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A B S T R A C T   

Auto-ignition temperature (AIT) is one of the crucial exponents in the design of fire and explosion 
safety measures. Therefore, in this study, quantitative structure-property relationship approach 
was used to predict the AIT of ternary hybrid liquids based on molecular structure information. 
The optimal molecular descriptors were calculated and filtered using Mordred software. Twelve 
mixing rules were proposed for calculating molecular descriptors of mixtures. A prediction model 
for the AIT value of binary liquid mixtures was developed, validated and evaluated using a back 
propagation neural network (BPNN) and a one-dimensional convolutional neural network 
(1DCNN). The relative contribution and positive and negative correlations between individual 
molecular descriptors and AIT in the model were interpreted using the shapley additive expla
nations method. The results show that BPNN and 1DCNN models using mixing rule 1 have the 
best fitting ability, stability and prediction ability. The determination coefficient of the BPNN and 
1DCNN models in the training set were 0.996 and 0.992, the root mean square errors were 
3.613 ◦C and 5.284 ◦C, the mean absolute errors were 2.483 ◦C and 4.144 ◦C, the nash efficiency 
coefficient was 0.996 and 0.992, respectively, the willmott index was 0.999 and 0.998. and the 
values of the top three molecular descriptors of relative contribution, SssCH2, SsOH and SsCH3, 
were negatively correlated with the AIT values. The BPNN and 1DCNN models provide an ac
curate and reliable method for predicting ternary mixing liquid AIT.   

1. Introduction 

It is important to have data on the hazardous properties of flammable substances for safe industrial production [1]. Since Moore [2] 
independently designed a thermal crucible apparatus for the determination of liquid auto-ignition temperature (AIT) values in 1917, a 
series of experimental devices and methods for determining AIT values have appeared [3,4]. However, the use of experiments to test 
the AIT values of substances are time-consuming, labor-intensive, and hazardous [5]. Therefore, the establishment of a reliable AIT 
prediction model has attracted the attention of many scholars. 

The QSPR method has been widely used to predict the AIT of substances in recent years. The QSPR has the advantage that it re
quires only the molecular structure without any experimental properties and kinetic parameters, and has great advantages in modeling 
[6]. 
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Keshavarz et al. [7] proposed an AIT prediction model based on QSPR theory for the prediction of organic compounds containing 
energy-containing functional groups nitro, nitrate, nitramine, and peroxide. The model does not require the use of complex computer 
codes, unusual descriptors, and expert users, but only the molecular structure of organic energy-containing compounds. Nazari et al. 
[8] proposed a simple model to estimate the AIT values of 109 organic hydroxyl compounds and obtained more satisfactory results. 
The evaluation showed that the new model has significant reliability. 

With the development of artificial intelligence technology, neural network technology has made breakthroughs in computer vision 
and other fields and has become a hot spot of current research [9]. The application of neural network technology in the modeling study 
of QSPR can replace manual statistical analysis to improve computational efficiency [6]. Bagheri et al. [10] developed multiple linear 
regression (MLR) and neural network models for predicting the AIT values of sulfur chemicals and screened the three most suitable 
molecular descriptors to explain the flammability behavior of this class of combustible substances. Lazzús [11] used a hybrid method of 
BPNN and particle swarm optimization to predict the AIT values of substances. Borhani et al. [12] predicted AIT values of 813 hy
drocarbons from 69 different families by using genetic algorithms-MLR and artificial neural network methods. The resulting model has 
good predictive ability. He Fan [13] proposed a mixing molecular descriptor to establish a BPNN model for predicting AIT values of 
mixed liquids. However, domestic and international studies on the AIT of multivariate mixed liquids are still limited. Most studies are 
still limited to the AIT of pure substances, and the studies on mixed liquids are lagging behind [12–14]. Therefore, it is important to 
carry out theoretical prediction studies on the AIT of multivariate mixed liquids. 

In this paper, the AIT dataset of ternary mixed liquids is expanded on the basis of the above studies, the 1DCNN modelling approach 
is used for the first time in AIT QSPR studies, and the shapley additive explanations (SHAP) method is applied for the first time to 
explain the relationship between the molecular descriptors used and AIT. BPNN and 1DCNN modelling algorithms were used to 
develop a ternary hybrid liquid AIT QSPR model. The main objectives of this study are to develop a new methodology for ternary mixed 
liquids AIT, including: development of mixing rules applicable to the molecular descriptors of mixtures; development of a QSPR model 
for predicting ternary mixed liquids AIT; and validation and evaluation of the model, application domain analysis, and interpretation 
of the relationship between the molecular descriptors used and AIT. 

2. Data collection 

The AIT data of mixed liquids for this experiment were obtained from the literature [14] and previous work in our laboratory. The 
data used included 18 pure substances that are widely used in the processing industry, as shown in Table 1. A total of 205 data were 
measured for the ternary completely miscible mixed liquids, which were divided into 14 groups. The experimental data were obtained 
according to the ASTM E659-78 test method [15]. Since the reliability of the experimental data directly affects the prediction accuracy 
of the constructed model, in order to further check the accuracy of this experimental data, the experimental values of the AIT of the 
pure substances were compared with the values of the international database of ICSCs [16], as shown in Table 1. 

Table 1 shows that the MAE of the experimental data and the ICSCs database is 19.89 ◦C. According to the test standard, the MAE of 
AIT experiments is allowed to be within 30 ◦C, and the deviation is mainly due to the differences in experimental instruments and test 
methods, so the overall experimental data can be considered as real and effective [14]. The "Point out" strategy in QSPR is used to 
randomly assign the data sets, in which the training and test sets are used for model development and external validation, respectively. 
In order to assure the validity of the external validation and to prevent the occurrence of chance situations, the test set constitutes 20% 
of the total data. It is specifically divided into 164 training sets and 41 test sets. 

Table 1 
Comparison between experimental and ICSCs Database values of AIT for pure substances.  

NO. Pure substances CAS number Value of AIT/◦C Absolute error/◦C Relative error/% 

ICSCs database Experimental value 

1 n-Pentane 109-66-0 260 309 49 18.85 
2 n-Octane 111-65-9 220 221 1 0.45 
3 Methanol 67-56-1 440 441 1 0.22 
4 Ethyl alcohol 64-17-5 400 384 16 4.00 
5 n-Propanol 71-23-8 371 383 12 3.23 
6 iso-Propyl alcohol 67-63-0 456 437 19 4.17 
7 n-Butyl alcohol 71-36-3 345 348 3 0. 72 
8 2-Methyl-1-propanol 78-83-1 415 379 36 8.67 
9 1-Pentanol 71-41-0 320 302 18 5.63 
10 Acetic acid 64-19-7 485 475 10 2.06 
11 Propanoic acid 79-09-4 485 460 25 5.15 
12 2-Methoxyethanol 109-86-4 285 317 32 11.22 
13 2-Ethoxyethanol 110-80-5 235 234 1 0.43 
14 2-(2-Methoxyethoxy) ethanol 111-77-3 215 224 9 4.19 
15 Methyl acetate 79-20-9 505 465 40 7.92 
16 Ethyl acetate 141-78-6 427 448 21 4.92 
17 Acetone 67-64-1 465 508 43 9.25 
18 Toluene 108-88-3 480 502 22 4.58  

MAE = 19.89 ◦C MAPE = 5.31%  
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2.1. Molecular descriptor calculation and screening 

Molecular descriptor calculation and screening is one of the key steps in the theoretical method of QSPR. The study adopts the 
software Mordred [17], which can calculate 1824 molecular descriptors for pure compounds, see Table 2. 9 molecular descriptors 
based on the electronegative topological state index (ETSI) [18] are screened from the 1824 molecular descriptors after screening, see 
Table 3. ETSI can express both the electronic and topological properties of an atom and the molecular environment to which the atom 
is subjected, and is now widely used in the prediction studies of material properties [13]. In this paper, the molecular descriptor data of 
the mixed liquids used are placed in the SI. 

2.2. Calculation of mixing molecular descriptors 

The current QSPR theory lacks effective molecular descriptors that directly represent mixtures. Therefore, based on the compu
tational mixture molecular descriptor studies that have been presented [19,20], 12 mixing rules were selected for building molecular 
descriptors for ternary mixed liquids. The formulas are shown in Table 4. 

Where (Si)mix is the molecular descriptor value of the ternary liquid mixture, S1, S2 and S3 indicates the molecular descriptors for 
each of the three components of the mixture, and x1, x2 and x3 are the volume fractions of the three components. In this study, QSPR 
models for AIT prediction of ternary mixing liquids were developed using 12 mixing rules. These models are validated and the QSPR 
model with optimal accuracy is selected. 

3. Model development 

Based on the QSPR method, a ternary mixed liquid AIT prediction model was developed using BPNN and 1DCNN. The flowchart of 
the 2 models in this paper is shown in Fig. 1, in which the preparation of the dataset and the dataset alignment have been completed in 
the first section of the article Data collection, this chapter is mainly for the establishment of the BPNN and 1DCNN models and other 
processes afterwards. 

In the experiment, the activation function is ReLU [21], the loss function adopts mean square error (MSE), and the optimizer is 
Adam [22]. The input of the network is 205 groups of mixed molecular descriptors, and the output is the measured value of ternary 
mixed liquid AIT. 

The computational conditions are: computer system: WIN 10; development platform: TensorFlow-gpu2.3.0; programming lan
guage: Python 3.7; Pycharm 2021; artificial neural network library: Keras 2.3.1. 

The packages used in modelling the BPNN and 1DCNN model were numpy 1.19.2; pandas 1.1.5; sklearn 1.0.2 (scikit-learn); 
tensorflow 2.3.0; matplotlib 3.4.3; SkillMetrics 1.2.4; shap 0.41. 

The hyperparameters of the BPNN and 1DCNN model are shown in Table 5. 

Table 2 
List of Mordred descriptors.   

Descriptor name Number Descriptor name Number 

2D ABC Index 2 Kappa Shape Index 3 
Acid-Base 2 Lipinski 2 
Adjacency Matrix 13 Mc Gowan Volume 1 
Aromatic 2 Moe Typea 53 
Atom Count 16 Molecular Distance Edge 19 
Autocorrelation 606 MolecularId 12 
BCUTa 24 Path Count 21 
Balaban Ja 1 Polarizability 2 
Barysz Matrixa 104 Ring Count 138 
Bertz CT 1 Rotatable Bonda 2 
Bond Count 9 Slog Pa 2 
Carbon Types 10 Topo PSAa 2 
Chi 56 Topological Charge 21 
Constitutional 16 Topological Index 4 
Detour Matrix 14 Vdw Volume ABC 1 
Distance Matrix 13 Vertex Adjacency Information 1 
EState 316 Walk Count 21 
Eccentric Connectivity Index 1 Weight 2 
Extended Topochemical Atom 45 Wiener Index 2 
Fragment Complexity 1 Zagreb Index 4 
Framework 1 Information Content 42 
Hydrogen Bonda 2   

3D CPSA 43 MoRSE 160 
Geometrical Index 4 Moment OfInertia 3 
Gravitational Index 4    
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3.1. BPNN model 

The BP algorithm is a gradient descent algorithm that makes learning of feedforward networks easier [21,22]. Fig. 2 illustrates the 
framework of the BPNN model and Table 6 shows the structure of BPNN, the input is the 9 molecular descriptor data (Table 3) 
computed by 12 mixing rules (Table 4). And finally, the predicted value of AIT is obtained after the hidden layer. 

The pseudo-code for the BPNN model is shown below:  

1 # Importing the required libraries 
2 import numpy as np 
3 import tensorflow as tf 
4 # Preparing the data set (In our experiment the feature dimension = 9) 
5 # Feature data — Values of 9 molecular descriptors 
6 # Target data — Values of AIT 
7 X_train = … # Feature data for training set, shape is (number of training set, feature dimension) 
8 y_train = … # Target data for training set, shape is (number of training set) 
9 X_test = … # Feature data for the test set, shape is (number of test set, feature dimension) 
10 # Creating a BPNN model 
11 model = tf.keras.Sequential([ 
12 tf.keras.layers.Dense(units = 128, activation = ’relu’, input_shape = 9), 
13 tf.keras.layers.Dense(units = 256, activation = ’relu’), 
14 tf.keras.layers.Dense(units = 128, activation = ’relu’), 
15 tf.keras.layers.Dense(units = 1) 
16 # compilation model 
17 model.compile(optimizer = ’adam’, loss = ’mean_squared_error’) 
18 # Training Models 
19 model.fit(X_train, y_train, epochs = num1, batch_size = num2) 
20 # Prediction using models 
21 y_pred = model.predict(X_test)  

Table 3 
ETSI symbols for 9 atomic types.  

Atomic type ETSI symbol Intrinsic state value 

O = SdO 7.000 
—OH SsOH 6.000 
—O— SssO 3.500 
—CH3 SsCH3 2.000 
>C = SdssC 1.667 
—CH2— SssCH2 1.500 
>CH— SsssCH 1.333 
aCHa SaaCH 2.000 
asCa SaasC 1.667 

s: single bond; d: double bond; a: a bond in an aromatic ring. 

Table 4 
12 Mixing rules used for calculation of mixture descriptors.  

Number Mixing rule Number Mixing rule 

1 (Si)mix = x1S1 + x2S2 + x3S3 7 
(Si)mix =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x3
1S1 + x3

2S2 + x3
3S3

3
√

2 
(Si)mix =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1S1)
2
+ (x2S2)

2
+ (x3S3)

2
√ 8 (Si)mix = (x1S1 + x2S2 + x3S3)

2 

3 (Si)mix =
̅̅̅̅̅̅̅̅̅̅
x1S1

√
+

̅̅̅̅̅̅̅̅̅̅
x2S2

√
+

̅̅̅̅̅̅̅̅̅̅
x3S3

√ 9 (Si)mix = (S1 − S2 − S3)
2 

4 (Si)mix =
̅̅̅̅̅̅̅̅
|S1|

√
+

̅̅̅̅̅̅̅̅
|S2|

√
+

̅̅̅̅̅̅̅̅
|S3|

√ 10 (Si)mix = |S1 − S2 − S3|

5 (Si)mix = x2
1S1 + x2

2S2 + x2
3S3 11 (Si)mix = (S1 + S2 + S3)/2 

6 (Si)mix = x1S2
1 + x2S2

2 + x3S2
3 12 (Si)mix = |x1S1 − x2S2 − x3S3|
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3.2. 1DCNN model 

The 1DCNN is usually used for analyzing a fixed-length segment of signal data [23–25], and one-dimensional means that the 
convolution kernel moves on the input matrix in one dimension only, i.e., it moves from top to bottom. Fig. 3 illustrates the framework 
of the 1DCNN model and the structure of the 1DCNN, as shown in Table 7, the input is the 9 molecular descriptor data (Table 3) 
computed by 12 mixing rules (Table 4), and finally, the predicted value of AIT is obtained through the dense layer. 

Fig. 1. Flowchart of the model.  

Table 5 
Hyperparameters of the model.  

Hyperparameters Model 

BPNN 1DCNN 

learning rate 0.002 0.002 
batch size 32 32 
epochs 5000 5000 
kernel size – 4 
filters – 16 
strides – 1 
padding – valid  
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Fig. 2. BPNN model framework diagram.  

Table 6 
Structure of BPNN.  

Layer(type) Output Shape Param 

Hidden Layer (None,128) 1280 
Hidden Layer (None,256) 33024 
Hidden Layer (None,128) 32896 
Output Layer (None,1) 129  

Fig. 3. 1DCNN model framework diagram.  

Table 7 
Structure of 1DCNN.  

Layer(type) Output Shape Param 

Conv 1D (None,6,16) 80 
Flatten (None,96) 0 
Dense (None,128) 12416 
Output Layer (None,1) 129  

B. Guo et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e28713

7

The pseudo-code for the 1DCNN model is shown below:  
1 # Importing the required libraries 
2 import numpy as np 
3 from tensorflow. keras. models import Sequential 
4 from tensorflow. keras. layers import Conv1D, Flatten, Dense 
5 # Preparing the data set (In our experiment the time step = 9) 
6 # Feature data — Values of 9 molecular descriptors 
7 # Target data — Values of AIT 
8 X_train = … # Feature data for training set, shape is (number of training set, time step, feature dimension) 
9 y_train = … # Target data for training set, shape is (number of training set) 
10 X_test = … # Feature data for the test set, shape is (number of test set, time step, feature dimension) 
11 # Creating 1DCNN model 
12 model = Sequential(-) 
13 model.add(Conv1D(filters = 16, kernel_size = 4, activation = ’relu’, input_shape=(9, 1))) 
14 model.add(Flatten(-)) 
15 model.add(Dense(units = 128, activation = ’relu’)) 
16 model.add(Dense(units = 1)) 
17 # compilation model 
18 model.compile(optimizer = ’adam’, loss = ’mean_squared_error’) 
19 # Training Models 
20 model.fit(X_train, y_train, epochs = num1, batch_size = num2) 
21 # Prediction using models 
22 y_pred = model.predict(X_test)  

4. Analysis and discussion of results 

4.1. Validation of the model 

According to the principles proposed by the Organization for Economic Cooperation and Development (OECD), appropriate 
methods should be used to measure the model’s performance, including goodness-of-fit, robustness, and predictive ability [5]. This 
study discusses the performance of the model based on the above principles. 

4.1.1. Fitting ability of the model 
The following equations (Eqs. (1)–(6)) were used to validate the model’s fitting ability: determination coefficient (R2) [26], root 

mean square errors (RMSE) [27], mean absolute errors (MAE) [28], mean absolute percentage errors were (MAPE) [29], nash effi
ciency coefficient (NSE) [30], and willmott index (WI) [31]. The specific formula is: 

Table 8 
Statistical parameters for the models based on 12 mixing rules.  

Mixing rule Models Training set Test set 

R2 RMSE/◦C MAE/◦C MAPE/% R2 RMSE/◦C MAE/◦C MAPE/% 

1 BPNN 0.996 3.613 2.483 18.878 0.909 16.092 10.540 15.150 
1DCNN 0.992 5.284 4.144 19.038 0.911 15.906 10.830 15.544 

2 BPNN 0.995 4.159 3.050 19.082 0.832 21.871 14.551 15.199 
1DCNN 0.986 6.833 5.392 18.802 0.805 23.571 18.639 15.064 

3 BPNN 0.996 4.345 2.484 19.011 0.938 16.264 9.087 15.296 
1DCNN 0.993 5.973 3.619 18.959 0.903 16.589 11.661 15.515 

4 BPNN 0.695 32.870 24.511 17.382 0.654 31.404 21.811 15.208 
1DCNN 0.703 32.464 23.643 17.977 0.640 32.023 21.182 15.793 

5 BPNN 0.989 6.020 4.033 18.945 0.678 30.293 20.389 15.628 
1DCNN 0.985 7.172 5.518 18.951 0.708 28.832 20.891 15.422 

6 BPNN 0.994 4.277 3.238 18.969 0.894 17.341 9.953 15.352 
1DCNN 0.989 6.067 3.967 18.662 0.877 18.700 11.309 15.442 

7 BPNN 0.989 6.017 4.537 19.067 0.581 34.540 21.375 15.055 
1DCNN 0.992 4.992 3.617 18.961 0.611 33.288 23.190 15.978 

8 BPNN 0.994 4.300 2.937 18.879 0.781 24.973 16.144 15.820 
1DCNN 0.994 4.384 2.755 18.967 0.816 22.887 16.568 15.835 

9 BPNN 0.702 32.526 23.873 18.074 0.649 31.599 21.845 15.892 
1DCNN 0.700 32.627 24.032 17.663 0.659 31.153 21.545 15.481 

10 BPNN 0.700 32.633 23.920 17.488 0.669 30.715 20.889 15.333 
1DCNN 0.700 32.624 24.007 17.867 0.652 31.500 21.711 15.767 

11 BPNN 0.698 32.721 24.323 17.741 0.646 31.768 21.891 15.559 
1DCNN 0.687 33.349 25.219 18.319 0.632 32.372 23.493 16.097 

12 BPNN 0.993 4.728 3.619 18.958 0.874 18.942 13.123 15.186 
1DCNN 0.989 6.152 4.861 18.712 0.832 21.824 13.943 14.886  
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R2 = 1 −

∑n

i=1

(
yi,exp − ŷi,pre

)2

∑n

i=1

(
yi,exp − yexp

)2
(1)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yi,exp − yi,pre

)2

n

√

(2)  

MAE=

∑n
i=1

⃒
⃒yi,exp − yi,pre

⃒
⃒

n
(3)  

MAPE=

∑n
i=1

⃒
⃒
(
yi,exp − yi,pre

)
∕yi,exp

⃒
⃒

n
∗ 100% (4)  

NSE= 1 −

1
n

∑n

i=1

(
yi,exp − yi,pre

)2

1
n− 1

∑n

i=1

(
yi,exp − yexp

)2
(5)  

dWI = 1 −

∑n

i=1

(
yi,exp − yi,pre

)2

∑n

i=1

( ⃒
⃒yi,pre − yexp

⃒
⃒+
⃒
⃒yi,exp − yexp

⃒
⃒
)2

(6)  

where yi,exp and yi,pre are the experimental and predicted values for mixture i. ŷi,pre is the simulated value of mixture i of the model. yexp 

is the average of the experimental values. n is the amount of data in the dataset. yi,pre is the predicted value of the variable by the 
predictive model. The closer the values of R2, NSE, and WI of the model are to 1, and the smaller the values of RMSE, MAE, and MAPE 
are, the better the fit of the model is. 

The statistical parameters of the model under each mixing rule are calculated from Eqs. (1)–(4). As known from Table 8, the R2 in 
the training set of BPNN models under mixing rules 1, 2, 3, 6, 8, and 12 are all higher than 0.99 and have low RMSE, MAE, and MAPE, 
and among these models, the training set of BPNN models under mixing rule 1 has the highest R2 as well as the lowest RMSE, MAE, and 
MAPE. In the test set, only mixing rules 1 and 3 have an R2 exceeds 0.9, although the R2 of the test set of mixing rule 3 is higher than 
that of mixing rule 1, its RMSE and MAPE are higher than those of the test set of rule 1, which indicates that the fitting accuracy of the 
BPNN model under mixing rule 3 is not as good as that of the BPNN model under mixing rule 1. 

As we know from Table 8, the R2 in the training set of 1DCNN models under mixing rules 1, 3, 7, and 8 are all higher than 0.99 and 
have low RMSE, MAE, and MAPE, and among these models, the 1DCNN model under mixing rule 1 has higher R2 as well as the lowest 
RMSE. In the test set, only the R2 of mixing rules 1 and 3 exceeds 0.9 and the R2 of mixing rule 1 is higher than that of mixing rule 3, the 
RMSE and MAE of mixing rule 3 are higher than those of rule 1, which indicates that the fitting accuracy of the 1DCNN model under 
mixing rule 3 is not as good as that of the 1DCNN model under mixing rule 1. 

In summary, mixing rule 1 was chosen as the best mixing descriptor computation rule and was used as the input parameter for both 
models. 

Comparing the AIT predictions obtained from the BPNN model with the experimental values (Fig. 4), it is found that most of the 

Fig. 4. Plot of predicted versus experimental values of AIT (BPNN).  
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data points fall on the diagonal line in the graph, and only individual data points are seriously off the diagonal line(＞50 ◦C), which 
indicates that the prediction accuracy of the BPNN model is good. The statistical parameters of the BPNN and 1DCNN models are 
calculated from Eqs. (1)–(6). The results of the calculations are shown in Table 9. In Table 9, the MAE, RMSE, and MAPE of the training 
and test sets of the BPNN model are less than the experimental standard error (±30 ◦C), indicating that the BPNN model in this paper 
has a good fitting ability [17,26]. 

Fig. 5 shows that the comparative values of 1DCNN model are essentially the same as for the BPNN model, indicating that the 
overall prediction of the two models is satisfactory. The validation results of the 1DCNN model are shown in Table 9. The MAE, RMSE, 
and MAPE of the model’s training and test sets are all less than the experimental standard error (±30 ◦C). 

On the test set, the results of the comparison between the predicted and experimental values of the two models AIT are shown in 
Figs. 6 and 7 The experimental values are represented by hollow circles and the predicted values are represented by solid circles, and 
the higher the overlap indicates that the predicted values are closer to the experimental values. From the figure, it is found that the 

Table 9 
Validation results of fitting ability of models.  

Model Training set Test set 

R2 RMSE/◦C MAE/◦C MAPE/% NSE WI R2 RMSE/◦C MAE/◦C MAPE/% NSE WI 

BPNN 0.996 3.613 2.483 18.878 0.996 0.999 0.909 16.092 10.540 15.150 0.876 0.973 
1DCNN 0.992 5.284 4.144 19.038 0.992 0.998 0.911 15.906 10.830 15.544 0.890 0.975 
MLR [34] 0.879 22.011 13.001 – – – – 16.336 11.227 – – – 
MNR [34] 0.880 21.912 12.984 – – – – 16.502 11.045 – – –  

Fig. 5. Plot of predicted versus experimental values of AIT (1DCNN).  

Fig. 6. Comparison of experimental and predicted values for the test set of the BPNN model plots.  
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Fig. 7. Comparison of experimental and predicted values for the test set of the 1DCNN model plots.  

Fig. 8. Box-line diagram of the model.  

Fig. 9. Taylor diagram of the model.  
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experimental and predicted values of the two models have a high degree of overlap, although there is a small part of no overlap but the 
deviation is not large, which indicates that the prediction effect of the two models is good. 

In order to validate the prediction results, a box-and-line diagram [32] is plotted as shown in Fig. 8. From the figure, it can be seen 
that the BPNN and 1DCNN models are roughly the same as the experimental values, but the maximum value (upper limit) predicted by 
the BPNN model is slightly lower than the experimental value, and the maximum value (upper limit) predicted by the 1DCNN model is 
slightly higher than the experimental value. Secondly the median and lower edges of the BPNN and 1DCNN models are a bit higher 
than the real situation, indicating that the AIT values predicted by both are mostly higher than the experimental values. 

The Taylor diagrams [33] of the predicted and observed AIT data for the BPNN and 1DCNN models are shown in Fig. 9. In the 
figure, the round centre corner is the correlation coefficient, the green arc represents the root mean square error, the black arc rep
resents the rms error, and Observation represents the location of the observation (i.e., the true AIT value in the test set). The higher the 
correlation coefficient, the closer the standard deviation is to 1, and the closer the root mean square error is to 0, the better the 
prediction of the model. In layman’s terms the closer to the red line and the lower down it is the better the model’s prediction. It can be 
found that the BPNN and 1DCNN models are roughly at the same height, but the 1DCNN model is closer to the red line, indicating that 
the prediction effect of the 1DCNN model is better than that of the BPNN model. 

The results of the two models for predicting the AIT are approximately the same, but the combined R2, RMSE, MAE and MAPE 
results show that the RMSE and MAE in the BPNN model training set are smaller than those in the training set of the 1DCNN model, 
which indicates that the BPNN model has better fitting ability. In order to further verify the superiority of the two models in this paper, 
a comparison is made with the MLR and multiple nonlinear regression (MNR) pairs in the literature [34], and the performance pa
rameters are shown in Table 9. At the same time, the four models are applied to predict the same experimental values respectively, and 
the results are shown in Table 10. According to Tables 9 and 10, it can be seen that the R2 of both MLR and MNR models on the training 
set is lower than that of BPNN and 1DCNN models, and the values of RMSE and MAE are higher than those of BPNN and 1DCNN 
models. Comparing the predicted values of the models with the experimental values in Table 10 shows that the difference between the 
predicted and experimental values of MLR and MNR is significantly higher than that of the BPNN and 1DCNN models. 

In summary, the prediction performance of the BPNN model and the 1DCNN model in this paper is significantly better than the 
MNR and MLR models. 

4.1.2. Stability of the model 
The statistical indicators used in this study to test the stability of the model are: K-fold cross-validation, Y-randomization, and 

residual analysis.  

(1) K-fold cross-validation method 

The stability of the model can be verified by applying cross-validated correlation coefficients(Q2
cv)and mean square error (MSEK-f) 

[35]. Q2
cv calculated as shown in Eq. (7): 

Q2
cv =

1
k
∑k

j=1

(

1 −

∑n
i=1

(
yi,exp − ŷi,pre

)2

∑n
i=1

(
yi,exp − yexp

)2

)

(7) 

If the difference between the results of Q2
cv and R2 is > 0.3, it indicates the possibility of overfitting the model [36]. The models 5 

and 10fold cross-validated correlation coefficients are calculated from Eq. (7). The results of the cross-validation analysis of the two 
models with 5 and 10 folds are shown in Table 11. The difference between Q2

cv and R2 did not exceed 0.3, indicating that the models 
were not overfitted.  

(2) Y-randomization 

The y-randomization method is to build a new prediction model using new independent and dependent variable correspondences 
[37]. The modeling was repeated 50 times to compare the prediction results with those of the original model. The maximum R2

y− rand of 
the new model is 0.343 and 0.238 which are significantly lower than the R2 of the original model, and the experimental results show 
that the two models are stable.  

(3) Residual analysis 

Figs. 10 and 11 show the residual plots of AIT values prediction for the BPNN and 1DCNN models, respectively. The scatter points in 
both plots are randomly dispersed on both sides of the zero line, which indicates that there is no systematic error in the modeling 
process of the two models [38]. 

The above statistical indicators show that both models have good stability. Comparing the difference between R2 and 5-fold and 10- 
fold Q2

cv, it can be inferred that the BPNN model (0.093, 0.142) has better stability than the 1DCNN model (0.126, 0.182). 

4.1.3. External predictive ability of the model 
The external predictive ability of the model is measured by the coefficient of cross-validation (Q2

ext) between the predicted and 
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experimental values of the test set data [39], as shown in Eq. (8): 

Q2
ext = 1 −

∑next
i=1

(
yi,exp − yi,pre

)2

∑next
i=1

(
yi,exp − ytr

)2 (8)  

where next is the number of mixtures in the test set and ytr is the average of the experimental values in the training set. The Q2
ext for the 

BPNN model and the 1DCNN model is calculated from Eq. (8) The results of the prediction ability of the two models are shown in 
Table 11, which indicate that both models have reliable external prediction ability. 

4.2. Application domain analysis of the model 

Leverage method was applied to determine the model application domain [5]. Figs. 12 and 13 show the application domain of the 
two models, most of the data points in the dataset fall on the application domain (±3 standardized residuals and to the left of the 
standardized leverage value h*). Although there are some points outside the application domain, they are all located to the left of h*. 
The reason these mixtures are outliers may be due to anomalies in the experimental data rather than structural anomalies. In summary, 
the predicted AIT values of these mixed combustible liquids are reliable. 

Table 10 
Predicted value of AIT of the model.  

NO. Mixtures composition(A + B + C) volume fraction Experimental value/ 
◦C 

Predicted value/◦C 

A B C BPNN 1DCNN MNR 
[34] 

MLR 
[34] 

1 Acetone + n-Butyl alcohol + Ethyl alcohol 0.1 0.7 0.2 374 378 378 371 371 
0.5 0.4 0.1 394 393 394 403 401 
0.7 0.1 0.2 435 429 436 431 429 

2 Methanol + Ethyl alcohol + iso-Propyl alcohol 0.1 0.7 0.2 423 424 423 418 417 
0.3 0.5 0.2 427 433 435 418 417 
0.5 0.4 0.1 436 437 437 431 426 
0.7 0.1 0.2 444 446 445 429 429 

3 Ethyl alcohol + Acetone + Ethyl acetate 0.3 0.3 0.4 434 430 437 437 437 
0.5 0.1 0.4 422 420 425 431 431 
0.7 0.1 0.2 417 417 418 410 409 

4 n-Pentane + Toluene + iso-Propyl alcohol 0.1 0.7 0.2 321 315 316 268 271 
0.3 0.5 0.2 315 313 311 327 326 
0.5 0.4 0.1 311 310 310 290 293 
0.7 0.1 0.2 335 326 322 337 339 

5 Acetone + 2-Methoxyethanol + n-Octane 0.3 0.5 0.2 336 336 339 338 338 
0.5 0.4 0.1 371 374 386 373 376 
0.7 0.1 0.2 396 394 400 390 388 

6 Toluene + Methanol + 2-Ethoxyethanol 0.1 0.7 0.2 345 348 344 344 342 
0.3 0.3 0.4 309 312 305 310 312 
0.5 0.1 0.4 262 267 255 266 269 
0.7 0.1 0.2 246 308 296 251 252 

7 Acetic acid + iso-Propyl alcohol + 2-Methoxyethanol 0.1 0.7 0.2 392 406 396 404 402 
0.3 0.3 0.4 335 329 339 338 339 
0.5 0.1 0.4 380 378 382 438 439 

8 Acetic acid + Methyl acetate + 2-Methoxyethanol 0.3 0.5 0.2 407 403 410 443 444 
0.5 0.1 0.4 381 381 383 380 377 
0.7 0.1 0.2 432 433 438 446 448 

9 Propanoic acid + 2-(2-methoxyethoxy) ethanol + n- 
Octane 

0.3 0.3 0.4 263 265 268 276 280 
0.5 0.1 0.4 303 302 307 323 324 
0.7 0.1 0.2 354 359 376 353 351 

10 Acetic acid + Methyl acetate + n-Propanol 0.1 0.7 0.2 456 436 445 452 454 
0.5 0.4 0.1 470 467 473 464 468 
0.7 0.1 0.2 462 462 463 461 460 

11 Propanoic acid + 1-pentanol + 2-Ethoxyethanol 0.3 0.5 0.2 363 364 366 361 359 
0.5 0.4 0.1 383 378 389 380 379 
0.7 0.1 0.2 390 390 395 389 386  

Table 11 
Stability and predictive ability verification results of BPNN and 1DCNN models.  

Model Q2
5− FCV Q2

10− FCV MSE5-f MSE10-f R2
y− rand Q2

ext 

BPNN 0.903 0.854 1.837E-4 1.717E-4 0.343 0.998 
1DCNN 0.866 0.810 2.492E-4 1.817E-4 0.238 0.998  
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Fig. 10. Residual plot of BPNN model for predicting AIT.  

Fig. 11. Residual plot of 1DCNN model for predicting AIT.  

Fig. 12. Analysis diagram of the application domain of BPNN model(h* = 0.183).  
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4.3. Comparison of the models obtained 

From the above section 3.1, it can be seen that the performance parameters of the BPNN model and the 1DCNN model constructed 
in this experiment are basically the same on the training set and the test set, and the 2 models show very strong performance in terms of 
fitting ability, stability and external prediction. However, in terms of fitting ability, the R2 of the training set of the BPNN model is 
higher than that of the 1DCNN model, and the RMSE, MAE and MAPE of the training set of the BPNN model are lower than those of the 
1DCNN model, which indicates that the fitting ability of the BPNN model is comparatively better than that of the 1DCNN model; and 
from the perspective of the error, in terms of RMSE, the BPNN model is relatively better than the 1DCNN model, indicating that the 
BPNN model has better external prediction ability; from the perspective of model stability, the Q2

5-FCV and Q2
10-FCV of the BPNN model 

are higher than that of the 1DCNN model, indicating that the stability of the BPNN model is relatively better than that of the 1DCNN 
model. 

In summary, both 2 models are able to successfully complete the work of predicting the spontaneous combustion temperature of 
mixed combustible liquids. However, in terms of the predictive ability and stability of the models, the BPNN model is stronger than the 
1DCNN model, which is due to the stronger nonlinear modelling ability and adaptability of BPNN, for different types of data and 
problems, BPNN is able to adaptively adjust the weights and biases, and improve the generalization ability of the model [21]. And in 
terms of the architecture of the model, the architecture of the BPNN model is relatively simple, and the architecture of the 1DCNN 
model is more complex. However, in the future, with the increase of the mixed-liquid spontaneous combustion temperature dataset, 
the training process of BPNN may be more time-consuming when dealing with such a large-scale dataset, especially in the deep 
network structure, and its ability is slightly insufficient, which is due to the fact that it needs to traverse the whole dataset to update the 
weights several times. The 1DCNN, on the other hand, is more capable of parallel computing and will appear more efficient in handling 
large-scale datasets. 

4.4. Mechanistic explanation of the model 

This study uses the SHAP method, which can take into account not only the effects on individual variables but also the possible 

Fig. 13. Analysis diagram of the application domain of 1DCNN model(h* = 0.183).  

Fig. 14. Average importance plot based on SHAP values.  
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synergistic effects between the influencing variables of a group of variables [40]. The core idea of SHAP is to compute the marginal 
contribution of the features to the output of the model, and then to explain the "black-box model" at both the global and local levels 
[41]. Fig. 14 demonstrate the relative importance of each molecular descriptor of the test set on the AIT.SssCH2 and SsOH are 
commonly found in alkanes and alcohols, which are the basic skeleton structures of alkanes and alcohols organic compounds, and their 
high importance indicates that SssCH2 and SsOH have a large influence on the AIT of the ternary mixing system of alkanes and al
cohols, and the model has the best prediction accuracy for the ternary mixing system of alkanes and alcohols; SsCH3 is commonly found 
in various organic compounds with high importance, but it appears in all compounds in the dataset, so it is not used as the main 
reference data; SaaCH and SaasC are commonly found in benzene, with low importance, which indicates that the influence of SaaCH 
and SaasC on the AIT of ternary mixed system of benzene is relatively small, and the prediction effect of this model on the ternary 
mixed system of benzene needs to be improved; SsssCH is commonly found in the isomers of alcohols, and its low importance indicates 
that it has little effect on the AIT of ternary mixed systems containing alcohol isomers, and the predictive effect of this model on the AIT 
of ternary mixed systems containing alcohol isomers needs to be improved; SdO and SdssC are commonly found in ketones and acids, 
and the molecular descriptors are of low importance, indicating that SdO and SdssC have little effect on the AIT of the ternary mixed 
system of ketones and acids, respectively, and that the predictive effect of this model on the ternary mixed system containing ketones 
and acids needs to be further strengthened. 

Fig. 15 shows the summary plot of the SHAP features of the BPNN model test set. Taking the first three molecular descriptors with 
greater relative importance as an example, the lower molecular descriptor values (blue dots in the figure) are mostly distributed on the 
side with positive SHAP values, and the higher molecular descriptor values (red dots in the figure) are mostly distributed on the side 
with negative SHAP values, which indicates the molecular descriptor SssCH2, SsOH and SsCH3 are negatively correlated with the AIT 
values, and as the values of the molecular descriptors SssCH2, SsOH and SsCH3 decrease in the ternary mixed combustible liquid 
system, the corresponding AIT values will increase. Similarly, the three molecular descriptors SssO, SaaCH and SaasC, which are 
ranked in the middle of the relative importance list, are negatively correlated with the AIT values. On the other hand, the relative 
importance of SdO, SsssCH and SdssC are small and have no decisive influence on the prediction results of the final model, so they are 
not analysed. 

5. Conclusions 

Two QSPR prediction models, BPNN and 1DCNN, were established based on neural network techniques. Among the 12 mixing rules 
selected for building ternary hybrid liquid molecular descriptors, mixing rule 1 outperforms the other mixing rules. The validation 
results show that the R2 in the training set of the BPNN model and the 1DCNN model are 0.996 and 0.992, the RMSE is 3.613 ◦C and 
5.284 ◦C, the Q2

10-FCV is 0.854 and 0.810, and the Q2
ext of the two models is 0.998, respectively. both models have good fitting ability, 

stability, and external prediction ability. Combining the parameter criteria, the fitting ability and stability of the BPNN model are 
better than that of the 1DCNN model, and the performance of the two models is significantly better than that of the existing MLR and 
MNR models. The BPNN model has better predictive ability compared to the 1DCNN model, but the 1DCNN model will be more 
efficient when dealing with large-scale AIT datasets in the future. The range of applicability of the two models was determined based 
on the Leverage method. The SHAP tool was used to explain the mechanism of the BPNN model with better prediction performance, 
and the effects of nine atom types on the AIT of ternary mixtures of liquids were summarized, and the values of the top three molecular 
descriptors, SssCH2, SsOH and SsCH3, were negatively correlated with the value of AIT. This study can not only provide a new method 
for the safety design of chemical enterprises by predicting the AIT values of ternary mixed liquids, but also provide some ideas for the 
subsequent prediction of the AIT of quaternary and quintuple mixed flammable liquids. 

This study needs to do more exploration in the future: (1) The current study mainly focuses on the ternary mixed system, and in the 
future, the ternary mixed system should be further improved and gradually extended to the study of the quaternary and above 
multivariate mixed system. This will this contribute to a more comprehensive understanding of the changing law of AIT. (2) In order to 
better understand the interaction mechanism between single components within a mixed system, the screening and calculation 

Fig. 15. SHAP summary plot of input variables.  
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methods of the hybrid molecular descriptor should be further optimized, so as to better understand and explain the results of the 
model. (3) The lack of data sources also hinders the AIT study of mixed liquids to a certain extent, and in the future, more AIT 
experimental data of mixed liquids should be measured to support the in-depth development of the QSPR study of mixed liquids. 
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