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Abstract: An instrument developed to monitor and diagnose crop growth can quickly and
non-destructively obtain crop growth information, which is helpful for crop field production and
management. Focusing on the problems with existing two-band instruments used for crop growth
monitoring and diagnosis, such as insufficient information available on crop growth and low accuracy
of some growth indices retrieval, our research team developed a portable three-band instrument
for crop-growth monitoring and diagnosis (CGMD) that obtains a larger amount of information.
Based on CGMD, this paper carried out studies on monitoring wheat growth indices. According to
the acquired three-band reflectance spectra, the combined indices were constructed by combining
different bands, two-band vegetation indices (NDVI, RVI, and DVI), and three-band vegetation
indices (TVI-1 and TVI-2). The fitting results of the vegetation indices obtained by CGMD and the
commercial instrument FieldSpec HandHeld2 was high and the new instrument could be used for
monitoring the canopy vegetation indices. By fitting each vegetation index to the growth index,
the results showed that the optimal vegetation indices corresponding to leaf area index (LAI), leaf
dry weight (LDW), leaf nitrogen content (LNC), and leaf nitrogen accumulation (LNA) were TVI-2,
TVI-1, NDVI (R730, R815), and NDVI (R730, R815), respectively. R2 values corresponding to LAI, LDW,
LNC and LNA were 0.64, 0.84, 0.60, and 0.82, respectively, and their relative root mean square error
(RRMSE) values were 0.29, 0.26, 0.17, and 0.30, respectively. The addition of the red spectral band to
CGMD effectively improved the monitoring results of wheat LAI and LDW. Focusing the problem
of vegetation index saturation, this paper proposed a method to construct the wheat-growth-index
spectral monitoring models that were defined according to the growth periods. It improved the
prediction accuracy of LAI, LDW, and LNA, with R2 values of 0.79, 0.85, and 0.85, respectively, and the
RRMSE values of these growth indices were 0.22, 0.23, and 0.28, respectively. The method proposed
here could be used for the guidance of wheat field cultivation.

Keywords: multispectral sensor; crop growth status; vegetation index; growth period; spectral
monitoring model; precision agriculture; agricultural remote sensing
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1. Introduction

Wheat (Triticum aestivum L.), which is the oldest cultivated crop, is presently an important staple
crop in China; thus, improving the level of wheat production is critical to ensuring national food security
and economic income to farmers [1]. With the development of agricultural cultivation techniques
and the improvement of the level of agricultural mechanization, wheat production and management
has gradually shifted to being more precise and intelligent; thus, effectively obtaining wheat growth
information is an important prerequisite for precision agricultural operations [2]. Although traditional
laboratory analysis methods can accurately obtain the physiological and biochemical parameters of
wheat, these methods are laborious, time-consuming, and cannot be applied in agricultural production.
In recent years, the development of spectral monitoring techniques has made it possible to obtain
wheat growth information in real-time and in a rapid, non-destructive manner [3].

Based on spectral monitoring techniques, Chinese and international research institutes have
developed a variety of multi-spectral and hyper-spectral crop growth monitoring apparatuses
based on different platforms and have carried out a series of experimental studies using those
apparatuses. Portable instruments are a popular choice in the field of crop growth monitoring for
their convenience and portability. Single-leaf scale monitoring equipment is currently the most mature
of these apparatuses. Uddling et al. [4] monitored the chlorophyll content of wheat based on the
chlorophyll-content monitor SPAD-502 (Konica-Minolta, Tokyo, Japan), and the obtained readings had
a strong non-linear correlation with the chlorophyll content of wheat leaves, which could achieve the
diagnosis of wheat chlorophyll in different cultivars and growth stages. Cerovic et al. [5] performed
experimental studies on crops, such as wheat and corn, using the multi-functional leaf measuring
instrument Dualex 4 (FORCE-A, Orsay, France). The research results showed that the instrument
could accurately obtain the chlorophyll index, flavonoid index, and nitrogen balance index of crop
leaves, achieve the fast and non-destructive monitoring of crop growth, and help crop field nitrogen
management. These two monitors have high accuracy, but can only monitor indices, such as the
chlorophyll content of crop leaves, by point sources. They cannot represent the growth index of crop
populations, and their application is limited.

Canopy-scale crop growth monitoring equipment can obtain vegetation indices to build crop
growth monitoring models, with the advantages of having a wide monitoring range and being able
to monitor multiple indices; it is currently the main type of monitoring equipment on the market.
Zhang et al. [6] used a GreenSeeker portable spectrometer (Trimble Navigation Limited, Sunnyvale,
CA, USA) to monitor the growth indices of winter wheat, constructed the new vegetation indices rNDVI
and rRVI based on the NDVI and RVI obtained by the instrument, and realized effective monitoring of
indices such as leaf area index (LAI) and biomass. However, the retrieval effect of leaf nitrogen content
(LNC) at the jointing stage of wheat was poor. Osborne [7] used a GreenSeeker portable spectrometer
to estimate in-season growth and N status in spring wheat and found that NDVI obtained by this
sensor showed a significant relationship with plant biomass, N concentration, and N uptake. The result
suggested that GreenSeeker could also be used in the northern Great Plains for estimating in-season N
need for spring wheat. Cao et al. [8] used Crop Circle ACS 470 (Holland Scientific Inc., Lincoln, NE,
USA) to estimate the rice yield potential in a growing season and found that the device had relatively
high monitoring accuracy at the jointing, booting, and heading stages (R2 values were greater than
0.7), and the device could effectively improve rice field nitrogen management. Cao et al. [9] used ACS
470 to monitor plant N uptake (PNU) and grain yield of winter wheat by constructing 43 vegetation
indexes. The results indicated that the decision coefficients of PNU and grain yield models based on
ACS 470 were 0.78 and 0.62, respectively, and the prediction accuracy was significantly better than
that of GreenSeeker. Feng et al. [10] used an ASD FieldSpec Pro FR 2500(Analytical Spectral Devices,
Boulder, CO, USA) to obtain wheat canopy hyperspectral data and compared the monitoring effects of
different sensitive bands and spectral indices on wheat nitrogen indices. The results showed that the
optimal vegetation indices corresponding to LNC and leaf nitrogen accumulation (LNA) were REIPle
and FD452, respectively, and the prediction accuracies reached 0.75 and 0.87, respectively. While
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the above spectrometers can monitor different crop growth indices, they still have some problems
in agricultural applications. Some of the commercial instruments mentioned cost more than CNY
100,000 (about USD 14,000), which is difficult for most farmers to accept. In addition, hyperspectral
instruments such as ASD simultaneously acquire reflectance of hundreds of bands, and the data
redundancy is large. These instruments require professional knowledge of data processing to extract
effective information, which limits their promotion.

In response to the problems of these instruments, Nanjing Agricultural University developed
a portable instrument of crop-growth monitoring and diagnosis (CGMD) CGMD-302, which can
effectively obtain a variety of growth indices, such as crop LAI, biomass, and nitrogen status, and has
the advantages of being easy to carry, cost-effective, and easy to operate [11,12]. However, the
CGMD-302 contains only two bands, red edge and near-infrared, and it only obtains one vegetation
index. Due to the lack of visible bands of light, there may be insufficient spectral information and low
accuracy of the retrieved growth index. Chu et al. [13] pointed out that the spectral index of combined
red edge and near-infrared bands is more sensitive to the LNA, but it is not suitable for monitoring LNC.
Previous studies have shown that there are differences in the sensitive bands corresponding to different
growth indices. The bands in the vicinity of 550 nm and 650–760 nm can effectively reflect the nitrogen
status of plants. The spectral reflectance values near 450, 550, 670, and 870 nm show a high correlation
with LAI, and the bands near 560, 670, 810, and 930 nm are more sensitive to biomass indices [14–18].
The visible light region is highly correlated with several growth indices and is the core band used in
crop spectral monitoring. According to the photochemical characteristics of crops, chlorophyll a and b
show the maximum absorption in the red band. Previous studies have found a strong relationship
with crop characteristics is located in specific narrow bands in the portion of red [19,20]. Bunnik [21]
found that the spectral characteristics of the red band of the crop canopy are different from those of
the near-infrared band, which can effectively supplement the information obtained by the instrument.
Zhu et al. [22] also found that RVI (R660, R810) and RVI (R660, R870) were most highly correlated with
LNA in both wheat and rice. In addition, existing studies have shown that the monitoring results of a
three-band vegetation index on some growth indices is better than that of two-band vegetation indices,
and a proper increase in the number of spectrometer bands is conducive to improving the monitoring
accuracy [23–26]. Therefore, multi-band crop growth monitoring equipment equipped with red, red
edge, and near-infrared bands is more consistent with the needs of crop growth monitoring.

To the CGMD, the red spectral band was added to the two bands of the CGMD-302, and as a result,
the new instrument can simultaneously obtain the reflectance of red, red edge, and near-infrared spectral
bands. According to the modeling needs of the growth indices of different crops, the appropriate
vegetation index was then able to be selected, which allows for more flexibility and applicability in
practical applications. Based on CGMD, the canopy reflectance values of wheat in red, red edge,
and near-infrared spectral bands were obtained in this paper. A series of two-band and three-band
vegetation indices was constructed, and the fitting relationship between vegetation indices and growth
parameters was studied. A method of constructing the wheat-growth-index spectral monitoring
models that were defined according to the growth periods is proposed in this study.

2. Materials and Methods

2.1. Design of Field Experiments

Wheat field experiments were conducted from November 2018 to April 2019 at the demonstration
base of the National Engineering and Technology Center for Information Agriculture in Rugao City,
Jiangsu Province, China (120◦46’ E, 32◦16’ N). The experimental cultivar used was Shengxuan No.
6. The three nitrogen fertilizer levels used in the experiment were the following: N0 (0 kg/hm2), N1
(180 kg/hm2), and N2 (360 kg/hm2). The ratio of base fertilizer to fertilizer at the jointing stage was
5:5. Two types of base fertilizer were applied simultaneously (135 kg/hm2 of P2O5 and 220 kg/hm2

of K2O). Three planting densities were used, with line spacings of D1 (20 cm), D2 (35 cm), and D3
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(50 cm). A split-plot design was used in this experiment, with the density level as the main plot and
the nitrogen fertilizer level as the secondary plot. There were nine treatments and three replicates, for
a total of 27 plots. The length and width of each plot was 6 m and 5 m, respectively, for a total plot area
of 30 m2. Spectral data and growth indices were obtained simultaneously as four of the growth stages
of wheat: jointing, booting, heading, and flowering. Pest and other management procedures followed
local standard production practices in wheat.

2.2. Equipment

2.2.1. Portable Three-Band CGMD Instrument

The CGMD instrument consisted of multi-spectral crop growth sensor, processor system, sensor
holder, level, shielded cable and other components, as shown in Figure 1. Compared with other
instruments, the monitor was cost-effective, easy to carry, and suitable for field operation. The
parameters of some common instruments are shown in Table 1. The sensor size of CGMD was smaller
than other instruments, which made it easier to carry in the field. Although CGMD weighs about
1.6 kg, the support bar allows the user to put the instrument on the ground during test instead of
holding it at all times. The support bar could adjust the height of the sensor to meet the monitoring
requirements at different growth periods, and the level equipped on the support bar could calibrate
the angle of the sensor lens in time. The unique structure of the CGMD made its operation simple
and labor-saving.
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The multi-spectral crop sensor was structurally divided into an upward light sensor and a
downward light sensor. The upward light sensor could receive sunlight radiation information at 660,
730, and 815 nm bands; the downward light sensor is composed of three detector lenses for detection
at characteristic wavelengths of 660, 730 and 815 nm, respectively. The design of the upward light
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sensor and the downward light sensor could correct the spectral reflectance in real time, avoiding the
influence of sunlight on the monitoring accuracy. Each detector lens consists of a spectral filter and
photoelectric detectors. To obtain the reflectance values of the crop canopy at 660, 730 and 815 nm
bands, the radiation information is processed after being converted to electrical signals through the
photoelectric detector. Multispectral sensors are shown in Figure 2. The simple and unique structural
design of CGMD led it to exhibit a better cost performance than other commercial instruments, so this
instrument has high application potential.

Table 1. The parameters of some instruments of crop-growth monitoring.

Instrument Sensor Size
(mm)

Weight
(kg)

Price
(CNY)

Waveband
(nm)

Light
Source

CGMD 54 × 38 × 38 1.6 About 4000 660, 730, 815 Sunlight
ASD Handheld 2 215 × 140 × 90 1.2 Over 150,000 325–1075 Sunlight

Crop Circle ACS-470 201 × 89 × 48 3.6 Over 100,000 450, 550, 650, 670, 730, 760 LED
GreenSeeker

Handheld 277 × 86 × 15 1.02 Over 100,000 656, 774 LED

SPAD-502 164 × 78 × 49 0.23 Over 10,000 650, 940 LED
Dualex 4 205 × 65 × 55 0.22 Over 100,000 375, 655, 710, 850 LED

CGMD: a portable three-band instrument for crop-growth monitoring and diagnosis.
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2.2.2. ASD FieldSpec HandHeld2 Spectroradiometer

ASD FieldSpec HandHeld2 spectroradiometer (Analytical Spctral Devices Inc., Boulder, CO, USA)
was used to evaluate the data acquisition performance of the portable three-band CGMD instrument.
This device has a 512-element photodiode array (PDA) detector, which uses sunlight as a light source,
with a wavelength range of 325–1075 nm, a scanning time of 17 ms, and a spectral sampling interval of
approximately 1.5 nm. The measuring site of the instrument was 1 m above the canopy, the field angle
of the spectrometer was 25◦, and the measurement range was a circular plane. The measured data
were calibrated by a white Spectralon reference panel to obtain the reflectance data. The monitor uses
sunlight as the light source, and the measurement should be conducted at noon under a clear sky or
scattered clouds. This spectroradiometer has the advantages of having a high resolution, narrow wave
band, and good continuity, and it is currently recognized as a good CGMD instrument on the market.
This instrument is shown in Figure 3.
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Figure 3. ASD FieldSpec HandHeld2 spectrophotometer.

2.2.3. LAI-2200C Plant Canopy Analyzer

The LAI-2200C plant canopy analyzer (Li-Cor, Lincoln, NE, USA) was used to acquire observed
LAI. The device uses a “fisheye” optical sensor (148◦ vertical field-of-view and 360◦ horizontal
field-of-view) to measure transmitted light at five angles above and below the vegetation canopy. The
canopy structure parameters, such as LAI, mean leaf inclination angle, void ratio, and aggregation
index were calculated. The LAI-2200C is based on the mature LAI-2000 technology platform and
has a built-in GPS module. It can integrate GPS information and perform scattered light calibration,
allowing the LAI-2200C to be suitable for the canopy measurement under any weather conditions.
This instrument is shown in Figure 4.
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2.3. Measurement Method

2.3.1. Measurement of Spectral Data

Spectral measurement requires the measurement environment to be in good light conditions and
the measured object to remain stationary. Therefore, the measurements in this paper were conducted
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at noon with no wind. The measurement times at the following stages, i.e., early jointing, late jointing,
booting, heading, and flowering, and the canopy reflectance spectra were obtained at three bands
(660, 730, and 815 nm). In the experiment, the ASD FieldSpec HandHeld2 spectroradiometer was
used to simultaneously monitor the crop canopy reflectance spectra. Three sites were selected for
monitoring in each plot, and the average of the monitoring results in each plot was calculated. More
detailed data are available in the supplementary material.

2.3.2. Determination of Growth Indices

While the spectral data were acquired, the growth indices of wheat were obtained by destructive
sampling. In each plot, 50 cm representative wheat plants were selected, and samples were divided
indoors according to plant organs. The LAI-2200C was used to obtain the LAI at the time of sampling.
Three sites were selected to be monitored in each plot, and the average of the monitoring results for
each plot was calculated. The samples were fixed at 105 ◦C for 30 min, then the plants were dried to
constant weight at 80 ◦C, and the sample was weighed to obtain leaf dry weight (LDW). Each sample
was pulverized, and its LNC was determined by the Kjeldahl method [27]. LNA was calculated using
the following equation.

LNA = LNC× LDW (1)

2.4. Data Analysis Methods

2.4.1. Vegetation Index Calculation

The two-band vegetation indices selected in this study included the Normalized Vegetation Index
(NDVI), Ratio Vegetation Index (RVI), and Difference Vegetation Index (DVI) [28–30]. Additionally,
this study independently constructed two three-band vegetation indices: TVI-1 and TVI-2.

The construction of the three-band vegetation indices was based on the common construction
form of two-band vegetation indices. An additional band was added to the original vegetation index
to make it retain the physical characteristics and increase the amount of information. Among them, the
construction of TVI-1 used the construction principle and a form of NDVI as a reference, replacing the
red band of light in NDVI with (Rred + Rred-edge) and multiplying the near-infrared band by 2 to
make it numerically equivalent to (Rred + Rred-edge). In developing TVI-2, the construction principle
was used as well as a form of DVI as a reference. Additionally, (Rred + Rred-edge) replaced the red
band of light in DVI, and the near-infrared band was multiplied by 2 to make it numerically equivalent
to (Rred + Rred-edge). The equation of the above vegetation indices are as follows.

NDVI = (Rρ1 −Rρ2)/(Rρ1 + Rρ2) (2)

RVI = Rρ1/Rρ2 (3)

DVI = Rρ1 −Rρ2 (4)

TVI− 1 = (2×Rρ1 −Rρ2 −Rρ3)/
(
2×Rρ1 + Rρ2 + Rρ3) (5)

TVI− 2 = 2×Rρ1 −Rρ2 −Rρ3 (6)

2.4.2. Data Analysis

Regression analysis was used to construct the model for LAI, LDW, LNC, and LNA estimation
using the Excel 2016 software (Microsoft Inc., Redmond, WA, USA). Seventy percent of the datasets was
used to construct monitoring models, and the remaining 30 percent was used to verify the prediction
accuracy of the models. The data of the training set and the verification set came from different plots.
The vegetation indices constructed from the obtained crop canopy spectral information were fitted
to agronomic parameters based on least square method, and crop growth monitoring models were
constructed by exponential regression analysis. The coefficient of determination (R2) and relative root
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mean square error (RRMSE) were used to comprehensively evaluate the performance of the model.
The range of R2 is between 0 and 1; the larger the value, the higher the prediction accuracy of the
model; the smaller the RRMSE value, the smaller the data difference and the higher the prediction
accuracy of the model. The R2 values were evaluated by Excel 2016 software, and the RRMSE values
were evaluated by MATLAB R2017b software (The Math Works Inc., Natick, MA, USA). The equations
used for data analysis are as follows:

R2 =
SSR
SST

(7)

RRMSE =

√∑n
i=1 (Pi −Oi)

2

n
×

100
Oi

(8)

where SSR, SST, Pi, Oi, and n are the sum of regression squares, sum of residual squares, predicted
value, observed value, and number of samples, respectively.

3. Results

3.1. Evaluation of Data Acquisition Performance of the Portable Three-Band CGMD Instrument

To evaluate the performance of the CGMD instrument in obtaining vegetation indices, regression
analysis was performed on the corresponding values of NDVI, RVI, DVI, TVI obtained by the CGMD
instrument in each growth period. To facilitate the comparison and analysis of the fitting accuracy of
the combined vegetation indices of different wavebands, the vegetation indices obtained by FieldSpec
HandHeld2 and CGMD were normalized. As shown in Figure 5, the fitting results of the vegetation
indices obtained by CGMD and the corresponding values obtained by the commercial instrument
FieldSpec HandHeld2 have a linear relationship, but some differences can be seen in the fitting accuracy
of different vegetation.
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The correlation of fitting of each vegetation index with different band combinations was compared.
The fitting results of NDVI (R730, R815) were better than those of NDVI (R660, R815) and NDVI (R660, R730).
The R2 values were 0.83, 0.67, and 0.56, respectively, and the RRMSE values were 0.16, 0.10, and 0.13,
respectively; the combination of 660 and 730 nm and 660 and 815 nm showed severe dispersion at
low values. There were similar patterns for different band combinations for RVI and DVI. For the
660 nm/730 nm, 660 nm/815 nm, and 730 nm/815 nm combinations, the R2 values of RVI were 0.53,
0.66, and 0.82, respectively, and the RRMSE values were 0.33, 0.35, and 0.07, respectively; the R2

values of DVI were 0.21, 0.60, and 0.79, respectively, and the RRMSE values were 0.21, 0.60, and 0.79,
respectively. The accuracies of vegetation indices of different bands obtained by CGMD were in a
descending order of 730 nm/815 nm, 660 nm/815 nm, and 660 nm/730 nm. This result was caused
by the accuracy difference of the sensor at each band. The three-band vegetation indices TVI-1 and
TVI-2 obtained by CGMD also showed a relatively high accuracy, with R2 values of 0.78 and 0.69,
respectively, and RRMSE values of 0.10 and 0.27, respectively. The correlation of fitting of CGMD with
FieldSpec HandHeld2 was relatively high, the R2 values were above 0.5 (except for DVI (R660, R730)),
and CGMD could be used to obtain wheat canopy reflectance.

3.2. Fitting Results of Vegetation Indices With Growth Indices

3.2.1. Fitting Results of Vegetation Indices with LAI

LAI refers to the total area of plant leaves per unit of land area, which is related to the size and
structure of the plant canopy and is a comprehensive index reflecting the growth status of plants [31].
The fitting results of vegetation indices obtained by CGMD with LAI are shown in Figure 6. The
number of samples used for the regressions was 63. Comparing the fitting results of each vegetation
index with LAI, the correlation of fitting of the three-band vegetation indices TVI-1 and TVI-2 with
LAI was high, with R2 values of 0.71 and 0.83, respectively, and RRMSE values of 0.33 and 0.24,
respectively. Among them, the retrieval accuracy of TVI-2 on LAI was higher than those of most
two-band vegetation indices. The fitting results of the two-band vegetation indices of different band
combinations with LAI were different. The correlation of fitting of 730 nm/815 nm combination with
LAI was the highest, and the R2 values were above 0.74. Among them, the fitting of DVI (R730, R815)
was the best (R2 = 0.83, RRMSE = 0.23). The correlation of fitting of the 660 nm/815 nm combination
was generally lower than that of the 730 nm/815 nm combination, and the fitting of DVI (R660, R815)
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was good (R2 = 0.81, RRMSE = 0.25); the 660 nm/730 nm combination showed the lowest correlation of
fitting with LAI, the R2 values were lower than 0.68, and the RRMSE values were relatively high. In
addition, the retrieval results of different types of vegetation indices exhibited differences. The fitting
of DVI with LAI was better than that of NDVI and RVI in general (R2 > 0.68, RRMSE < 0.34).
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The LAI prediction model was verified, and the verification result is shown in Figure 7. The
prediction results of the two-band vegetation indices of the combinations of 660 nm/815 nm and
730 nm/815 nm and the three-band vegetation indices were relatively good. Among them, the prediction
accuracy of DVI (R660, R815), DVI (R730, R815), and TVI-2 were higher than those of other vegetation
indices; the corresponding R2 values were 0.64, 0.62, and 0.64, respectively, and the RRMSE values
were 0.29, 0.30, and 0.29, respectively. The red spectral band is a strong chlorophyll absorption band,
and its reflectance can reflect the LAI information. The DVI (R660, R815) and TVI-2 including the red
spectral band improved the prediction accuracy of LAI.
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NDVI (A), RVI (B), DVI (C) and TVI (D) models.

The predicted value of each monitoring model deviated from the 1:1 line when the LAI value was
large, and the prediction accuracy was low. The fitting results of vegetation indices and LAI showed
(Figure 6) that the scattered point distribution of the vegetation indices was close to a straight line when
the LAI was less than 3. As the LAI value increased, the magnitude of increase in vegetation index was
less than that of LAI, and there was a saturation phenomenon, which reduced the monitoring accuracy
of the monitoring model when the LAI value was large.

3.2.2. Fitting Results of Vegetation Indices with LDW

LDW refers to the dry weight of leaves per unit area and is an important index of plant growth.
The fitting results of vegetation indices obtained by CGMD with LDW are shown in Figure 8. The
number of samples used for the regressions was 63. The experimental results showed that the fitting
accuracy of the vegetation indices constructed in this paper with LDW were relatively high (R2 > 0.65).
The correlation of fitting of the three-band vegetation indices TVI-1 and TVI-2 with LDW was higher
than that of most two-band vegetation indices; R2 values were 0.77 and 0.78, respectively, and the
RRMSE values were 0.30 and 0.27, respectively. Comparing the retrieval results of LDW using the
two-band vegetation indices, the 660 nm/815 nm band combination and the 730 nm/815 nm band
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combination showed good fitting results with LDW; R2 values were above 0.72. Among them, the
fitting result of DVI (R660, R815) with LDW was the best; the R2 value was 0.78, and the RRMSE value
was 0.26. The red spectral band effectively improves the accuracy of CGMD to retrieve LDW.
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The verification results of the LDW monitoring model are shown in Figure 9. The number of
samples used for the verification was 28. The three-band vegetation indices and the two-band vegetation
indices of 660 nm/815 nm and 730 nm/815 nm combinations showed relatively high prediction accuracy
for LDW, with all R2 values being above 0.71 and RRMSE values being less than 0.32. Among them,
the prediction accuracy of TVI-2 was the best; the R2 value reached 0.84, and the RRMSE value was
0.26. The LDW index reflects the number of leaves in a unit area. The red spectral band also contains
the LDW information, and the addition of TVI-1 in the red spectral band effectively improves the
monitoring accuracy of LDW. The wheat LDW monitoring model also produced saturation under the
large value condition. The verification results showed that the monitoring model had a low prediction
value when the LDW value was greater than 200 g/m2 and the accuracy of the LDW prediction for
large groups needs to be improved.
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Figure 9. The relationships between observed and predicted LDW values of wheat varieties based on
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3.2.3. Fitting Results of Vegetation Indices with LNC

LNC is an important nutrient index reflecting crop growth, and obtaining crop LNC in real time
can help guide variable-rate fertilization in the field. The fitting results of vegetation index obtained
by CGMD with LNC are shown in Figure 10. The number of samples used for the regressions was
63. The correlation of fitting of vegetation indices with LNC was lower than those of other growth
indices. The fitting results of three-band vegetation indices TVI-1 and TVI-2 with LNC did not improve
the retrieval accuracy; the corresponding R2 values were 0.62 and 0.55, respectively, and the RMSE
values were 0.15 and 0.17, respectively. Comparing the correlation of fitting of the two-band vegetation
indices with LNC, the 660 nm/730 nm band combination had a poor fit with LNC, with R2 values of
below 0.49, which was not suitable for LNC monitoring. The fitting results of the vegetation indices of
660 nm/815 nm and 730 nm/815 nm band combinations with LNC were relatively good; the range of
R2 was 0.53–0.64, and the range of RRMSE was 0.15–0.17. Among them, the correlation of fitting of
NDVI (R730, R815) with LNC was the highest (R2 = 0.64, RRMSE = 0.15).
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Figure 10. Fitting curve of NDVI (A), RVI (B), DVI (C) and TVI (D) to LNC of wheat.

The verification results of the LNC prediction model are shown in Figure 11. The number
of samples used for the verification was 28. The three-band vegetation indices and the two-band
vegetation indices of 660 nm/730 nm and 660 nm/815 nm combinations showed low prediction accuracy
for LNC. All R2 values were below 0.5, the RRMSE values were large, and the trend line deviated
from the 1:1 line, so they were not suitable for LNC prediction and measurement. The 730 nm/815 nm
combination had relatively high prediction accuracy for LNC. Among them, the prediction accuracy
of NDVI (R730, R815) for LNC was the highest, with R2 of 0.60 and RRMSE of 0.17. There was no
saturation problem in the wheat LNC monitoring model, but the dispersion of scattered points of
the model was relatively high, and the prediction accuracy was lower than those of other vegetation
indices. When the LNC was lower than around 3%, the predicted value was higher than the measured
value; when it was greater than around 3%, the predicted value was lower than the measured value,
and the fitted curve deviated from the 1:1 line. The red spectral band is the main absorption band of
chlorophyll and can indirectly reflect the nitrogen status of leaves in theory. However, the results in
this paper demonstrate that the red spectral band does not improve the retrieval accuracy of LNC, and
further research on LNC monitoring is needed.
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3.2.4. Fitting Results of Vegetation Indices with LNA

LNA is a growth index obtained through the calculation using LDW and LNC, and it reflects
both the nitrogen status of crop leaves and the growth characteristics of crop population. The fitting
results of the vegetation indices obtained by CGMD with LNA are shown in Figure 12. The number
of samples used for the regressions was 63. The experimental results showed that the correlation of
fitting of three-band vegetation indices TVI-1 and TVI-2 with LNA was high. The R2 values were 0.83
and 0.85, respectively, but the model training error was relatively large, and the RRMSE values were
0.37 and 0.32, respectively. Comparing the results of the two-band vegetation indices on the retrieval
of LNA, the fitting results of the 660 nm/815 nm and 730 nm/815 nm band combinations were better
than that of the 660 nm/730 nm combination, with R2 values being above 0.73. Among them, NDVI
(R730, R815), RVI (R730, R815), DVI (R660, R815), and DVI (R730, R815) showed good fitting results with
LNA, with R2 values of 0.83, 0.82, 0.85, and 0.84, respectively, and RRMSE values of 0.36, 0.37, 0.33,
and 0.31, respectively.
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Figure 12. Fitting curve of NDVI (A), RVI (B), DVI (C) and TVI (D) to LNA of wheat.

The verification results of the LNA monitoring model are shown in Figure 13. The number of
samples used for the verification was 28. The accuracies of the three-band vegetation indices and the
two-band vegetation indices of 730 nm/815 nm for the prediction of LNA were relatively high, and R2

values were above 0.73. However, some monitoring models had large errors, and the RRMSE range
was 0.30–0.51. Among them, the prediction accuracy of NDVI (R730, R815) was the best, with an R2

of 0.82 and an RRMSE of 0.30. LNA is a growth index obtained by multiplying LDW and LNC. The
fitted curve showed a similar saturation phenomenon as that of LDW. The prediction accuracy of the
monitoring model decreased when the LNA value was greater than 10 g/m2. The experimental results
show that the vegetation indices of the combination of red edge and near-infrared band are more
suitable for the prediction of wheat LNA.



Sensors 2020, 20, 2894 17 of 25
Sensors 2020, 20, x FOR PEER REVIEW 17 of 25 

 

(A) (B) 

(C) (D) 

Figure 13. The relationships between observed and predicted LNA values of wheat varieties based 
on NDVI (A), RVI (B), DVI (C) and TVI (D) models. 

3.3. Spectral Monitoring Model of Wheat Growth 

From the fitting of the vegetation index with the growth index, under the condition that the 
wheat canopy population was large, the vegetation index was saturated, which led to poor prediction 
accuracy of each vegetation index with high biomass. As shown in Figure 6, Figure 8 and Figure 10, 
as the value of growth indices increased, the distribution of scattered points became more discrete, 
and this problem was difficult to solve with a single spectral monitoring model. According to the 
pattern of wheat growth, various growth indices in the vegetative growth stage tended to increase 
rapidly, and after the shift from vegetative growth to reproductive growth, the trend of increase was 
flat, and some indices even decreased. Based on the differences of wheat growth indices in different 
phenological periods, the samples could be classified, which could reduce the gap between the values 
of scattered points with high biomass in each model. Therefore, this paper proposes a method for 
constructing a wheat-growth-index spectral monitoring model based on the growth stages. The data 
were divided into periods I and II according to the characteristics of wheat growth, and a growth 
spectral monitoring model was independently constructed to solve the problem of impact of 
vegetation index saturation on the prediction accuracy of the model. 

The dynamic changes of wheat growth indices from the jointing stage to the flowering stage are 
shown in Figure 14. The value of LAI before the heading stage increased over the growth period; the 
increase rate from the jointing stage to the booting stage was relatively small, the average value 

Figure 13. The relationships between observed and predicted LNA values of wheat varieties based on
NDVI (A), RVI (B), DVI (C) and TVI (D) models.

3.3. Spectral Monitoring Model of Wheat Growth

From the fitting of the vegetation index with the growth index, under the condition that the
wheat canopy population was large, the vegetation index was saturated, which led to poor prediction
accuracy of each vegetation index with high biomass. As shown in Figures 6, 8 and 10, as the value of
growth indices increased, the distribution of scattered points became more discrete, and this problem
was difficult to solve with a single spectral monitoring model. According to the pattern of wheat
growth, various growth indices in the vegetative growth stage tended to increase rapidly, and after
the shift from vegetative growth to reproductive growth, the trend of increase was flat, and some
indices even decreased. Based on the differences of wheat growth indices in different phenological
periods, the samples could be classified, which could reduce the gap between the values of scattered
points with high biomass in each model. Therefore, this paper proposes a method for constructing a
wheat-growth-index spectral monitoring model based on the growth stages. The data were divided
into periods I and II according to the characteristics of wheat growth, and a growth spectral monitoring
model was independently constructed to solve the problem of impact of vegetation index saturation
on the prediction accuracy of the model.

The dynamic changes of wheat growth indices from the jointing stage to the flowering stage are
shown in Figure 14. The value of LAI before the heading stage increased over the growth period;
the increase rate from the jointing stage to the booting stage was relatively small, the average value
increased from 1.75 to 2.06, and the value ranges were 0.55–2.87 and 0.69–3.88, respectively. The value
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from the booting stage to the heading stage varied greatly; the average value increased to 2.80, and
the value at the heading stage ranged from 0.80 to 5.48. After the heading stage, the wheat LAI value
changed slightly, the average value at the flowering stage was 2.98, and the value range was 1.02–5.54.
Therefore, the period from the jointing stage to the booting stage was defined as period I, and the
period from the heading stage to the flowering stage was defined as period II.
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The LDW value of wheat increased greatly from the jointing stage to the booting stage; the average
value increased from 112.13 g/m2 to 191.48 g/m2, and the value range increased from 36.56–199.52 g/m2

to 53.35–371.49 g/m2. The value from the booting stage to the flowering stage was relatively stable, the
value from the booting stage to the heading stage decreased, and the average value decreased from
191.48 g/m2 to 144.05 g/m2. The value range at the booting stage was 27.83–302.18 g/m2. The value
from the booting stage to the flowering stage remained the same. The average value at the flowering
stage was 143.03 g/m2, with a range of 46.64–330.31 g/m2. Therefore, the jointing stage alone was
defined as period I, and the booting stage to the flowering stage was defined as period II.

The differences of LNC in the wheat phenological stages were small, and the average values from
the jointing stage to the flowering stage were 2.93%, 2.77%, 2.82%, and 2.84%, respectively. The range of
the jointing stage was close to that of the booting stage, and the value range was mostly distributed at
1.7%–3.5%, while the value ranges of the heading stage and the flowering stage were more consistent,
and the value range was mostly distributed at 1.8%–4.0%. Therefore, the jointing stage and the booting
stage were defined as period I, and the heading stage and flowering stage were defined as period II.

LNA is a growth index obtained by multiplying LNC and LDW. Its trend of change includes the
characteristics of LDW and LNC. There was a large change in the value from the jointing stage to the
booting stage, the average value increased from 3.45 g/m2 to 5.70 g/m2, and the range increased from
0.64–7.13 g/m2 to 0.94–13.27 g/m2. The values from the booting stage to the flowering stage tended to
be stable. The average values were 5.70 g/m2, 4.47 g/m2, and 4.51 g/m2, respectively, and the values
ranged from 0.94–13.27 g/m2, 0.55–10.00 g/m2, and 1.03–11.97 g/m2, respectively. Therefore, the jointing
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stage alone was defined as period I, and the period from the booting stage to the flowering stage was
defined as period II.

The vegetation indices with the highest prediction accuracy corresponding to different wheat
growth indices of periods I and II were screened out to construct the crop growth monitoring model
(Figure 15). The number of samples used for constructing models and the verification was 63 and 28,
respectively. The vegetation index corresponding to LAI with the highest prediction accuracy was
TVI-2, the vegetation index corresponding to LDW was TVI-1, the vegetation index corresponding to
LNC was NDVI (R730, R815), and the vegetation index corresponding to LNA was NDVI (R730, R815).
The monitoring model and verification results are shown in Figure 15. The fitting accuracies of LAI,
LDW, and LNA in period II increased, R2 values increased to 0.94, 0.85, and 0.87, respectively, and the
RRMSE values were 0.13, 0.08, and 0.32, respectively, showing that the saturation problem caused by
large groups in the late growth stage was eliminated to some extent. However, the fitting result of
period I was not considerably improved compared with that of the original monitoring model, and
the quality of fitting results of the growth indices, except for LAI and LNC, decreased to a certain
extent. The reason may be that the data range and coefficient of variation of the early growth stage are
small, and under the same conditions, the required accuracy of the monitoring instrument is higher.
Additionally, the reduction in the number of training samples for modeling in different periods also has
a certain impact on the accuracy of the model. Therefore, in this study, we still chose the monitoring
model of the whole growth period when predicting the values of the growth indices LDW and LNA
in period I. The trend lines, R2 values, and RRMSE values of LNC in period I and period II were
consistent, indicating that the change in the numerical characteristics of LNC in different phenological
periods is small, and segmentation modeling cannot improve the accuracy of LNC fitting.

The verification results showed that the prediction accuracy of the LAI monitoring model increased
the most, R2 increased from 0.64 to 0.79, and RRMSE decreased from 0.29 to 0.22. The prediction
accuracy improved to a certain extent when the population was large, and the trend line was closer to
the 1:1 line. The prediction accuracies of LDW and LNA improved slightly, the R2 values increased to
0.85 and 0.85, respectively, and the RRMSE values were 0.23 and 0.28, respectively. The prediction
result of LNC was the same as that of the original monitoring model, and the segmentation modeling
could not improve its monitoring accuracy. The above finding shows that the wheat growth monitoring
model constructed based on the growth stages in this study greatly improves the monitoring accuracy
of LAI, but the prediction accuracy of LDW, LNC, and LNA were not able to be substantially improved.
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4. Discussion

With the development of non-destructive monitoring technologies based on feature identification
through reflectance spectra, some research institutes in China and abroad have developed a variety
of crop growth monitoring apparatuses [32,33]. Compared with GreenSeeker and other two-band
spectrophotometers, CGMD can obtain more vegetation indices, and it can choose the corresponding
vegetation index to monitor different growth indices. Although ASD FieldSpec and other hyperspectral
spectrophotometers can obtain more vegetation indices, they are difficult to popularize because of
their large data redundancy and complex data processing. The spectral bands of CGMD are sensitive
to crop growth indices, which makes it easier to operate and more suitable for crop field monitoring.

The addition of a 660 nm band sensor to CGMD increased the degree of freedom of vegetation
index selection, and the three-band vegetation indices constructed in this paper improved the prediction
accuracy of the growth indices LAI and LDW. The red spectral region is a strong chlorophyll absorption
band, and its change in reflectance change can indicate the area of green plants in the field-of-view
to a certain extent. Previous studies have shown that the red and near-infrared bands are more
sensitive to canopy population indices such as LAI and LDW, which is consistent with the results of this
paper [34,35]. Therefore, the addition of the 660 nm band sensor to CGMD is an effective supplement
to the original 730 nm and 815 nm band sensors of CGMD-302. The correlations of fitting the two-band
vegetation indices based on the combinations of 660–730 nm and 660–815 nm bands with each growth
index were always lower than those of the 730–815 nm combination. This result may be caused by the
spectral characteristics of red light. The red spectral band is the absorption peak of plant chlorophyll,
and the reflectance value is low. Therefore, the red spectral band requires higher accuracy of the sensor
than the red edge and near-infrared bands. The results of this study also showed that the accuracy
of the reflectance obtained at the 660 nm band was lower than those at other bands, which limits the
ability of the red spectral band to retrieve the growth index to a certain extent. Conversely, the red
spectral band is more prone to saturation when monitoring various growth indices. Yao et al. [36]
found that the NDVI became saturated when biomass reached about 400 g/m2 or when plant N uptake
reached about 10 g/m2. Wang et al. [37] found that when LAI was less than 3, the red band was
more sensitive to LAI, while the green band was more sensitive when LAI reached 3. Previously,
researchers have alleviated this issue to some extent by creating a new vegetation index, but there is
still no accepted method to eliminate the saturation phenomenon [38–40]. Therefore, although red is a
sensitive band of many growth indices, there are still many problems to be solved in application.

The canopy reflectance and structure of wheat were affected by nutrition and growth period.
The great difference of growth indices from jointing stage to flowering stage would decrease the
precision accuracy of monitoring model [41–43]. Li et al. [44] found that the canopy structure of winter
wheat had obvious difference between feek 4–7 and feek 8–10, and the prediction accuracy of nitrogen
concentration could be effectively increased through building monitoring models independently at
different growth stages. Yu et al. [45] indicated that growth stages negatively affect hyperspectral
indices in different ways in nitrogen monitoring of rice, and the sensitive band and vegetation index
were different between the before and after heading stages. Zhao et al. [46] found that the monitoring
accuracy of winter wheat LAI increased by dividing the growth period of winter wheat into three
stages and building the monitoring model independently. Li et al. [47] indicated that LAI = 3 was a
suitable segmentation value, and the segmented winter wheat monitoring model could improve the
prediction accuracy and alleviate the saturation. A crop growth monitoring model was constructed
for the two periods separately, which effectively improved the prediction accuracy of LAI, but did
not considerably enhance those of LDW, LNC, and LNA. Over the growth period, the gap between
high-nitrogen treatment and low-nitrogen treatment on biomass further increased, and the coefficient
of variation increased. Staged modeling will still be affected by saturation during the late growth stage.
It should be pointed out that the population size of wheat treated with different nitrogen treatments
is greatly different, and the construction of monitoring models for different nitrogen treatments can
theoretically improve the prediction accuracy. However, this method needs the information of the
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nitrogen application level in the area to be tested in advance, and this is complex in practical operation,
so it was not adopted in this study. In addition, LNC is mostly affected by nitrogen level and changes
slightly with phenological period. The results of this study show that the modeling of multiple growth
periods is not suitable for improving the accuracy of LNC monitoring.

The ability of CGMD to monitor wheat LNC was always lower than that of the other growth
indices, and the vegetation indices of all combinations of red, red edge, and near-infrared bands did
not effectively improve the monitoring accuracy. Verstraete [48] showed that the best vegetation index
should be more sensitive to the target indices and less sensitive to other indices. The wavebands
used in this paper are similar to the vegetation indices that they constructed and are highly sensitive
to the canopy population size index; they will inevitably be affected by the canopy population size
when performing LNC monitoring. Xue et al. [49] demonstrated that the ratio constructed from a
combination of the green and blue spectral bands and the normalized vegetation index showed a
significant negative correlation with the nitrogen content of rice leaves, and the prediction accuracy
reached 80.09%. Tian et al. [50,51] used blue and green spectral bands to monitor rice and found that the
R2 of the new green band vegetation index SR (545, 538) in prediction of wheat LNC reached 0.73, while
the new index showed a low sensitivity to LAI, which eliminated the influence of canopy size on the
prediction of wheat LNC to a certain extent. The R2 of three-band vegetation index R434/(R496 + R401)
constructed by the blue spectral band in prediction of rice LNC reached 0.84, and the universality was
also good. Therefore, the selection of sensors with more wavelength combinations such as green and
blue bands can be considered in the development of multi-spectral crop growth sensors in the future.

5. Conclusions

(1) A portable CGMD three-band instrument was used to obtain wheat canopy vegetation indices
at the jointing, booting, heading, and flowering stages and fitted them with a commercially available
instrument by ASD FieldSpec HandHeld2 spectroradiometer. The results showed that the CGMD
instrument could effectively obtain the wheat canopy spectral data, and the measurement results were
accurate and stable. Using CGMD we could effectively predict the LAI, LDW, LNC, and LNA of the
wheat; the R2 values were 0.64, 0.84, 0.60, and 0.82, respectively, and the RRMSE values were 0.29, 0.26,
0.17, and 0.30, respectively. The addition of the red spectral band to CGMD, which was in addition
to the existing near-infrared and red edge bands, effectively improved the monitoring of wheat LAI
and LDW. CGMD has the advantages of high monitoring accuracy, multiple invertible growth indices,
simple operation and high cost performance, which is suitable for agricultural production.

(2) Regarding the issue of vegetation index saturation, this study proposed a method for
constructing a wheat-growth-index spectral monitoring model based on the growth stages. The
spectral monitoring model based on the growth stages increased the prediction accuracy, of LAI, LDW,
and LNA; the R2 values were 0.79, 0.85, and 0.85, respectively, and the RRMSE values were 0.22, 0.23,
and 0.28, respectively. The method of constructing the growth parameter spectral monitoring model
based on the growth stages of wheat effectively solves the problem of saturation of the vegetation
indices in the late growth stage of wheat, and the CGMD reached a relatively high level of prediction
on the growth indices LAI, LDW, and LNA.
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