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Muscle synergies are consistent 
across level and uphill treadmill 
running
Akira Saito1,2, Aya Tomita3, Ryosuke Ando2,4, Kohei Watanabe5 & Hiroshi Akima   3,4

This study aimed to identify muscle synergies of the lower limb during treadmill running on level and 
inclined ground. Eight subjects ran on a treadmill at three speeds (2.5, 3.3, and 4.1 m/s) and two grades 
(level and 10% grade). Surface electromyographic (EMG) signals were recorded from 10 muscles of 
the lower limb, including deeper muscles such as vastus intermedius, adductor magnus, and adductor 
longus. Muscle synergies were extracted applying a non-negative matrix factorization algorithm, and 
relative co-activations across muscles and the temporal recruitment pattern were identified by muscle 
synergy vector and synergy activation coefficient, respectively. The scalar product between pairs of 
synergy vectors and synergy activation coefficients during level and uphill running conditions were 
analyzed as a similarity index, with values above 0.8 recognized as similar. Approximately 4 muscle 
synergies controlled the majority of variability in 10 EMGs during running, and were common between 
level and uphill conditions. At each running speed, inter-condition similarity was observed in synergy 
vector (r > 0.83) and synergy activation coefficients (r > 0.84) at each type of synergy. These results 
suggest that types of synergy are consistent between level and uphill running.

Running is one of the modes of human locomotion and is generally considered a distinct locomotor mode with 
strikingly different mechanics from walking1. Locomotor behavior during running usually changes depending on 
the running speed (i.e., jogging and sprinting)2. Moreover, locomotor behaviors change in response to changes in 
geographical factors, including the surface and slope of the ground3. The present study concerns the neuromus-
cular adaptation of running, to provide a better understanding of the fundamental control of human locomotion.

In locomotion studies, electromyography (EMG) recordings have assessed the temporal patterns of neuro-
muscular activation in working muscles within a step cycle, and typical EMG activation patterns of the lower limb 
during running are well documented4–6. Neuromuscular activation during running shows non-uniform changes 
in response to alternations in slope7–9. In particular, slope-related changes in EMG activation during high-speed 
running has been observed in the quadriceps femoris and hip adductors9. Regarding EMG recordings for deeper 
muscles in the thigh, specific activation patterns were obtained from knee and hip muscles, such as vastus inter-
medius (VI)6, adductor magnus (AM)4, and adductor longus (AL)5 during running over a wide speed range. 
Neuromuscular activation of the thigh muscles, including deeper muscles, may thus demonstrate the existence of 
task-specific modulation during running.

In the last decade, neural control strategies for activating muscles during locomotion have been predicted 
by applying a non-negative matrix factorization (NMF) for the EMG activation patterns of each muscle10,11. 
Locomotor muscle activities are generated by motor neurons in the spinal cord, and spinal central pattern gen-
erators are suggested to play an essential role in producing coordinated muscle activities11,12. Indirect evidence 
suggests that the human spinal cord generates rhythmic and synergistic activities in the lower limb13. Assuming 
the existence of the modular control strategies (i.e., muscle synergies), human locomotion might be controlled by 
a sequence of several motor modules10. In fact, a small number of muscle synergies could account for the majority 
of surface EMG patterns from a large number of muscles while running over a wide speed range using NMF10,14. 
Neuromuscular adaptation of synergies in walking has been addressed between level and inclined surfaces, and 
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these synergies are flexibly used to achieve walking adapted to the mechanical demand15. However, little infor-
mation has been accumulated regarding the modulation of muscle synergies between running conditions with 
different inclines. Since walking and running are controlled by distinct sets of muscle synergies14, this study may 
show that task-specific modulation of the synergies was induced by inclined running. Specifically, slope-related 
changes in EMG activity were observed in the initial stance and swing phases of running9, corresponding to 
synergies comprising mainly hip and knee extensors, and hip adductors and knee flexors, respectively10,14. We 
therefore assumed that the synergies activating in the initial stance and swing phases in running are modulated 
by alternations in slope.

We recorded neuromuscular activations of the lower limb, including the deeper muscles, during running on 
level and inclined ground, then extracted muscle synergies using NMF. Extraction of muscle synergies was per-
formed at three different running speeds on the treadmill to evaluate the dependence of synergy on speed. This 
study aimed to test the hypothesis that muscle synergies mainly comprising activation of knee extensors and/or 
hip adductors during running are modulated in response to ground elevation.

Method
Subjects.  Seven men and one woman were recruited for the present study. The respective physical character-
istics of subjects were as follows: age, 26.5 ± 6.9 years; height, 167.3 ± 9.6 cm; and body mass, 59.1 ± 12.8 kg. The 
procedure, purpose, risks, and benefits associated with the present study were explained to subjects and written 
informed consent was obtained prior to the experiment. The institutional review board of the Research Center 
of Health, Physical Fitness & Sports at Nagoya University approved the experimental protocols, which were con-
ducted in accordance with the guidelines of the Declaration of Helsinki.

Experimental protocol.  Subjects ran on a motorized treadmill (TREAD-MILL; Nishikawa Iron Works, 
Kyoto, Japan) set to 1.6 m/s and level (i.e., 0° incline) for 3 min prior to testing. Subjects completed a 1-min run-
ning trial on the treadmill set to 6 different combinations of speed and grade; i.e., 2.5, 3.3, and 4.1 m/s either on 
the level or on a grade of 10%. Speed-grade combinations were conducted in randomized order for each subject. 
The rest interval between each trial was at least 1 min.

Surface EMG recording.  Surface EMG signals were recorded during running from ten muscles of the 
right lower limb: vastus intermedius (VI), vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), the 
long-head of biceps femoris (BF), semimembranosus (SM), adductor magnus (AM), adductor longus (AL), the 
medial head of gastrocnemius (MG), and tibialis anterior (TA). EMG sensors consisting of two silver bar elec-
trodes (0.1 × 1 cm each), with a 1-cm inter-electrode distance, were used for EMG acquisition from each muscle. 
A DE-2.1 sensor pre-amplifier and main amplifier were set with a bandpass filter at 20–450 Hz (Bagnoli; Delsys, 
Boston, USA). Signals were sampled at 2000 Hz using an AD converter (Power Lab; ADInstruments, Melbourne, 
Australia). Timings of heel contact were identified by a foot-switch (DL-250; S&ME, Tokyo, Japan) taped to the 
heel of a right shoe. We determined the gait cycle using the foot-switch attached to the heel for EMG analysis. One 
heel contact to next heel contact was defined as one gait step. Electrical signals from the foot-switch were synchro-
nized with surface EMG signals on a personal computer using Chart 7 software (ADInstruments).

After shaving, abrading, and cleaning the skin with alcohol, electrodes were positioned at specific locations for 
each muscle16. We determined the superficial regions of the VI, AL, and AM using ultrasonography (Logiq e; GE 
Healthcare, Duluth, USA)17,18. The VI electrode was positioned on the skin where the superficial region of the VI 
overlapped at 0° and 65° of knee flexion19–23. Electrodes for AM and AL were placed on the skin between the SM 
and gracilis and sartorius, respectively18. A reference electrode was placed over the iliac crest.

Post-processing and extraction of muscle synergies.  During the stable running of each trial, 10 con-
secutive gait cycles were sampled for analysis. Based on the variability of EMG magnitude and heel-to-heel con-
tact cadence while running, the stable running phase was visually determined. EMG signals were rectified and 
smoothed with a low-pass filter at 15 Hz using a fourth-order Butterworth filter24,25. EMG envelopes of each cycle 
were interpolated to 100 time points. EMG patterns were normalized to the respective maximum amplitude 
across all speeds and inclinations.

We extracted muscle synergies for each subject using NMF26. The EMG data matrix for each condition and 
speed was averaged across consecutive 10 cycles10,24. NMF minimizes the residual between initial matrix and its 
decomposition, given as follows (1):

= +E WH e, (1)

where E is a p × n matrix (where p is number of muscles and n is the number of time points), W is a p × k matrix 
of the synergy vectors, containing the spatial information of muscle coactivations, H is a k × n matrix of the 
synergy activation coefficients involving the temporal information of synergy recruitment, k is the number of 
extracted muscle synergies, and e is the residual error matrix. Muscle synergy vectors were normalized by the 
maximum under the synergy to which they belong. The peak phase of synergy activation coefficients was identi-
fied from among 100 time points and expressed as percentage of cycle.

We iterated analyses by varying the number of synergies between 1 and 10, then the least number of syner-
gies k that accounted for >90% of the variance accounted for (VAF) in each subject was selected27 and VAF was 
defined as the uncentered Pearson correlation coefficient (2):
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Inter-subject similarities of muscle synergies.  To perform functional sorting of extracted muscle syn-
ergies, we initially performed classification by grouping muscle synergies based on the cosine similarity value 
(r > 0.60) with that of an arbitrary reference subject using an iterative process28. The averaged set of muscle weight 
components for all subjects was then computed, and the cosine similarity between averaged muscle synergies and 
each synergy across subjects was calculated29. If two synergies in one subject were assigned to the same synergy, 
the pair of synergies with the highest correlation was defined as the same group of synergies.

Similarities of muscle synergies.  We quantified the similarity of synergy vectors and activation coeffi-
cients between running speeds and between level and uphill running conditions by computing scalar products 
adjusted for the delay30,31. More specifically, the delay in a pair of synergy activation coefficients was assessed as 
lag time at the maximum of the cross-correlation function32,33. Inter-condition similarity was then calculated by 
computing the scalar product between pairs of vectors (i.e., synergy vectors or synergy activation coefficients), 
normalized by the product of the norms of each column30, to prioritize the comparison between shapes of vectors 
rather than amplitude31. Similarity can vary from 0 (no curve shape matching) to 1 (perfect curve shape match-
ing), and values above 0.8 were defined as indicating similarity between a pair of vectors34.

Statistics.  Since numbers of samples within the muscle synergy differed between synergy types or running 
conditions and these data showed partly non-Gaussian distributions, we performed non-parametric testing to 
compare the difference between running conditions and speeds. Cadence, peak amplitude at each EMG, number 
of synergies, and weighting components of synergy between level and uphill running were analyzed using the 
Wilcoxon signed-rank test. These variables between different running speeds were analyzed using the Friedman 
test. If a significant difference was identified, the Wilcoxon signed-rank test was performed as a post hoc test. 
Furthermore, differences in peak timing of EMG activity and synergy activation coefficients between running 
conditions and speed were analyzed using the Watson-Williams test using a toolbox35 for MATLAB (version 
R2016a; Mathworks, Natick, USA). The level of statistical significance was set at the p < 0.05, and p value for 
multiple comparisons was adjusted by Bonfferoni correction.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
corresponding author on reasonable request.

Results
Running cadence (i.e., right-leg heel contacts) at 2.5, 3.3, and 4.1 m/s were 85.0 ± 5.0, 88.8 ± 5.5, and 94.1 ± 6.6 
steps/min, respectively, during level running and 86.6 ± 5.3, 91.3 ± 6.4, and 96.8 ± 9.7 steps/min, respectively, 
during uphill running. No significant differences in cadence were observed between running conditions at each 
speed (p > 0.05). Cadence increased significantly with increasing running speed under each running condition 
(p < 0.05).

Peak EMG activity in the lower limb increased significantly with increasing running speed for each condition 
(p < 0.05), with the exception of MG during uphill running and TA under each running condition (p > 0.05) 
(Fig. 1). Peak EMG activity of the VM was significantly higher during uphill running than during level running at 
each speed, and that of the VI was significantly higher during uphill running than during level running at 4.1 m/s 
(p < 0.05). No significant difference in the timing of peak EMG activation was observed between running condi-
tions and between speeds for each muscle (p > 0.05).

Properties of muscle synergies.  Based on cumulative percentages of variance explained by each muscle 
synergy for each condition, three to five types of muscle synergy were identified across all subjects (Fig. 2). Mean 
numbers of synergies during level running at 2.5, 3.3, and 4.1 m/s were 4.1 ± 0.6, 4.3 ± 0.5, and 4.2 ± 0.7, respec-
tively, and those during uphill running at 2.5, 3.3, and 4.1 m/s were 4.1 ± 0.3, 4.0 ± 0.0, and 4.2 ± 0.4, respectively 
(VAF > 90%). No significant difference in number of synergies was evident between running conditions and 
between speeds (p > 0.05).

Muscle synergies were classified into similar groups and sorted across subjects. Figure 3 demonstrates a typical 
example of synergies consisting of synergy weighting components (Fig. 3a) and the associated temporal activation 
patterns (Fig. 3b) under six different combinations of three speeds and two grades. In that subject, four or five 
types of muscle synergies were extracted under each running condition. Weighting components in five types of 
synergies were similar across subjects (0.821 < r < 0.997), whereas one synergy in uphill running at 4.1 m/s was 
inconsistent with the synergy in other subjects (i.e., subject-specific synergy) (Fig. 3).

We found five types of muscle synergy that were common among all subjects during level and uphill running 
(Table 1, Fig. 4). The number of samples in muscle synergies which shared among subjects was influenced by 
synergy type and running condition, and some subject-specific synergies were observed under each condition 
(Table 1). Synergy 1 consisted mainly of activation of the quadriceps femoris (0.898 < r < 0.992), which was acti-
vated with the timing of right-heel contact. Synergy 2 mainly recruited MG (0.814 < r < 0.979) and was activated 
following the activation of Synergy 1. Synergy 3 and Synergy 4 mainly consisted of AM (0.796 < r < 0.996) and TA 
(0.836 < r < 0.997), respectively, and were activated during the later stance or swing phases. Synergy 5 consisted 
primarily of activation of the AL and two muscles of the hamstrings (0.749 < r < 0.995), and was activated before 
the timing of right-heel contact.

Muscle synergies between running speeds.  Weighting components in five types of muscle synergies 
were similar between different running speeds at each condition (r > 0.84), except for that in Synergy 2 at level 
running (3.3 vs. 4.1 m/s) (Table 2). Activation coefficients in the five types of synergy were similar between speeds 
under each condition (r > 0.80). With comparison of the weighting components between different running 
speeds, a significant change in weighting components was observed only in the MG within Synergy 1 (p < 0.05) 
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(Fig. 4). No significant difference in peak timing of each synergy activation coefficient was observed between 
running speeds (p > 0.05).

Muscle synergies between running conditions.  Weighting components in five types of muscle syn-
ergies were similar between level and uphill running conditions at each speed (r > 0.83) (Table 3). Activation 
coefficients in the five types of synergy were also similar between conditions at each speed (r > 0.84). Although 
characteristics of muscle synergies were common to both level and uphill running, several synergy weighting 
components and peak timing of the synergy activation coefficient were significantly different (Figs 4 and 5). In 
particular, a significant difference in the weightings of VI, VM, BF, and MG in Synergy 1 was observed between 
level and uphill conditions at 4.1 m/s (p < 0.05) (Fig. 4a). No significant difference between level and uphill con-
ditions was observed in peak timing of each synergy activation coefficient (Fig. 5).

Discussion
Neuromuscular activations of the lower limb including the deeper muscles were recorded during running on 
level and inclined ground surfaces, then muscle synergies were identified by NMF. This study showed that three 
to five muscle synergies accounted for the majority of activation profiles in 10 lower limb muscles for each subject. 
Moreover, inter-condition similarities were observed in weighting components and activation coefficients for 

Figure 1.  Ensemble-averaged electromyographic (EMG) patterns of 10 recorded muscles for each condition. 
Averaged EMG patterns across 10 consecutive running cycles were normalized to the respective maximum 
value among all speeds and inclinations and expressed as a function of the percentage of the cycle. Colored bold 
lines indicate mean EMG patterns and colored filled areas indicate the standard deviation. a.u., arbitrary units.
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each type of synergy. These results did not support the hypothesis that synergies mainly comprising activation of 
knee extensors and/or hip adductors during running were modulated in response to ground elevation.

Previous studies have demonstrated that several muscle synergies control the total patterns of a large num-
ber of neuromuscular activation in the lower limb and trunk muscles during running10,14,36,37. In this study, 
three to five types of muscle synergy provided > 90% of the total VAF for each subject (Fig. 2). Accordingly, 
approximately 4 muscle synergies controlled the majority of the 10 EMG profiles under each running condi-
tion. Cappellini et al.10 demonstrated that five types of components primarily control human running, and 
these components were activated at the specific phases of running, i.e., initial-stance (Component 1, hip and 
knee extensors), middle-stance (Component 2, plantar flexors), initial-swing (Component 3, erector spinae and 
upper trunk), middle-swing (Component 4, dorsiflexors), and late-swing to early stance (Component 5, hip adduc-
tors and hamstrings). These five components globally corresponded to the specific type of synergy in this study 
(Table 1, Fig. 4). Under the muscle synergy hypothesis, the motor program in human running is speculated to 
be a sequence of several temporal activation of synergies10,14. Our results thus suggest that three to five temporal 

Figure 2.  Variance accounted for (VAF) as a determination of the number of extracted muscle synergies under 
each running condition. Iterative analysis was performed by varying the number of synergies between one and 
ten, and the least number of synergies that accounted for >90% VAF in each subject was identified (gray narrow 
lines). Colored bold lines indicate mean VAFs across subjects, with 90% VAF shown as a solid black line.
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activation patterns of muscle synergies principally control locomotor muscle activities in the lower limb during 
running.

By comparing muscle synergies between level and uphill running conditions at each speed, the results of this 
study showed global consistency in the synergies across conditions. First, mean numbers of muscle synergies 
for all subjects were similar across the conditions at each running speed. Second, we confirmed inter-condition 
similarities of synergy vectors (r > 0.83) and synergy activation coefficients (r > 0.84) in each type of synergy 
(Table 3). These results suggest that basic patterns of locomotor muscle activity are consistent between level and 
uphill running. Regarding the motor modules controlling human running under different environmental condi-
tions, Oliveira et al.36 suggested that similar motor modules control human running under varying environmental 
requirements (treadmill vs. overground running). Ivanenko et al.38 demonstrated that specific components were 
additionally recruited to five basic components when subjects added a voluntary task (e.g., kick a ball and step 
over an obstacle) to their normal walking. We therefore consider that the recruited synergies in the lower limb 
were shared across different running conditions, because the natural motor behavior of running was performed 
for individual subjects regardless of the conditions.

Although the weighting components and temporal activation patterns of muscle synergies were similar 
between level and uphill running, differences between conditions were observed in muscles within a synergy 
(Fig. 4). Differences in knee extensor weightings in Synergy 1 across conditions corresponded to the peak EMG 
responses of VI and VM during uphill running, supporting previous findings9. These differences in other syner-
gies may be induced by changes in running motions with ground elevation (e.g., contact time and step length3). 

Figure 3.  A typical example of extracted muscle synergy during level and uphill running. (a) Each bar 
represents the relative spatial information of muscle coactivation within each synergy. Weighting coefficients 
were normalized by maximum values under the synergy. The r value represents cosine similarities between 
averaged muscle weighting components across subjects, and is shown just above each bar graph. (b) Each 
waveform represents the temporal activation pattern of the synergy related to individual muscle weighting 
components. Synergy surrounded by a dashed line is a subject-specific synergy. #1, Synergy 1; #2, Synergy 2; #3, 
Synergy 3; #4, Synergy 4; #5, Synergy 5; a.u., arbitrary units.

Synergy type Major muscles

Level running Uphill running

2.5 m/s 3.3 m/s 4.1 m/s 2.5 m/s 3.3 m/s 4.1 m/s

Synergy 1 VI, VL, VM, RF 8 8 8 7 8 8

Synergy 2 MG 7 6 5 5 4 5

Synergy 3 AM 5 6 6 5 5 7

Synergy 4 TA 4 4 4 5 6 3

Synergy 5 BF, SM, AL 8 8 8 8 8 8

Subject-specific — 1 3 3 3 1 3

Table 1.  Properties of muscle synergy and number of subjects in each type of synergy.
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Furthermore, Janshen et al.15 reported modulation of muscle synergies between level and uphill walking during 
the stance phase and in the preparation for the stance phase, corresponding to the change with vertical force in 
the uphill condition. In practical terms, foot strike modes of running modulate the weightings of muscle syner-
gies37,39. More specifically, changes in foot strike pattern induced modulation of the weightings of knee extensors 
and plantar flexors within the synergy recruited during the propulsion phase of running37. We thus considered 
that the neuromuscular activation and manner of running caused by changing the grade and mechanical demand 
would be factors in the modulation of weighting components observed in any muscles within the synergy.

Figure 4.  Averaged muscle synergies during level and uphill running across all subjects. (a) Bar graphs indicate 
five types of weighting components of muscle synergies normalized by maximum values under that synergy. 
Colored bars indicate the mean of normalized weighting components and black bars indicate the standard 
deviation. *p < 0.05, vs. level running; †p < 0.05, vs. 2.5 m/s. (b) Line graphs express five types of activation 
coefficients of muscle synergies. #1, Synergy 1; #2, Synergy 2; #3, Synergy 3; #4, Synergy 4; #5, Synergy 5; a.u., 
arbitrary units.

Level running Uphill running

2.5 vs. 3.3 m/s 3.3 vs. 4.1 m/s 2.5 vs. 4.1 m/s 2.5 vs. 3.3 m/s 3.3 vs. 4.1 m/s 2.5 vs. 4.1 m/s

Synergy vectors

Synergy 1 0.96 ± 0.02 0.92 ± 0.04 0.93 ± 0.04 0.98 ± 0.01 0.95 ± 0.05 0.94 ± 0.04

Synergy 2 0.88 ± 0.09 0.76 ± 0.04 0.84 ± 0.09 0.92 ± 0.04 0.92 ± 0.05 0.87 ± 0.07

Synergy 3 0.95 ± 0.06 0.95 ± 0.05 0.88 ± 0.09 0.98 ± 0.01 0.97 ± 0.01 0.94 ± 0.04

Synergy 4 0.96 ± 0.01 0.95 ± 0.03 0.96 ± 0.01 0.97 ± 0.01 0.87 ± 0.07 0.88 ± 0.11

Synergy 5 0.93 ± 0.08 0.94 ± 0.05 0.91 ± 0.07 0.97 ± 0.01 0.95 ± 0.04 0.92 ± 0.08

Synergy activation coefficients

Synergy 1 0.97 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.95 ± 0.05

Synergy 2 0.94 ± 0.02 0.91 ± 0.03 0.92 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.92 ± 0.04

Synergy 3 0.92 ± 0.04 0.93 ± 0.04 0.89 ± 0.05 0.93 ± 0.02 0.94 ± 0.03 0.92 ± 0.03

Synergy 4 0.89 ± 0.05 0.87 ± 0.11 0.80 ± 0.09 0.90 ± 0.07 0.83 ± 0.04 0.89 ± 0.03

Synergy 5 0.93 ± 0.04 0.90 ± 0.07 0.87 ± 0.10 0.95 ± 0.05 0.91 ± 0.10 0.93 ± 0.05

Table 2.  Similarity of muscle synergies across different speeds. Values are mean and standard deviation. 
Similarity of muscle synergies for each subject was computed by the scalar products after adjusting for the delay.
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2.5 m/s 3.3 m/s 4.1 m/s

Synergy vectors

Synergy 1 0.94 ± 0.03 0.93 ± 0.04 0.95 ± 0.02

Synergy 2 0.88 ± 0.09 0.83 ± 0.12 0.87 ± 0.09

Synergy 3 0.89 ± 0.10 0.96 ± 0.03 0.84 ± 0.24

Synergy 4 0.97 ± 0.01 0.97 ± 0.01 0.86 ± 0.12

Synergy 5 0.94 ± 0.05 0.96 ± 0.02 0.95 ± 0.06

Synergy activation coefficients

Synergy 1 0.97 ± 0.02 0.96 ± 0.03 0.97 ± 0.01

Synergy 2 0.90 ± 0.08 0.95 ± 0.01 0.94 ± 0.03

Synergy 3 0.92 ± 0.03 0.96 ± 0.01 0.84 ± 0.24

Synergy 4 0.84 ± 0.18 0.94 ± 0.02 0.90 ± 0.05

Synergy 5 0.91 ± 0.09 0.89 ± 0.15 0.88 ± 0.12

Table 3.  Inter-condition similarity of muscle synergies. Values are mean and standard deviation. Inter-
condition similarity of muscle synergies for each subject was computed by the scalar products after adjusting for 
the delay.

Figure 5.  Peak activation timing (% of cycle) for the five types of muscle synergy during level and uphill 
running. Colored bars indicate mean peak timing and black bars indicate the standard deviation. *p < 0.05, vs. 
level running. #1, Synergy 1; #2, Synergy 2; #3, Synergy 3; #4, Synergy 4; #5, Synergy 5
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Temporal activation patterns of each type of synergy were similar between running conditions (Fig. 5). A pre-
vious study showed that time shifts in synergy activation coefficients were less than 4% of the step cycle between 
level and 10% grade uphill walking conditions32. Saito et al.40 also demonstrated that the shapes of synergy acti-
vation coefficients appeared similar between level and 10% uphill walking, with a few time-shift adjustments 
with changes in grade (i.e., <8.8% of step cycle). We therefore speculated that the temporal activation pattern of 
muscle synergy during running was preserved regarding changes in the slope of the ground surface.

Similarities of synergy vectors and synergy activation coefficients in each type of synergy between different 
running speeds were observed at each running condition (Table 2). Thus, the results in this study suggest that 
basic patterns of locomotor muscle activity are consistent across running speeds for each condition. Several previ-
ous studies compared muscle synergies among running speeds10,14,39. Cappellini et al.10 demonstrated that human 
running was accomplished by similar basic activation patterns with an increase in speed. We therefore consider 
muscle synergies as independent of running speed within the ranges of this study (i.e., jogging to running).

Methodological limitations to muscle synergy identification during running must be considered in this study. 
We recorded locomotor muscle activity from 10 EMGs in the lower limb, and the number of recorded muscles in 
this study was within the previously reported range (i.e., 8–31 EMGs)36,41,42. However, a previous study demon-
strated that extracted muscle synergies using an NMF algorithm were sensitive to the number and function of 
muscles41. Hence, possible differences in synergies may be observed if EMGs are collected from large numbers 
of muscles. Second, previous study recommended that muscle synergy extractions are performed from 20 con-
secutive gait cycles to include the step-by-step variability31, though we used the averaged EMG patterns across 
gait 10 cycles to identify the synergies based on Ivanenko and colleagues’ work10,24. Third, the time scale of each 
EMG data set was interpolated to 100 time points, less than in previous works10,14,15. Since choice of cut-off fre-
quency for the filter for the linear envelope influences the number of muscle synergies43,44, the time-interpolation 
in this study might induce excessive filtering out of EMG data. Finally, in this study, extracted muscle synergies 
were classified into similar groups and sorted across subjects, based on the previously described method28,29. 
Consequently, the number of subjects within each type of muscle synergy differed across synergy types and run-
ning conditions, and common types of synergy across subjects were observed in at least three to five subjects 
under each running condition (Table 1). This was considered one of the methodological limitations in the com-
parison of each type of synergy between level and uphill conditions.

In conclusion, we demonstrated that appropriately four muscle synergies could account for the majority of 
10 EMG activities of the lower limb during level and uphill treadmill running. Inter-condition similarities were 
observed in each type of synergy at each running speed, with only minor modulation across different running tasks.
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