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Metabolic syndrome (MetS), a set of metabolic risk factors including obesity, dysglycemia, and dyslipidemia, is associated with
increased colorectal cancer (CRC) risk. A putative biological mechanism is chronic, low-grade inflammation, both a feature of
MetS and a CRC risk factor. However, excess body fat also induces a proinflammatory state and increases CRC risk. In order to
explore the relationship between MetS, body size, inflammation, and CRC, we studied large panels of inflammatory and cancer
biomarkers. We included 138 participants from the Västerbotten Intervention Programme with repeated sampling occasions, 10
years apart. Plasma samples were analyzed for 178 protein markers by proximity extension assay. To identify associations
between plasma protein levels and MetS components, linear mixed models were fitted for each protein. Twelve proteins were
associated with at least one MetS component, six of which were associated with MetS score. MetS alone was not related to
any protein. Instead, BMI displayed by far the strongest associations with the biomarkers. One of the 12 MetS score-related
proteins (FGF-21), also associated with BMI, was associated with an increased CRC risk (OR 1.71, 95% CI 1.19–2.47).
We conclude that overweight and obesity, acting through both inflammation and other mechanisms, likely explain the
MetS-CRC connection.

1. Introduction

Metabolic syndrome (MetS) is associated with numerous
adverse health outcomes, such as cardiovascular disease
(CVD), type 2 diabetes mellitus (T2DM), and several types
of cancer [1–4]. It comprises metabolic abnormalities includ-
ing central obesity, hypertension, dysglycemia, and dyslipid-
emia [5, 6]. The western lifestyle, with a diet high in fat and
simple carbohydrates combined with low physical activity,
likely contributes to the current rise in incidence [7].

One hallmark of MetS is a state of chronic inflammation.
Several previous studies have reported protein biomarkers
associated with MetS [8], with a large proportion directly
related to inflammation, for example, tumor necrosis factor
alpha (TNF-α) and interleukin 6 (IL-6). Visceral adiposity
appears to play a central role in driving the inflammatory
state, as this type of adipose tissue secretes monocyte
chemoattractant protein-1 (MCP-1) and proinflammatory

cytokines, which in turn induce macrophage infiltration
of the tissue [9]. The chronic, low-grade inflammation
resulting from visceral adiposity may therefore be a major
mechanism behind the established association between
MetS and colorectal cancer (CRC) [10, 11]. However,
whether this connection is dependent on actual MetS
development, or is solely an artefact of obesity, remains
to be elucidated.

We hypothesized that the connection between MetS and
CRC is driven by inflammation, with body composition as an
important component, and that inflammatory proteins asso-
ciated with MetS would therefore also associate with CRC
risk. Using a unique collection of repeated samples from
the Västerbotten Intervention Programme (VIP) in northern
Sweden, we analyzed large panels of inflammatory and can-
cer biomarkers in relation to MetS and its components. The
MetS-related biomarkers identified were examined in rela-
tion to the risk of developing CRC.
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2. Materials and Methods

2.1. Study Population. All study participants were selected
from the Västerbotten Intervention Programme (VIP), ini-
tiated in 1985 and still ongoing [12]. All residents of the
county are invited to a general health exam at 10-year
intervals (starting at 40 years). They also donate a blood
sample and fill out an extensive questionnaire on health
and lifestyle.

Samples for this study were originally selected as part of a
prospective study of CRC biomarkers. All CRC cases had to
have a verified CRC diagnosis within five years after the latest
sampling (excluding samples collected within three months
of diagnosis) and have at least two available blood samples
in the biobank. All but one case set had samples collected
ten years apart. We selected an equal number of control sub-
jects, matched on age (±12 months), sex, and sampling dates
(±12 months). Controls had to be cancer-free at the latest
follow-up (Dec. 31, 2014). For both cases and controls, only
samples collected after at least eight hours of fasting were
included, and none of the samples had previously been
thawed. After all inclusions and exclusions, the study included
repeated samples from 69 prospective CRC cases and 69
matched controls, resulting in 276 samples analyzed.

The project was approved by the Regional Ethical Review
Board of Umeå University, Sweden. All VIP participants pro-
vide a written informed consent before donating their sam-
ples for research purposes, and they retain the right to
withdraw that consent at any time in the future.

2.2. MetS Variables. MetS components were measured as
body mass index (BMI), triglyceride levels, total cholesterol
levels, mid-blood pressure (mean of systolic and diastolic
blood pressure), and fasting glucose levels. The variables were
scaled to mean 0 and standard deviation (SD) 1 (z-trans-
formed) separately for sex and sampling occasion. Due to a
skewed distribution, triglycerides were log transformed first.
We calculated a composite MetS score by summing all scaled
variables except total cholesterol, which could distort the
score depending on the proportions of HDL and LDL/VLDL
within the total cholesterol measurement. TheMetS score was
also scaled separately by sex and sampling occasion. As a sen-
sitivity analysis, we defined a dichotomous MetS variable
according to the International Diabetes Federation criteria
of obesity (BMI≥ 30 kg/m2) and at least two of elevated tri-
glyceride levels (≥1.7mmol/l or lipid-lowering medication),
hypertension (SBT≥ 130mmHg orDBT≥ 85mmHg or anti-
hypertension medication), and elevated fasting glucose levels
(≥5.6mmol/l or self-reported diabetes).

2.3. Protein Biomarkers. All 276 samples were analyzed
simultaneously for 178 unique protein biomarkers on two
predesigned Proseek Multiplex® immunoassay panels (Olink
Proteomics, Uppsala, Sweden) related to inflammation and
cancer (all proteins are listed in Supplementary Table S1
available online at https://doi.org/10.1155/2017/4803156).
Processing, output data quality check, and normalization
were performed by Olink Proteomics. All data were delivered
as Normalized Protein eXpression (NPX) values on a log2

scale. The log2 NPX values were scaled to mean 1 and SD 1
before data analysis, to facilitate comparisons between pro-
tein associations. Data values below the level of detection
(LOD) were removed from the dataset. Proteins with <50%
missing values (IL-20RA, IL-2RB, IL-1-alpha, IL-2, TSLP,
IL-10RA, IL-22.RA1, IL-24, IL-13, ARTN, TNF, IL-20, IL-
33, IFN-gamma, IL-4, LIF, NRTN, and IL-5) were excluded,
leaving 160 proteins for further analysis.

2.4. Statistics. All computations were conducted in R v.3.3.1
(R Foundation for Statistical Computing, Vienna, Austria).

Associations between protein markers and MetS were
determined by fitting linear mixed models for each protein
using the lme function in the lmer R-package. The mixed
models included participant as a random factor (random
intercept) and MetS and covariates as fixed factors. Two
models were fitted for each protein, one including MetS score
and one including each individual MetS component. Other
covariates adjusted for the models were CRC status (case,
control), age (continuous), sex (male, female), physical activ-
ity (5-level scale from never to >3 times/week), smoking
(non-, current, and ex-smoker), and level of education (ele-
mentary school, upper secondary school, and university).
The contribution of MetS and its components to protein var-
iance was tested by an analysis of variance approach using the
anova.lme function. For evaluation of variation in protein
levels within and between individuals, we calculated intraclass
correlations (ICC), defined as the proportion of total variance
due to variation between individuals, using the variance esti-
mates from the mixed models. We also calculated variance
explained by fixed factors (R2

m) and variance explained by
fixed and random factors (R2

c) using the RsqGLMM function
in theMuMIn package.Model assumptions were evaluated by
visually inspecting the Pearson standardized residuals. Out-
liers, defined as standardized residuals >3, were excluded sep-
arately for each protein. Coefficients from the mixed models
are interpreted as SD change in protein levels per 1SD change
in MetS variable.

We assessed MetS and lifestyle-adjusted associations
between the MetS-associated proteins by calculating partial
Spearman’s correlations on the estimated residuals from the
mixed models using the core function on pairwise complete
observations.

All P values were adjusted for multiple testing using
the Bonferroni method. P values below 0.05 were consid-
ered significant.

We also examined MetS and the MetS-associated pro-
teins in relation to CRC risk using conditional logistic regres-
sion models stratified on the matched case sets. Odds ratios
(ORs) were estimated per 1SD change in the MetS variables.
To evaluate whether associations differed depending on the
follow-up time from sampling to CRC diagnosis, we tested
for an interaction between sampling time point, MetS, and
the protein variables.

3. Results

3.1. Participant Characteristics. Characteristics of the partic-
ipants at the first and second sampling occasion are
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presented in Table 1(a), and characteristics stratified by case
status in Table 1(b). Median age at first sampling was 49.9
years. Systolic blood pressure and fasting plasma glucose
increased slightly over time. BMI also increased modestly
with time, with more individuals categorized as obese at the
second sampling occasion. The prevalence of MetS increased

from 9% at the first sampling occasion to 17% at the second
(Table 1(a)). BMI had a larger proportion of total variance
between, and less within, participants compared to the other
MetS components (ICC=0.86, Supplementary Figure S1).
Total cholesterol was higher in cases compared to controls
(P = 0 03, Table 1(b)). There were no other large differences

Table 1: (a) Characteristics of study participants, stratified by sampling occasion. (b) Characteristics of study participants, stratified by
colorectal cancer (CRC) status at the second sampling occasion.

(a)

Characteristics
Sample 1 (n = 138a) Sample 2 (n = 138a)

Pb
Median (range) Median (range)

Age 49.9 (30.0–52.4) 59.9 (40.0–60.5) —

Height 173 (157–195) 172 (155–196) <0.001
Weight 76.5 (51–128) 80.0 (51–139) <0.001
Triglycerides, mmol/l 1.0 (0.4-5.2) 1.1 (0.5–3.8) 0.98

Total cholesterol, mmol/l 5.5 (3.5–9.5) 5.5 (3.4–10.1) 0.18

Diastolic bp 79.0 (60.0–120.0) 80.0 (60.0–110.0) 0.12

Systolic bp 120.0 (94.0–180.0) 126.0 (90.0–179.0) 0.04

Fasting plasma glucose, mmol/l 5.4 (4.0–6.9) 5.5 (1.0–13.1) 0.003

BMI 25.3 (18.8–41.3) 26.0 (18.4–44.9) <0.001
Categorized BMI (N, (%)) — — 0.08

<18.5 (underweight) 0 1 (1) —

18.5–24.9 (normal) 62 (45) 52 (38) —

25–29.9 (overweight) 60 (43) 56 (41) —

30+ (obese) 16 (16) 29 (21) —

MetS (yes, %) 12 (9) 24 (17) 0.05
aNumber of samples.
bPaired t-tests for differences in continuous variables between measurements 1 and 2. Chi-square test or Fisher’s exact test (if expected cell count is below 5) for
differences in categorical variables.

(b)

Characteristics
Case (n = 69) Control (n = 69)

Pb
Median (range) Median (range)

Age (at sampling occasion) 59.9 (40.3–60.4) 59.9 (40.0–60.5) —

Height 172.5 (156–196) 172 (155–191) 0.99

Weight 81.0 (56–114) 78.0 (51–139) 0.95

Triglycerides, mmol/l 1.1 (0.6–3.5) 1.1 (0.5–3.8) 0.99

Total cholesterol, mmol/l 5.4 (3.8–7.6) 5.6 (3.4–10.1) 0.03

Diastolic bp 82.0 (62.0–105.0) 80.0 (60.0–110.0) 0.14

Systolic bp 126.0 (90.0–163.0) 126.0 (90.0–179.0) 0.80

Fasting plasma glucose, mmol/l 5.7 (1.0–11.1) 5.5 (4.1–13.1) 0.73

BMI 26.1 (21.0–36.0) 26.0 (18.4–44.9) 0.82

Categorized BMI (N, (%)) — — 0.12

<18.5 (underweight) 0 1 (1) —

18.5–24.9 (normal) 22 (32) 30 (43) —

25–29.9 (overweight) 34 (50) 22 (32) —

30+ (obese) 12 (18) 16 (23) —

MetS score −0.02 (−0.60–0.54) −0.06 (−0.80–0.51) 0.26

MetS (yes, %) 9 (13) 15 (22) —

All data refer to characteristics at the second sampling as depicted in Table 1(a).
bPaired t-tests for differences in continuous variables betweenmatched cases and controls. Chi-square test or Fisher’s exact test (if expected cell count is below 5)
for differences in categorical variables.
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in MetS components, MetS score, or MetS prevalence
between CRC cases and controls. The same pattern was seen
at the first sampling occasion.

3.2. Protein Levels. Out of 160 proteins that passed quality
control, six were associated with the MetS score: three
(TNFSF14, HGF, and FGF-21) with MetS score and BMI,

two (SCF and ERBB2) with MetS score and triglyceride
levels, and one (Furin) withMetS score, BMI, and triglyceride
levels. An additional five proteins were associated with BMI
alone (TNFSF10, SEZ6L, IL-6, FGF-BP1, and ESM-1), and
one (OPG) was associated with total cholesterol (Figure 1,
Table 2). The direction of the significant associations was
inverse for SCF, ESM-1, SEZ6L, and FGF-BP1 and positive
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Figure 1: Significant associations between metabolic syndrome (MetS) and its components and each protein. Connections illustrate
significant contributions to protein variance (Bonferroni corrected P value < 0.05).

Table 2: List of proteins significantly associated with MetS score or one of its components.

Protein name UniProt number Associated with Direction of association Original Olink panel

IL-6 P05231 BMI Positive Inflammation panel and oncology panel

TNFSF10 P50591 BMI Positive Inflammation panel and oncology panel

SEZ6L Q9BYH1 BMI Negative Oncology panel

FGF-BP1 Q14512 BMI Negative Oncology panel

ESM-1 Q9NQ30 BMI Negative Oncology panel

FGF-21 Q9NSA1 MetS and BMI Positive Inflammation panel

TNFSF14 O43557 MetS and BMI Positive Inflammation panel

HGF P14210 MetS and BMI Positive Inflammation panel and oncology panel

Furin P09958 MetS, BMI, and triglycerides Positive Oncology panel

ERBB2 P04626 MetS and triglycerides Positive Oncology panel

SCF P21583 MetS and triglycerides Negative Inflammation panel and oncology panel

OPG O00300 Total cholesterol Positive Inflammation panel
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for OPG, TNFSF10, IL-6, ERBB2, TNFSF14, FGF-21, HGF,
and Furin (Figure 2, Supplementary Figure S2).

The proportion of variance in protein levels explained by
the fixed factors in our models, R2m, varied between 0 and 35%
(Figure 3). The proportion of variance attributable to MetS
was 5–30% for the proteins identified. IL-6, FGF-21, and
TNFSF14 varied more within participants between the mea-
surements compared with the other significant proteins
(ICC < 0.50, Supplementary Figure S3), whereas the intrain-
dividual variation between sampling occasions was lower for
SEZ6L, TNFSF10, and FGF-BP1 (ICC: 0.69–0.71).

Furin and HGF showed the strongest associations
with MetS. The relations were driven largely by BMI, with
20–30 percentage points of the variation explained by the
fixed factors attributed to BMI (Figure 3). OPG was signifi-
cantly associated with total cholesterol, yet only a small pro-
portion (5 percentage points) of the variance explained by the
included fixed factors was attributable to MetS components.
Instead, a large part (25%) of the variance in OPG was
explained by age. Inthe sensitivity analyses, using predefined
cut-offs to define MetS and MetS components gave similar
results but with fewer significant protein associations (data
not shown).

Partial correlations between the MetS-associated proteins
are presented in Supplementary Figure S4. Almost all correla-
tions were positive. Two clusters of more correlated proteins
were present: cluster 1: SCF, OPG, ERBB2, SEZ6L, ESM-1,
and FGF-BP1; cluster 2: HGF, TNFSF14, Furin, IL-6, FGF-
21, and TNFSF10.

3.3. MetS, Protein Levels, and CRC Risk. None of the MetS
components was significantly associated with CRC risk in
conditional logistic regression models adjusting for age, sex,
and sampling date by case-set stratification, and additionally
by smoking status and educational level by regression
(Figure 4). MetS score was associated with an insignificant
increased risk of CRC (OR per 1SD increase in MetS score:
1.28, 95% CI: 0.97–1.70). For the 12 proteins significantly
associated with MetS and/or its components, five were asso-
ciated with CRC risk. Higher levels of FGF-21, which in our
dataset were directly associated with MetS score and BMI,
were associated with an increased CRC risk (OR per 1SD
increase in protein levels: 1.71, 95% CI: 1.19–2.47). Higher
levels of SEZ6L, TNFSF10, HGF, and ESM-1 were associated
with a lower CRC risk (ORs per 1SD increase in protein
levels: 0.59 to 0.39). Most protein risk estimates were
enlarged by including MetS score in the models. The OR
for MetS score was markedly enlarged when including SCF,
TNFSF10, and HGF and attenuated when including FGF-
21 and SEZ6L (Figure 4). Similar changes in ORs were seen
for BMI. There were no significant interactions between
MetS and the proteins, or between MetS or MetS-related pro-
teins, and sampling time point.

4. Discussion

Metabolic syndrome is becoming increasingly common, and
many studies indicate a direct association between MetS and
the risk of developing CRC and other forms of cancer, likely
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Figure 2: Volcano plots for metabolic syndrome (MetS) (a) and BMI (b). The dashed line indicates the Bonferroni-adjusted significance
threshold. Coefficients are interpreted as SD change in protein levels by 1SD change in MetS score and BMI, respectively. R2m is the
proportion of variance explained by the included fixed factors.
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driven, at least in part, by body composition and inflamma-
tion [13, 14]. In order to investigate the hypothesis that
inflammation is the driving factor between MetS and CRC,
we evaluated 160 unique protein biomarkers, known to be
related to cancer or inflammation, in repeated samples from
138 individuals (of which half developed CRC within 5 years
after the second sampling occasion). Twelve proteins were
associated with at least one MetS component, six of which
were also associated with MetS score. One of the six, FGF-
21, was positively associated with CRC risk.

Interestingly, five of the 12 proteins identified were asso-
ciated with BMI only, all of which were included in the pre-
defined oncology protein marker panel due to a potential
relation to cancer (with or without an inflammatory connec-
tion). However, of the six proteins associated with MetS
score, there was an equal distribution between inflammatory
and cancer proteins. Thus, body composition likely contrib-
utes to cancer development not only through chronic inflam-
mation but also through other pathways.

Of the MetS-associated proteins, only one, which was
also associated with BMI, was positively associated with
CRC risk, FGF-21 (fibroblast growth factor 21). Inclusion
of MetS strengthened the association between FGF-21 and
CRC risk and attenuated the association between MetS and
CRC risk, suggesting a mediating effect. Increases in BMI
and MetS score contributed to a significant amount of the
FGF-21 protein level variation, and it was the protein with
the largest change in level per MetS score increase. Consistent
with our observations, the associations between FGF-21,

BMI, and MetS have been previously described [15, 16] and
appear to be robust in plasma or serum samples. FGF-21 is
part of the family of fibroblast growth factors, which includes
18 mammalian proteins (FGF1-FGF10 and FGF16-FGF23)
[17]. However, FGF-21 is not a clear-cut growth factor but
serves as a metabolic hormone as it lacks the FGF-heparin-
binding domain and therefore can diffuse away from its tis-
sue of origin [18, 19]. FGF-21 is expressed in a wide variety
of tissues [17] and mediates signaling by binding to the tyro-
sine kinase FGF-receptors. One of the main functions of
FGF-21 appears to be the regulation of metabolic function
and stimulation of glucose uptake [20]. It has been shown
to increase in patients with T2DM [21]. More recently, the
possibility of using FGF-21 as a prognostic or diagnostic can-
cer marker has been raised and evaluated for renal cancer,
with promising results [22]. To the best of our knowledge,
FGF-21 has not previously been evaluated as a biomarker
for CRC risk. Our results indicate that it might be suitable
for this purpose. However, FGF-21 levels were subject to a
fairly high intraindividual variation (0.46), meaning variation
over time is common. Intraindividual variation would need
to be taken into consideration for all future applications
including FGF-21 as a potential biomarker [23].

Two proteins were strongly associated with both MetS
and BMI, namely, HGF (hepatocyte growth factor) and
Furin. Both of these proteins have been previously implicated
in MetS [24, 25]. HGF is a cytokine secreted from adipocyte
tissue, known to increase with hypertension and obesity
and most likely regulated by genetic factors [26]. In the
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Figure 3: Contribution to variance explained by metabolic syndrome (MetS) and other included covariates. (a) Variance explained by
including MetS (x-axis). (b) Variance explained by including MetS components. The proteins are color coded according to ICC, that is,
proportion of interindividual variance to total variance. Proteins with high ICC vary less within and more between participants, whereas
proteins with low ICC vary less between and more within participants. Proteins in black were significantly associated with MetS or any
MetS component.
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present study, HGF was positively related to both MetS score
and BMI but inversely associated with CRC risk, an effect
that was strengthened by adjusting for MetS score. This con-
tradicts a previous study in which elevated serum HGF levels
were proposed as a biomarker for tumor progression and
suggested to enhance angiogenesis and tumor cell invasion
[27]. Furin belongs to the proprotein convertase family and
processes inactive proteins into their active forms [28]. It is
the most studied protein in this family, and its function and
expression have been investigated in relation to several types
of cancer. Furin’s role in protein activation makes it impor-
tant for tumor progression and metastasis. Inhibitors of
Furin activity are therefore potential targets for cancer ther-
apy [29]. At the same time, overexpression of Furin has been
linked to tumor suppression and better prognosis in hepato-
cellular carcinoma [30]. We found no significant association
between Furin and CRC in our dataset, possibly due to the
prospective study design, with plasma samples collected
prior to CRC diagnosis. However, the null relationship was
apparent even at the second sampling occasion, at which
cases were more likely to have a premalignant or malignant
process in the colorectum.

The protein most strongly associated with CRC risk was
ESM-1 (endothelial cell-specific molecule-1), which was
inversely associated with both BMI and CRC in our dataset
but not associated with MetS. ESM-1 has previously been
shown to be overexpressed in CRC patients and associated

with poor prognosis [31]. The fact that increased levels in
our dataset were indicative of reduced CRC risk shows the
difficulty in translating markers identified at diagnosis to
prospective samples. ESM-1 does appear to have an active
role in CRC by regulating growth and metastasis and may
be useful as a therapeutic target [32], but further investiga-
tion of the mechanisms behind the inverse association we
observed using prediagnostic samples is warranted.

One other protein, SEZ6L (seizure 6-like protein), was
also inversely associated with both BMI and CRC. It con-
trols synaptic connectivity and motor coordination and is
also a substrate for the β-secretase BACE1, which is highly
expressed in the nervous system and an important drug tar-
get in Alzheimer’s disease [33]. Although it has not previ-
ously been implicated in CRC, one study found an
association between a genetic polymorphism in the SEZ6L
gene and increased risk of lung cancer [34].

Weaknesses of our study include lack of a central obesity
measurement (substituted with BMI) and HDL cholesterol
measurements. Total cholesterol was evaluated in relation to
proteinmeasurements but not included in theMetS score def-
inition because of the conflicting roles of HDL and LDL, both
of which contribute to total cholesterol. In addition, CRP
(c-reactive protein), an established and important marker
of inflammation previously connected to MetS [35], was
not included in the Olink inflammation panel, and
TNF-alpha (a well-known marker of inflammation and
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Figure 4: Associations between metabolic syndrome (MetS) score, MetS components, protein levels, and CRC risk. All odds ratios (ORs)
were calculated using conditional logistic regression, stratified for the case-sets. For MetS, odds ratios (ORs) were adjusted for smoking
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characteristic of MetS [8]) was omitted due to missing
values. Hence, neither of these were addressed in our
study.

Major strengths of the study included the use of high-
quality blood samples collected prospectively with respect
to CRC diagnosis, with all participants fasting for at least
eight hours prior to sampling, and with no previous
thaw-freeze cycles. The VIP cohort also provided a unique
opportunity to use repeated samples from both cases and
time-matched controls, allowing us to account for intra-
individual variation. Finally, an important strength of the
study was the large number of protein biomarkers evaluated
simultaneously using a highly sensitive platform.

5. Conclusions

Inour studyMetSdoes not, in itself, appear to contribute to the
inflammation cancer-connection. MetS score was associated
with six different proteins in our investigation. However, all
were also associated with BMI and/or triglyceride levels. Of
the individual MetS components assessed, BMI displayed by
far the strongest associations with inflammatory and cancer
biomarkers. Although external replication is needed, our data
indicate that the relationship between MetS and CRC risk is
likely driven primarily by excess body fat, acting through both
pro-inflammation and other pro-carcinogenic mechanisms.
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