structures [74]. As compared with
electrospinning, phase separation has a great potential for
development of 3D nano/micrometer structures. Although
phase separation has the advantages of rapid prototyping
and solid freeform fabrication, limitations such as
inadequate resolution and limited material selection
remain. During a gas-foaming method, chemical foaming
or mechanical foaming was used to generate gas to obtain
porous scaffold [75]. Gas-foaming method takes the ad-
vantages of being simple and inexpensive and the shape
and density of scaffolds being controllable, whereas the
disadvantages such as low porosity, disconnected pores
and poor mechanical property hinder their application in
osteochondral tissue engineering. The template and space
holder are methods used to fabricate porous scaffolds
[76]. Although the prepared scaffolds possess controlled
and interconnected pores size, they lack adequate me-
chanical properties for bone regeneration. With the ad-
vantages of environmental protection and easygoingness,
freeze-drying is suitable for biomedical application [77],
whereas it remains a great challenge to prepare hierar-
chical structures that mimic osteochondral tissue via
freeze-drying. Sol-gel is a method that involves gentle
reaction temperature, and it is suitable for new scaffold
manufacturing [78]. However, small size and low porosity
of scaffolds limit their application in osteochondral tissue
area [69,79,80].



22 C. Deng et al.
3D printing

3D printing technique is a convenient and promising method
to develop scaffolds with controlled macroporous struc-
tures, and it has represented a milestone for cartilage and
subchondral bone tissue engineering. The technology is
categorized as scaffold-based printing and scaffold-free
printing. And, scaffold-based printing has been sub-
classified into cellular and acellular 3D printing, depending
on whether the ink contains living cells or not. Further-
more, based on different printing processes, cellular 3D
printing can be subclassified into extrusion-based printing,
laser-based printing, droplet-based printing and stereo-
lithography, and acellular 3D printing can be divided into
fused deposition modelling, melt electrospinning writing
and selective laser sintering [81e84]. Previously, most of
the 3D printing biomaterials were fabricated for the
regeneration of skin, tracheal splints, cardiovascular
structures, hard tissues and cartilaginous structures.
Because 3D printing has the unique capacity to mimic the
anisotropic and heterogeneous properties of ECM, much
attention has been paid in treating osteochondral defects
Figure 4 The LCS scaffolds significantly promoted osteochondr
weeks; (C) micro-CT analysis; (D) Safranin O staining; (E) HE staini
CT Z computed tomography; HE Z haematoxylin and eosin; LCS Z
[85]. Recently, 3D printing has been used to prepare scaf-
folds with uniform pores for cartilage and subchondral bone
regeneration, and MSCs on these scaffolds demonstrated a
chondrogenic and osteogenic differentiation to osteochon-
dral structures [86e88]. The in vivo studies showed the
potential of 3D printing scaffolds in the regeneration of
osteochondral defects by generating both of cartilage and
subchondral bone tissues in the defect regions [89e93]. As
compared with the gold standard treatment for osteo-
chondral defects, 3D printing scaffolds can be easily
designed into specific shape for the different types of
osteochondral defects. Furthermore, 3D printing scaffolds
provide interconnected macroporosity and microporosity,
as well as heterogeneity and anisotropy, to fulfil the con-
stituent and mechanical requirements for osteochondral
tissue engineering. However, the cost of specialized
equipment and fee for experienced personnel are too high
for middle-class and poor patients. Before this technology
can be used in clinics, some problems such as mass fabri-
cation, sterilization, quality control and high medical
expenditure should be solved.
al regeneration. (A) Abstract graphic; (B) knee samples at 12
ng [70].

lithium-calcium-silicate.
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Summary and outlook

As mentioned previously, osteochondral tissue is quite
complex, and the regeneration of osteochondral defects
remains a great challenge in tissue engineering and ortho-
paedic surgery. In osteochondral tissue, articular cartilage
and subchondral bone are well-organized tissues with
multiple-scale microstructures. Hence, ideal bioactive
scaffolds prepared to facilitate and enhance osteochondral
regeneration should have the capability to replicate the
natural architecture and physiological properties of artic-
ular cartilage and subchondral bone tissues. To mimic the
hierarchical structures of osteochondral tissue, biphasic
and multilayered scaffolds were fabricated. However, it is
difficult to biologically mimic the original structures of
osteochondral tissue, and the application of biphasic and
multilayered scaffolds in clinics is limited by nonhomoge-
neous responses of mechanics and low adhesive strength
between adjacent two layers. Until now, the approaches
for the fabrication of bioactive scaffolds are including
phase separation, gas-foaming, template method, freeze-
drying, sol-gel method and space holder method. The
traditional methods are commonly used to regulate and
control the micro/nano structures and mechanic properties
of scaffolds. The appearance of 3D printing technique
provides a feasible strategy to prepare hierarchical struc-
tures for osteochondral tissue regeneration.

Currently, most of thematerials used in cartilage layer are
polymers and ECM, andmaterials applied in subchondral bone
layer are metallic materials, bioceramics and bioglasses. To
improve the specific biofuntionality for osteochondral
regeneration, the bioactivators, such as growth factors and
bioactive ions, were incorporated into scaffolds. Further-
more, specific cells including stem cells and
chondrocyteswere seeded in scaffolds toenhance regenerate
efficiency.Althoughcells andgrowth factorsare important for
osteochondral tissue regeneration, the same good regenera-
tion efficiency is obtained without them in many studies
[60,72,92,94]. In the process of commercialization, growth
factorseincorporated and cells-incorporated scaffolds are
difficult to be storedanddelivered because of the low survival
rate of cells and instability of growth factors. Thus, most of
the commercial scaffolds are cell and growth factor free.
Recently, a series of smart 3D scaffolds incorporating bioac-
tive ions were prepared for osteochondral regeneration by
harnessing the synergistic effect of multiple inorganic ions
(Figure 4) [60,72,92,94,95]. However, the problems of large-
scale fabrication, exactly controlled release of bioactive ions
and high medical expenditure still need to be solved.

In brief, the major challenges are developing bioactive
scaffolds or advanced strategies, which could completely
replicate the native architecture and function of osteochon-
dral tissue and establish an interface that structurally and
physiologically mimic cartilage and subchondral bone, as well
as prevent the phenotypic drift of neocartilage and sub-
chondral bone. Hence, a promising bioactive scaffold will not
only structurally and biologically regenerate osteochondral
tissue but also provide a satisfactory postoperative follow-up.
Overall, structural and biological functionalization strategies
will become a well-deserved focus in osteochondral tissue
engineering.
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[23] Hunziker EB, Quinn TM, Häuselmann HJ. Quantitative struc-
tural organization of normal adult human articular cartilage.
Osteoarthritis Cartilage 2002;10(7):564e72.

[24] Zhang Y, Wang F, Tan H, Chen G, Guo L, Yang L. Analysis of the
mineral composition of the human calcified cartilage zone. Int
J Med Sci 2012;9(5):353e60.

[25] Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S.
Composition and structure of articular cartilage: a template for
tissue repair. Clin Orthop 2001;391(391 Suppl):S26.
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