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Climate change is likely to profoundly modulate the burden of infectious

diseases. However, attributing health impacts to a changing climate requires

being able to associate changes in infectious disease incidence with the poten-

tially complex influences of climate. This aim is further complicated by

nonlinear feedbacks inherent in the dynamics of many infections, driven

by the processes of immunity and transmission. Here, we detail the mechan-

isms by which climate drivers can shape infectious disease incidence, from

direct effects on vector life history to indirect effects on human susceptibility,

and detail the scope of variation available with which to probe these mechan-

isms. We review approaches used to evaluate and quantify associations

between climate and infectious disease incidence, discuss the array of data

available to tackle this question, and detail remaining challenges in under-

standing the implications of climate change for infectious disease incidence.

We point to areas where synthesis between approaches used in climate science

and infectious disease biology provide potential for progress.

1. Introduction
The role of environmental variables and climatic conditions in shaping human

health has been recognized for centuries. Infectious diseases, in particular, may

be sensitive to climatic conditions through their effects on abundance of vectors

such as mosquitoes and ticks [1], pathogen survival outside of the host [2], environ-

mental contamination and exposure to water-borne infections [3], dampening of

host immunity [4], disruptions of health status associated with malnutrition

linked to droughts or floods, and disruption of health systems by disasters such

as floods or hurricanes. Consequently, shifts in climate—the average state of the

atmosphere–ocean–land system over time, as well as the day-to-day variability

of weather—may affect the burden of infectious diseases now and in the future [5].

Appropriately attributing changes in the burden of infectious diseases to cli-

matic variables, and quantifying this relationship, is a necessary step in evaluating

the potential impact of climate change [6]. However, this is complicated by a

number of factors. One issue is that the available data for many pathogens

often consist of only human cases of incident disease (rather than prevalence

of infection in vectors and/or mild or asymptomatic hosts) and rarely span
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time horizons reflective of major climatic shifts. As a result,

inference into the consequences of climate change requires

building on core biological knowledge (e.g. experiments indi-

cating vector or pathogen survival across the range of a

specific climatic variable [7]), leveraging spatial variation and

range limits associated with climatic conditions [8], or building

mechanistic understanding from shorter time-series of climatic

variables and disease incidence—a process which itself often

builds on biological knowledge and/or spatial variation.

Another issue is that while climate acts as an extrinsic

driver, infectious disease dynamics also have intrinsic drivers,

particularly fluctuations in population-level immunity and

susceptibility, as well as the dynamics of human behaviour

(e.g. increasing population size and mobility can modify pre-

vious geographical limits for vector-borne infections [9]).

Disentangling these drivers requires careful statistical and

model-based partitioning of possible links between climate

and infectious disease incidence while accounting for features

of host–pathogen biology such as asymptomatic carriage [10].

In order to attribute a change in infectious disease incidence

to climate, Rogers & Randolph [1] specify three criteria: the

change in infectious disease incidence must have occurred at

the right time, in the right place and in the right direction (con-

sistent with the hypothesized climate–disease relationship).

The third criterion requires understanding the mechanism(s)

by which climate may affect infectious disease incidence,

while the former two criteria require careful analysis of

spatio-temporal data. Here, we review the mechanisms by

which climatic variables might affect infectious disease

transmission, discuss challenges involved in linking climate

drivers to infectious disease transmission, provide an overview

of statistical and mechanistic models that can be used to quan-

tify these connections, and discuss how these might contribute

to generating future projections of the effects of climate on

health. Previous reviews have outlined mechanisms underlying

climate and infectious disease associations in non-human patho-

gens [11,12], reviewed conceptual challenges in detection and

attribution [6], and provided an overview of core knowledge

gaps [13]. Our focus is on infectious diseases in humans, and

we draw from examples across a range of pathogens to concre-

tely illustrate the methodological challenges and approaches

that have been developed to grapple with projecting future

infectious disease incidence under climate change.
2. Potential mechanisms linking climate and
infectious diseases

Associations between climatic conditions and infectious disease

incidence may be observed at a range of spatial and temporal

scales, but associations alone do not indicate causal links. Estab-

lishing causality requires identifying whether the association

is consistent with a hypothesized mechanism. There are a

wealth of potential mechanisms linking climate and infec-

tious diseases, which differ across ecological aspects of the

human–pathogen interaction, including route of transmission.

Infectious diseases may be directly transmitted via air-

borne particles or fomites (e.g. influenza), or indirectly

transmitted via food, water (e.g. cholera) or a vector (e.g.

malaria, dengue), and could potentially involve non-human

reservoir species (zoonotic pathogens, e.g. hantavirus). Each

transmission route may be associated with different climatic

drivers, outlined in the electronic supplementary material,
table S1. The consequences of climatic variation can range

from complete prevention of transmission (across geographi-

cal ranges or at certain times of the year) to shifting the

magnitude of transmission.

The most direct approach to identifying a mechanistic

impact of climate on infectious diseases is experimentation.

However, pathogens for which good animal models of trans-

mission exist (e.g. guinea pigs for influenza [2]), or for which

experimental studies of vector dynamics can be deployed (e.g.

Aedes aegypti for dengue [7]), remain a minority. Sometimes,

general aspects of the thermal or broader environmental niche

are known and can be used to inform the expected direction

of the climate–disease relationship.

To appropriately attribute the impact of climate change on

infectious disease incidence, we must move beyond simply

identifying the direction of the climate–disease relationship

to actually quantifying these relationships under natural con-

ditions. Model-based approaches can link changes in climate

variables to changes in disease incidence, ideally following

intermediate steps on the hypothesized causal pathway.

For instance, if rainfall and flooding are thought to influence

the risk of exposure for a water-borne disease (e.g. typhoid

fever) through increased contamination of drinking water,

ideally one would link the hydrologically relevant climate

variables to the prevalence of bacterial contamination of

water supplies [14] prior to examining correlations with

human incidence data.

Importantly, climate probably mediates infectious disease

risk via multiple mechanisms, and variability in climatic vari-

ables may be even more important than mean levels [15–17].

These factors complicate identifying the role played by climatic

variables in shaping the burden of infectious diseases. The

scope of climatic variation that can be used to drive inference

around the possible impacts of climate is an essential com-

ponent of meeting this challenge, which we detail next,

before outlining available methodological approaches.
3. Spatio-temporal scales of variation
and confounding factors

Once a hypothesized mechanism is established, the next two

criteria require determining whether changes in climate vari-

ables can be linked to changes in disease incidence in space or

time. Several scales and types of spatio-temporal variation

can be leveraged.

(a) Spatial variation
The geographical range limits of infections can powerfully

indicate the effects of climate. For many vector-borne infec-

tions, climatic changes (particularly increasing temperatures)

could increase the geographical range of vectors and thereby

increase the size of the at-risk population; conversely, decreases

in geographical range could be projected if conditions become

too dry [18]. Such changes have been modelled for infections

like malaria [19,20], dengue [21], onchocerciasis [22], Chagas

disease [23], West Nile virus [24], chikungunya [25] and Rift

Valley fever virus [26], and vectors like sand flies [27] and

black-legged ticks [28]. However, it is important (and often dif-

ficult) to differentiate between places that cannot support

ongoing transmission of the pathogen due to suboptimal cli-

matic conditions versus locations where the pathogen has yet
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to be introduced or has recently been eliminated by anthropo-

genic rather than climatic influences [29,30]. Control efforts are

likely to be focused in areas of intense transmission, potentially

obscuring key climatic conditions.

(b) Seasonality
Seasonal variation is another powerful focus for disentangling

climate–infectious disease relationships, providing a repeata-

ble probe of the association between climatic drivers and

transmission. Between-year variation, from small deviations

[31] through to unusual climatic conditions [32], can be used

to identify core climatic drivers if appropriate methods are

deployed (see below). However, given the large number of can-

didate climatic variables, many of which also exhibit seasonal

increases and decreases, spurious associations between climatic

drivers and a focal infection are inevitable. Confounders linked

to human behaviour or demography [33], or seasonality in

immune function (e.g. associated with vitamin D metabolism

[34]), further complicate inference (electronic supplementary

material, S1). Combining seasonal variations with biological

knowledge (e.g. [2]) and/or variation through space [35] can

help to identify a signature of a driving covariate among

multiple covarying climatic variables.

(c) Multi-annual variation
Over longer time-courses, multi-annual fluctuations in climate,

such as the El Niño Southern Oscillation (ENSO), provide

strong signatures against which to test associations between cli-

mate and infectious diseases [36], and can help tease apart the

effect of different climatic factors that do not necessarily covary

on longer than seasonal time scales [37]. Non-stationary

changes in climate (e.g. warming, multi-decadal drought) can

also be examined, but establishing robust links with these

longer-time-scale variations in climate requires amassing infec-

tious disease time series of sufficiently long duration, which is

challenging [38]. Even if data are available, long-term signa-

tures of associations between climate and infectious disease

dynamics may be overwhelmed by changes in surveillance

practices and/or the introduction of interventions, as well

as non-stationary changes in human ecology (e.g. increasing

density, urbanization [29]) and evolution in pathogen

(e.g. emergence of drug resistance [39]) or vector populations

(e.g. climate-imposed selection may alter mosquito diapause,

shifting the range of mosquito-borne pathogens [40]). Thus,

observed associations between long-term changes in climate

and infectious disease burden must be interpreted with cau-

tion, taking into account the underlying changes in the

human and pathogen populations and their interface [30].

(d) Combining spatial and temporal scales
‘Location-specific’ associations, which cannot be extrapolated

to regions where the climate may differ, or temporal associ-

ations that do not align with range limits linked to climate,

pose a serious challenge to characterizing the effects of climate

change. In many instances, these may be indicative of non-

mechanistic associations. However, it is also possible that the

important drivers of transmission vary depending on the

range of climatic conditions in a given location. For example,

the climatic drivers of influenza transmission, or the shape of

the climate–disease relationship, may vary between temperate

and tropical regions [41,42]. Understanding how climate
change might affect this pathogen will require accounting for

these differences.
4. Estimating climate effects on infectious
diseases

The scales of variation delineated have the potential to

inform our estimates of the association between climate

drivers and disease incidence. However, for communicable

diseases (pathogens transmitted from person to person,

either directly or indirectly), several factors make this challen-

ging. First, the infectious process is typically unobserved.

Second, many infections are to some degree immunizing,

meaning that one new infection both magnifies transmission,

but also depletes the pool of susceptible individuals, resulting

in feedbacks in the transmission dynamics which can obscure

climate signatures (figure 1). Attributing changes in infectious

diseases to specific climate drivers thus requires accounting for

nonlinearities in the risk of exposure and susceptible depletion,

a fact recognized since at least the 1950s, when Hope Simpson

quantified ‘infectiousness’ for measles, chickenpox and

mumps by carefully accounting for individuals in households

who had previously been exposed and were thus no longer

susceptible. He found no seasonal variation in ‘infectiousness’,

despite seasonality in incidence [44]. The core of his analy-

sis underscores the essential limitation of using traditional

time-series approaches for infectious disease dynamics—the

population exposed and at risk changes rapidly as a result of

the very dynamics of infection. Autocorrelations and lags that

do not take into account the underlying biology can result in

biases [45] and more complex inferential frameworks may

be required.

An array of methods is available for disentangling links

between climate and infectious diseases, ranging from statisti-

cal to mechanistic (i.e. dynamic) modelling approaches

(figure 2). Statistical models focus on matching patterns of vari-

ation in climatic variables with the distribution of observed

cases of disease in time and/or space; mechanistic models

seek to dissect these relationships by explicitly accounting for

the processes of transmission of infection and observation of

disease [1]. Both approaches are useful, but their applicability

depends on characteristics of the pathogen and the host–

pathogen relationship (see the electronic supplementary

material, table S2.)

(a) Traditional time-series modelling approaches
Statistical modelling approaches for climate–disease associ-

ations include regression approaches, such as generalized

linear models or generalized additive models (which can

also include time-dependent components), and conventional

time-series models, such as autoregressive integrated moving

average (ARIMA) models. Their appropriateness is shaped

by the degree to which hidden processes linked to transmission

or immunity result in confounding or non-independence (elec-

tronic supplementary material, table S2). Where climate affects

susceptibility to symptomatic disease (in turn affecting detect-

ability by the surveillance system) rather than the infection

process, as reported for Streptococcus pyogenes [46], nonlinear

feedbacks between climate and disease incidence should be

minimal, and statistical approaches appropriate. Likewise,

if the primary reservoir for infection is a non-human host
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year as observed (e.g. in Kenya), with periods of low precipitation shown in grey. (b) Resulting cases for a completely immunizing infection with a two-week
generation time and a low basic reproductive number (R0) (set to R0 ¼ 5) simulated using an SIR transmission dynamic model as in [43]. The resulting time
series shows a clear footprint where periods of low precipitation and thus low transmission correspond to outbreaks turning over (red arrows), where conversely
high precipitation is associated with increases in incidence. (c) Resulting cases for an identical infection simulated using an SIR model, but with a high basic
reproductive number (R0 ¼ 32). In this case, the resulting time series shows a much more erratic picture, with little direct indication of the impact of precipitation
on cases, especially in low incidence years (i.e. no increase in cases with increases in precipitation in year 2), as a result of the dominant multi-annual period
resulting from the intrinsic dynamics.
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and the impact of climate is to mediate pathogen exposure,

possibly by affecting vectors, then nonlinear modelling

approaches are not required unless relevant dynamic feed-

backs are identified. Accordingly, traditional time-series

modelling approaches have been applied to examine associ-

ations between extreme precipitation and water-borne

diseases in the USA [47], and rainfall, humidity and cutaneous

leishmaniasis in Brazil [48]. For infections with relatively low

transmission rates, and a long generation interval, traditional

time-series approaches could also be applied, because there

will only be weak dependence between consecutive
observations (i.e. incident cases of disease; figure 1). Finally,

conventional time-series approaches are appropriate for

exploratory analyses to identify potentially relevant variables

for further inquiry using mechanistic approaches [35].

When carefully trained, evaluated and tested (e.g. via out-

of-sample prediction), non-mechanistic autoregressive models

may have good predictive power for forecasting burden over

shorter time horizons [49], even outperforming models that

incorporate the ‘true’ underlying drivers; but over the longer

term, non-stationary changes in climate, or variables like demo-

graphy and susceptible depletion, may complicate this picture.
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(b) Time-series decomposition, wavelet analysis and
synchrony

The periodicity in the dynamics of some infectious diseases as

well as climate (including both seasonal and multi-annual

cycles) lends itself to a range of methods specifically designed

to quantify non-stationary associations between time series,

such as changes in mean, variance and/or period of oscillations

over time. Methods for time-series decomposition (including

moving averages, seasonal and trend decomposition using

Loess and Bayesian structural time-series models [50]) seek to

separate out long-term trends in incidence from seasonal and

multi-annual cycles and random ‘noise’, bridging the gap

between traditional statistical approaches and mechanistic

models. Wavelet analysis is especially appropriate for identify-

ing changes in the periodicity and/or phase of incident cases

and correlating them with exogenous variables [51]. Wavelets

have been used to evaluate the synchrony between rainfall

and cholera across Africa [52] and Haiti [53], and to suggest

that warmer locations serve as sources of out-going waves of

dengue across Southeast Asia [54]. Such approaches may be

particularly powerful in settings where nonlinear aspects of

the dynamics, such as susceptible feedbacks, are expected,

but are hard to model explicitly given complexities in the

biology and/or a paucity of data available to reflect these

(e.g. multiple strains, asymptomatic carriage). The wavelet

spectra allow partitioning of frequencies reflecting such biologi-

cally driven resonances (consistent with the intrinsic disease

dynamics), allowing other frequencies and their associations

with extrinsic variables (e.g. climate variables) to be evalu-

ated. However, the inference remains correlative rather than

causative, because climate drivers such as ENSO may have

multi-annual cycles that align by chance with multi-annual

dynamics of an infectious disease. But if multiple lines of

evidence (e.g. average age of infection, exponential growth

rates) suggest that the transmission rate of an infection and

associated intrinsic dynamics are inconsistent with the

observed multi-annual cycles, yet these cycles align with a

climatic variable such as ENSO, this provides supporting

evidence for a role of this climate variable on transmission.

(c) Regression-based TSIR models to extract
transmission

A potentially powerful approach is to harness statistical

methods within a mechanistic framing. One such semi-

mechanistic approach examines associations between climate

and the transmission rate by reconstructing the underlying sus-

ceptible and infectious populations. As with Hope Simpson’s

approach [44], the idea is to condition on susceptibility and

exposure to the pathogen in order to extract a measure of ‘infec-

tiousness’, although here the rate of exposure must be inferred

from the underlying time series. This concept underlies time-

series susceptible–infected–recovered regression models [43],

which build on estimating the size of the susceptible popu-

lation (St) by taking into account depletion of susceptibles via

infection or vaccination, and replenishment via births. The

number of incident infections at time t þ 1 is then modelled

as Itþ1 ¼ btItSt, where bt is the rate of transmission from an

infected to susceptible individual; the time-step should

approximately equal the serial interval of the infection. This

equation can be linearized by taking the log of both sides,

then fitted using a regression with It (the observed incidence,
corrected for underreporting) and St as offsets:

logðItþ1Þ ¼ logðbtÞ þ logðItÞ þ logðStÞ:

Seasonal (and other temporal) fluctuations in the transmission

rate bt can then be estimated by choosing an appropriate focal

time-scale. The resulting estimates of transmission can be ana-

lysed to evaluate their association with seasonal climatic (and

non-climatic) drivers. Alternatively, bt can be framed as a func-

tion of climatic variables or other intermediate variables (e.g.

environmentally sampled viral or bacterial particles) and

these associations can be directly evaluated. For pathogens

that are not completely immunizing, waning of immunity

can be captured (e.g. using Taylor expansions [37]). Such

approaches have been used to suggest that seasonal migration

patterns linked to agriculture shape measles dynamics in

Niger [55], and reveal temperature-dependence of rotavirus

transmission in England and The Netherlands [56].

(d) Partitioning drivers of RE
A related approach is to extract the time-varying effective

reproductive number RE,t from time series of incidence [57],

defined at time t as RE,t ¼ R0St, where R0 is the constant basic

reproductive number (i.e. the average number of secondary

infections expected from one infectious individual in a fully

susceptible population), and St is the number of susceptibles

at time t; RE,t is thus the expected number of secondary infec-

tions accounting for population immunity. This relationship

can be expanded to encompass the influence of potential

drivers [31]:

RE,t ¼ R0St

Y

k

d
bk
t,k:

Variables associated with hypothesized mechanisms by which

climatic variables shape transmission can be incorporated via

the k potential drivers, dt,k. Following linearization (taking

logs, as above), the coefficients bk can be estimated via

regression (e.g. revealing how absolute humidity and school

holidays shape influenza-like illness in The Netherlands [31]).

(e) Dynamic models
The next extension is to fit a full transmission dynamic model

to incidence data. Such models explicitly attempt to represent

reasonably complex life cycles, and differentiate between infec-

tion and disease. Again, there are two possible approaches.

First, data from climate drivers can be directly used within

the dynamic model. For example, Shaman et al. [58] developed

a dynamic model for influenza encompassing a parametric

relationship between absolute humanity and R0. A similar

approach was used to examine associations between rainfall

and cholera incidence in Haiti [59]. Experimental data on the

relationship between temperature and mosquito demography

were incorporated into a model that revealed how climate

shaped the first reported dengue outbreak in Europe [60]; simi-

lar models have been used to hindcast seasonal outbreaks of

malaria in India to evaluate an early warning system [61].

Full dynamical models can also be framed to allow formal stat-

istical comparisons between hypotheses (e.g. to evaluate the

role of rainfall versus feedbacks due to immunity in driving

malaria cycles [62]). Alternatively, seasonality in transmission

can be approximated (e.g. using a sinusoidal forcing function,

for which the amplitude and phase are directly estimated), and

association with climate drivers evaluated post-hoc. This
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approach has been used to examine the climatic drivers under-

lying the distinct seasonal and spatial patterns of RSV in the

USA [35] and the Philippines [63]. Out-of-sample model vali-

dation is always essential, the impact of interventions must

be considered [64] and care must be taken to avoid common

inferential pitfalls (below).

( f ) Risk maps
For vector-borne and zoonotic diseases where endemicity

is shaped by the local environment, risk maps estimate the

spatial distribution of human risk of infection, capturing hetero-

geneity at local [65], regional, country-wide [66,67] and global

scales [68–71]. Risk-mapping approaches integrate observed

occurrences (i.e. prevalence or incidence data) at discrete

locations to generate an interpolated map of estimated risk

of human infection and/or disease, generally building on

environmental, ecological, socio-demographic and/or human

susceptibility covariates [69,72], and sometimes known biologi-

cal dependencies (e.g. of vectors on climate [73]). Underlying

methods range from model-based geostatistics (especially

where data are rich), to machine-learning approaches (e.g.

boosted regression trees [71]), and generally encompass

formal quantification of uncertainty [74,75].

Increasingly, methods underlying risk maps encompass core

biological mechanisms via transmission models, allowing attri-

bution of the impact of interventions [76] through to projection

of burden, for example, by inferring attack rates and modelling

demographic processes for Zika virus [77]. Dynamic spatial risk

maps based on mechanistic models enable hypothesis-testing of

the climatic drivers of infectious disease risk, and attribution

of specific events, such as the role of the 2015 El Niño in the

emergence of Zika virus [78]. However, parametrizing such

risk-map models requires detailed biological and epidemio-

logical knowledge and may be difficult to develop for broad

spatio-temporal scales. Model validation against observed

changes in the spatial distribution of disease is essential.
5. Methodological challenges for climate –
disease models

The analysis of links between climate and infectious disease

incidence using population-level data raises a series of statistical

challenges (beyond the broader epistemological challenges that

arise from attempting to indirectly infer mechanism, and pro-

cess-based challenges; figure 1). First, for any pathogen, there

are many possible extractions of climate covariates, which

are likely to be highly collinear. In the best-case scenario, clear

candidate predictors present themselves through knowledge

of biological mechanisms, usually from experimental data (elec-

tronic supplementary material, table S1). The most compelling

evidence for quantifying the impacts of climate on infectious

diseases comes when experimental evidence for the climate–

pathogen relationship is used to parametrize models describing

population-level patterns at broad spatial and temporal scales

(e.g. [79,80]). Where no information is available to guide covari-

ate choice, care should be taken to avoid pitfalls commonly

encountered in regression featuring multiple comparisons

[81]. Approaches such as principal component analysis and

Lasso might be used to reduce the dimensionality of the

system, while Bayesian model averaging can be used to identify

combinations of potential predictors that provide the best fit to
the data while accounting for model uncertainty. If strong

relationships between principal components and disease inci-

dence or transmission emerge, the climatic variables captured

by the focal principal component can be further explored in

laboratory or field experiments to pinpoint potential individual-

level mechanisms.

The repeatability of seasonality in both climate variables

and disease incidence brings another challenge. For example,

a low absolute humidity and low influenza incidence occur

at approximately the same time of the year, spurious associ-

ations are possible. A permutation test can address this—

the time course of drivers within each year is randomly

redistributed across years and the analyses re-run [31]. Only

parameters whose association is significantly stronger than

in the randomized time-series are likely to reflect a true

association. Alternatively, associations between the residuals
of climatic factors and model-predicted incidence can be

explored to determine whether unusual climatic conditions

(that differ from the expected conditions given the time of

year) are also associated with higher or lower disease incidence

[35,58]. There is promise but also challenge in harnessing

the impact of extreme events to strengthen inference [82].

‘Model-free methods’, such as convergent cross-mapping

have been used to infer a role of absolute humidity on influenza

[42]; however, the scope of inference with such methods may

be limited in settings of periodic fluctuations [83].

A final statistical challenge is the potential lack of congru-

ence between the spatial and temporal scale of available data

and the key scale of mechanism [84]. For example, if one

day’s strong rainfall results in a pulse in transmission of an

enteric infection, but disease incidence data are only available

monthly, or at a larger spatial scale, this detail will be missed.

It has been suggested that this type of mismatch may result in

stronger inference with broad-scale trends like El Niño rather

than specific climate drivers like temperature [85].
6. Methodological challenges related to climate
data and climate change models

Observations of atmospheric and hydrological variables will

be key to deploying the methods described above. Routine

observations are made from surface stations [86], weather

balloons [87], satellite radiometers [88], etc. These are used

with fluid dynamical constraints to produce estimates of the

global atmospheric state at resolutions of tens of kilometres

[89]. All of these data sources have uncertainties and biases;

consequently, the appropriate source depends on the question

of interest, pathogen biology and the spatio-temporal scales of

the infectious disease data. Potential variables of interest

include directly observed quantities such as temperature or

precipitation, or derived measures of heat stress or drought.

Disease incidence in future decades would ideally be pre-

dicted using output from climate models, but this effort is

hampered by poor climate model resolution and high model

uncertainty and bias. Infectious diseases are often sensitive to

variability on short spatial scales that is not well-represented

by global climate models, with typical horizontal resolutions

on the order of 100 km. Statistical or dynamical downscal-

ing—the latter employing higher-resolution climate models

integrated only in a particular region—can provide data at

the requisite scales, but rely on potentially biased boundary

conditions obtained from global models. Global models also
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typically produce biased estimates of extreme events, such as

tropical precipitation extremes [90]; this is problematic as the

dynamics of infectious diseases may be more sensitive to

extremes or variability than to time-mean properties, and

associations may be strongly nonlinear.

However, there is opportunity to identify disease–climate

associations that rely on climatic variables with more certain

projected changes. For example, although predictions of next-

century regional precipitation change are highly uncertain,

there is evidence that aridity over many continental regions

has increased and will continue to do so in coming decades

[91]. The seasonal cycle of rainfall is biased in models of

some tropical regions [90], with, for example, potentially

serious consequences for malaria burden projections. How-

ever, projected delays in the seasonal onset of monsoon

rainfall as climate warms are robust across models and

stem from well-understood atmospheric thermodynamics

[92]. Tight interdisciplinary work, in which climate scientists

work closely with infectious disease modellers, thus has the

potential to lead to discovery of emergent constraints on

future disease incidence.
7. Linking climate change models to infectious
disease models

Forecasting future infectious disease incidence under climate

change requires jointly modelling both changes to future cli-

mate and the climate–disease relationship, accounting for

uncertainties in both. On short time scales, data-assimilation

approaches used in weather forecasting have been applied

to influenza [93], taking as a premise noisy data and using

statistical filtering to reduce forward error propagation [94]

to provide reliable real-time forecasts of influenza incidence

across a large number of US cities [93,95], as well as allowing

nuanced evaluation of different data-assimilation and filtering

approaches [94]. Across longer time scales, an array of possi-

ble climate and infectious disease models can be combined

in a multimodel ensemble framework, allowing formal

assessment of the range of possible future outcomes and identi-

fication of the origin of discrepancies between models [96]. This

approach has been used to forecast future malaria distributions

under climate change—one of the few pathogens for which

the necessary diversity of models for the climate–disease

relationship exists [80].

For infectious diseases, as for other anticipated impacts of

climate change [96], the footprint of human adaptation, ran-

ging from interventions such as vector control to vaccination

strategies altering the landscape of immunity, or human move-

ment shifting diseases, complicate forecasting. But near-term

forecasts [93] or longer-term projections that explicitly do not

account for these subtleties [80] provide a powerful starting

point, from which refinements can subsequently be made. In

both instances, model projections must be continually tested
by comparing with out-of-sample data, and updated when

the models fail to capture relevant patterns in data. One poten-

tially fruitful direction is to build on methods used in the

climate community to increase skill via retrospective analyses

of weather and climate forecast models [93]. Retrospective fore-

casting of infectious disease outcomes on time scales of months

to years would allow the impact of the seasonal cycle, ENSO

and other interannual climate variability to be assessed [97].

Importantly, even if the climate prediction itself is wrong, an

ensemble approach could assess whether infectious disease

projections conditioned on the actual climate occurrence

exhibit reasonable skill.
8. Conclusion
To evaluate the impact of climate change on the incidence

of infectious diseases, we must move beyond identifying

simple correlations and statistical associations between climatic

variables and incident cases of disease to identifying the under-

lying causal mechanisms. Just as the methods used for weather

forecasting differ from those used for long-range climate

projections, different methods are needed to make out-of-

sample predictions about future trends in incidence under

climate change. Traditional statistical approaches are useful

under certain conditions (electronic supplementary material,

table S2), for exploratory analyses, and even for short- to

medium-term forecasting (e.g. [98]). However, more mechanis-

tic modelling approaches are needed if climatic drivers impact

the transmission of infection from infected to susceptible hosts.

Epidemiologists can take cues from the climate modelling com-

munity by seeking to better understand and incorporate the

underlying properties that influence the observed behaviour

of the climate–disease system, and by routinely testing an

ensemble of models by retrospectively comparing and validat-

ing models against data. From forecasting influenza epidemics

over the short term [94] to disentangling the impact of climate

change on malaria [80], great strides are being made, but much

remains to be done.
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