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Abstract
Online experiments are an alternative for researchers interested in conducting behavioral research outside the laboratory. 
However, an online assessment might become a challenge when long and complex experiments need to be conducted in a 
specific order or with supervision from a researcher. The aim of this study was to test the computational validity and the 
feasibility of a remote and synchronous reinforcement learning (RL) experiment conducted during the social-distancing 
measures imposed by the pandemic. An additional feature of this study was to describe how a behavioral experiment origi-
nally created to be conducted in-person was transformed into an online supervised remote experiment. Open-source software 
was used to collect data, conduct statistical analysis, and do computational modeling. Python codes were created to replicate 
computational models that simulate the effect of working memory (WM) load over RL performance. Our behavioral results 
indicated that we were able to replicate remotely and with a modified behavioral task the effects of working memory (WM) 
load over RL performance observed in previous studies with in-person assessments. Our computational analyses using 
Python code also captured the effects of WM load over RL as expected, which suggests that the algorithms and optimiza-
tion methods were reliable in their ability to reproduce behavior. The behavioral and computational validation shown in this 
study and the detailed description of the supervised remote testing may be useful for researchers interested in conducting 
long and complex experiments online.
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Online experiments are an alternative for researchers inter-
ested in conducting behavioral research outside the laboratory 
with a great number of subjects. There was an increase in 
the use of remote experiments for behavioral experimentation 

and neuropsychological assessment in the last years. Empiri-
cal studies suggest similar results for online and in-person 
behavioral assessments (Brearly et al., 2017; Carr et al., 2020; 
Chaytor et al., 2021; Wadsworth et al., 2016), but recommen-
dations for bona fide online experiments need to be followed 
in order to ensure data quality (Grootswagers, 2020; Sauter 
et al., 2020). During the coronavirus disease (COVID-19) 
pandemic, for instance, the option for remote experiments 
was not just a need but it was one of the only ways to conduct 
research without risking the lives of human subjects. With 
this in mind, behavioral researchers had to formulate crea-
tive solutions for online data collection during the pandemic 
(Bilder et al., 2020; Gagné & Franzen, 2021; Geddes et al., 
2020; Tailby et al., 2020).

Practical issues in the applicability of online behavioral 
research were documented in the last years. As extensively 
noted in previous publications, researchers still needed to 
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solve problems with the Internet connection and timing issues, 
prove the reliability of the measures applied, replicate online 
phenomena that were observed in laboratory settings, control 
for the occurrence of distractors during the experiment, dem-
onstrate the usability of the employed software, and take extra 
care to provide clear instructions for participants (Cernich 
et al., 2007; Gagné & Franzen, 2021; Geddes et al., 2020; 
Grootswagers, 2020; Holmlund et al., 2019; Sauter et al., 
2020; Tailby et al., 2020). Despite these limitations, data 
from studies comparing face-to-face and online behavioral 
data suggest that similar results are observed for both data 
collection methods (Brearly et al., 2017; Carr et al., 2020; 
Chaytor et al., 2021; Wadsworth et al., 2016).

One of the main disadvantages of online experiments is 
the limited experimental control that exists when subjects 
self-apply the behavioral measure within their natural envi-
ronment (Gagné & Franzen, 2021; Grootswagers, 2020). 
This can be a major problem when online behavioral experi-
ments are complex and involve many steps for data collec-
tion. Sauter et al. (2020) mention that online assessments are 
supposed to be short given that many additional instructions 
and careful steps would be needed to ensure data quality 
in longer (~a 1 h) experiments. Therefore, creative solu-
tions were brought by researchers to ensure data quality in 
longer and complex experiments. Wadsworth et al. (2016), 
for instance, created a videoconference neuropsychological 
assessment that mimics the usual face-to-face procedures in 
order to conduct many assessments to a culturally diverse 
sample of rural American Indians. The authors compared 
remote (i.e., videoconference) and face-to-face assessments 
and found that both methods had similar results for the pop-
ulation tested. More recently, Cuttler et al. (2021) used a 
remote assessment method to apply a series of neuropsycho-
logical tests in a highly controlled experiment on the effect 
of cannabis use. The authors used a Zoom® link to control 
the use of cannabis during the experiment and to ensure 
the comprehension of task instructions and engagement in 
neuropsychological testing, all essential for the execution of 
the experiment. Finally, the results from the meta-analysis 
conducted by Brearly et al. (2017) suggest that synchronous 
online neuropsychological assessment might be needed 
when experiments are complex. The authors found reliable 
outcomes when online assessments were conducted in real 
time with the remote presence of the experimenter/health 
care worker and without interruptions in communication.

Although the use of synchronous assessments seems coun-
ter intuitive as it reduces the freedom of online assessment, 
its use might be a solution for experimenters interested in 
running complex and long online experiments with mul-
tiple steps (e.g., the experiment from Cuttler et al., 2021). 
Subjects are also not allowed to repeat tasks and habituation 
and attention can be controlled in synchronous experiments. 
Furthermore, research outside the field of neuropsychology 

indicates that people may be more prone to fake online psy-
chological assessments when they are not supervised because 
the acceptance to do so (i.e., the subjective norm) online is 
higher than doing it in person (Grieve & Elliot, 2013).

One sure way to assume that the online experiment was 
conducted correctly is to test the association between online 
and in-person data. This has been done extensively in neu-
ropsychological research using normative tasks well vali-
dated in the literature (e.g., n-back for working memory), 
but behavioral measures that assess differences in learning 
mechanisms have rarely been considered in those studies. For 
instance, apart from the increasing number of studies about 
reinforcement learning (RL) (Adams et al., 2016; Huys et al., 
2021), online experiments with reinforcement tasks seem to 
be scarce. One exception is the research by Nussenbaum et al. 
(2020), in which the authors were able to replicate online the 
effects of age on RL observed in two in-person studies.

In the last two decades, there has been an increase in 
the use of RL tasks to assess abnormal reward and punish-
ment learning in people with psychiatric disorders (Adams 
et al., 2016; Collins et al., 2014; Huys et al., 2021). RL has 
been studied in psychology since the early works of Edward 
Lee Thorndike and Burrhus Frederic Skinner and refers to 
the ability to maintain or change behavior due to its conse-
quences in the natural environment (Donahue, 2017; Sutton 
& Barto, 2018). Positive reinforcement of a behavior is the 
process by which a behavior is maintained because it gen-
erates rewards/positive feedback (i.e., win-stay responses), 
whereas negative reinforcement refers to the ability to change 
behavior to remove aversive states or avoid negative feedback 
(i.e., lose-shift). Case-control studies using RL tasks have 
revealed promising and interesting results regarding individ-
ual differences in RL, such as the finding that impairments in 
learning by rewarding consequences on schizophrenia might 
be more related to lower working memory (WM) utilization 
in trial-and-error learning than to problems with learning by 
feedback (Collins et al., 2014). Recently, RL has even been 
also studied developmentally, with data showing that the abil-
ity to learn by reinforcement improves from an early age (8 
years old) to adulthood (Master et al., 2020; Nussenbaum 
et al., 2020).

A big advantage of RL studies is the use of computa-
tional models to simulate brain activity using trial-by-trial 
data. Computational models of psychological phenomena 
are formal causal explanations of brain function that occupy 
a central position in the generative causal models of compu-
tational neuroscience (Huys et al., 2011; Huys et al., 2021). 
RL has been studied with computational models since the 
1970s and many algorithms have been created since then to 
replicate laboratory findings using machine learning envi-
ronments (Sutton & Barto, 2018). Because computational 
models are expected to replicate the computations that the 
brain does when solving real-world problems, algorithms 
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designed to explain behavioral phenomena need to predict 
real behavioral data to be valid. Furthermore, when more 
than one computational model exists for the same data, they 
need to be statistically compared to find out which one is 
the best to predict behavioral phenomena. These assertions 
were the basis for the proposal of computational validity, 
that is, the understanding that computational models can 
be valid when they predict the behavior of different spe-
cies or distinct experimental manipulations (Redish et al., 
2022). Therefore, a model for reinforcement learning can be 
valid when it predicts behavior under distinct conditions, for 
instance, as is the case of online and in-person experiments.

Based on the aforementioned, this paper aims to test the 
computational validity of a supervised remote testing RL 
experiment conducted during the pandemic. The option for 
a remote and synchronous experiment was done because the 
original experiment was planned to do in person and involve 
multiple steps to be followed in a specific order. Based on 
the idea of computational validity (Redish et al., 2022), it 
was assumed that our remote experiment and the behavioral 
and computational results would be valid only if they would 
replicate previous data using the same behavioral task. The 
feasibility of our remote and synchronous online experiment 
and the usefulness of low-cost and open-source program-
ming languages to analyze data are discussed in this paper.

Method

Participants and study design

This study is part of a bigger project titled Health Young at 
Risk for Obesity (HYRO) approved by the Ethics Commit-
tee of Hospital de Clínicas de Porto Alegre (HCPA), Porto 
Alegre, Brazil (register number: 62798716.2.0000.5327). 
The aim of the HYRO project was to investigate how risk 
factors for obesity impact the eating behavior of normal-
weight (body mass index = 18.5 to 25 kg/m2) young adults 
(18 to 24 years old). The project had three phases: 1) an 
online initial screening designed to assess risk factors for 
obesity, socio-demographic characteristics and dieting and 
psychological factors; 2) an in-person assessment at the 
Institute of Psychology at Universidade Federal do Rio 
Grande do Sul (UFRGS) designed to evaluate inhibitory 
control and RL using behavioral experiments, to collect 
anthropometric and to assess dieting profile using a food-fre-
quency questionnaire; 3) a blood sample extraction at HCPA 
for posterior metabolic analyses. The exclusion criteria for 
the original project were being outside the age or BMI range.

Phase 1 of the project HYRO was conducted between 
2020 and early 2021 and the final sample for this phase was 
420 young adults eligible for the next phases. All partici-
pants gave informed consent for the online assessment and 

were informed that they could be called to be at the Institute 
of Psychology at UFRGS for a series of behavioral assess-
ments or at HCPA for blood extraction. However, due to 
the COVID-19 pandemic and social-distancing restrictions 
implemented in March 2020 in Brazil, procedures for the 
in-person assessments were adapted to an online format. 
Phase 2 was then divided into two online phases that were 
conducted concomitantly: a remote and synchronous behav-
ioral experiment designed to assess RL and impulsivity, and 
an online, guided self-report assessment of eating habits.

For the conduction of the remote behavioral experiment, 
an additional exclusion criterion was then applied: the par-
ticipants had to have access to a laptop or a desktop com-
puter to be able to perform the assessments. All 420 subjects 
from phase 1 were contacted for phase 2. The majority of 
participants called to this phase accepted to participate (n = 
242, 57.70% of the total sample of n = 420); 177 (42.14%) 
participants did not answer the invitation, ten (2.38%) par-
ticipants declined the invitation, three (0.71%) participants 
were unable to find a date/hour for the experiment, and one 
(0.23%) participant had the experiment interrupted and his 
data deleted because his responses were considered slower 
and random by the experimenter.

For the current study, 30 subjects that participated in our 
remote experiment (nine men; age M = 20.83 years, SD = 
1.62) were randomly selected from the bigger sample of 242 
participants using the random.sample function in Python 
programming language (Python foundation, https:// www. 
python. org/). We chose to randomly select participants to 
avoid selection biases since our sample included subjects 
with distinct risk factors for obesity and with diverse psy-
chological profiles. Also, the relationship between these 
individual differences and RL performance are being inves-
tigated using a hypothesis-driven approach unrelated to the 
aim of the present study. The number of subjects selected 
represents about 10% of our total sample.

Reinforcement learning/working memory task (RLWM) This 
task was adapted from Collins (2018) to assess how WM 
load impacts RL performance. The task had two phases: a 
RL phase in which participants had to learn which button to 
press for visual stimuli, and a memory phase in which par-
ticipants needed to recall their responses for the stimuli of 
the first phase. In the present study, only the data for the RL 
procedure will be presented because of its frequent replica-
tion in the literature (Collins, 2018; Collins & Frank, 2012; 
Collins et al., 2014; Master et al., 2020).

Participants received an instruction to learn, by trial and 
error, which of three buttons (c, b, and m on the computer 
keyboard) they needed to press for each stimulus they saw 
on their computer screen. They were explicitly instructed 
to use correct and incorrect feedback as a guide to keep or 
change their response to the visual stimuli. Feedback was 

https://www.python.org/
https://www.python.org/
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presented for each response following a continuous sched-
ule of reinforcement. The task had 14 blocks and WM load 
was controlled by the number of stimuli presented on each 
block. In the low WM load condition (eight blocks), three 
stimuli were randomly presented to each participant, while 
in the high WM load condition (six blocks) six stimuli were 
presented in a random order (Fig. 1). For each block, the dis-
criminative feature of stimuli (e.g., color, geometric figures, 
cartoons, landscapes, etc.) was changed to ensure that par-
ticipants were engaging in a new learning process. Previous 
studies showed that the number of stimuli presented in each 
block influences the acquisition of learning due to the num-
ber of stimulus–response–feedback associations needed in 
each condition: on low WM load condition, RL is influenced 
by WM performance because participants might remember 
their response in the outcome for n trials before, while in 
the high load condition RL is not influenced by WM due to 
overload of its capacity (Collins, 2018).

The first and last blocks of the task were of low-WM 
load. Each stimulus was presented nine times in a total 
of 540 trials. Each trial was composed of a cross-fixation 
that lasted for 500 ms followed by a visual stimulus pre-
sented until participants responded and then by the feed-
back screen for 1000 ms. Participants had 24 training trials 
using six stimuli unrelated to the main task before the real 

assessment. As done in previous studies with the RLWM, 
a performance criterion was established for their data to 
be analyzed: Participants had to show an average accu-
racy higher than 75% on the last two presentations of each 
stimulus. All participants randomly selected for this study 
had an overall performance above this criterion (M = 82%, 
SD = 4.9%, range, 78–98%).

Procedure The behavioral experiment was initially planned 
to run in the laboratory. Research assistants would monitor 
participants throughout the process and schedule a date and 
time for each participant, with a mean session time of 1 h. 
The plan for the original experiment was: a) subjects would 
start the initial phase of the RLWM task; b) complete an 
inhibitory control task; c) do the final phase of the RLWM 
before starting anthropometric and dieting assessments. On 
switching to online, the essence of the original procedures of 
in-person assessment was maintained. Therefore, the option 
of a remote, synchronous online contact with participants 
was selected in order to mimic the original idea; research 
assistants were available online to monitor the entire data 
collection. The monitoring was useful in this case because 
our in-person and online pilot studies revealed that some 
participants were more prone to disengage from the task due 
to its longer duration (~1 h).

+

+

Fig. 1  Reinforcement Learning Working Memory (RLWM) task structure
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All participants invited to this study were contacted via 
mobile phone and they agreed on a convenient date and time 
between 8 AM and 8 PM. Participants were advised to stay 
at home during the experiment and received instructions to 
be alone in a room without distractors, and to remain focused 
on the task. They provided a new informed consent for the 
remote experiment.

Each experimenter had his/her own computer for data 
collection, and each computer had the psychological experi-
ments software OpenSesame ® (version 3.3.2 for Windows 
64 bits; Mathôt et al., 2012) installed. Before starting the 
contact with participants, each experimenter had to train for 
the remote experiment and follow the established procedures 
without error with at least two volunteer subjects unrelated 
to the project. Standard operating procedures to report and 
solve problems in internet connection and task performance 
were provided by the first author.

On the scheduled day and time, participants received 
instructions through mobile app messages (via WhatsApp 
® or Telegram ®). We noticed in a pilot study that sending 
the message via mobile was more engaging for participants 
because they use WhatsApp/Telegram to communicate in 
their day-to-day. More importantly, changing messages with 
the experimenter during the assessment was a way to keep 
participants active in the experiment since each step in the 
remote testing was started by them. In order to guarantee the 
execution of the procedures, instructions were divided into 
five steps (A to E) and experimenters were online and avail-
able to answer questions and guide subjects all the time. A 
summary of the procedures is shown in Fig. 2.

Experimenters were trained to ensure that participants 
were following the instructions for each step before con-
tinuing the data assessment, and the listed interferences in 
Fig. 2 (dashed lines) would cause the experiment to end. 
Instructions about Google Remote Access (GRA ®, version 
1.5) were provided for the remote access. GRA is a free tool 
used to access geographically distant computers from your 
own computer using a network connection. In our case, par-
ticipants were invited to access the experimenters’ laptops 
using a GRA link. Then they received a password provided 
by the experimenter and used it on the site to access the 
experimenter's computer. With remote access from GRA, 
participants were able to perform from their own home the 
behavioral tasks that were running in the experimenters’ lap-
top without installing any software on their own machine. 
Importantly, the experimenter did not have access to the 
participant’s computer.

After starting remote access, participants were able to control 
the RLWM through their own computers using their Internet 
browser. The remote access allowed the experimenter to see 
everything that participants saw on their screen (i.e., instruc-
tions, stimuli, and feedback). The option to monitor subjects' 
performance and see what they see along the task is useful 

because the researcher can monitor the participants' performance 
and identify problems with the Internet connection or careless 
responses. As it happens on synchronous neuropsychological 
assessments, experimenters were instructed to monitor partici-
pants' performance and experiment time and register potential 
outliers on the lab book. The experimenters were able to identify 
one subject who had problems with the Internet connection dur-
ing the experiment, two participants who forgot to resume the 
experiment after the first phase of RLWM, and one participant 
who took a much too-long interval between tasks (more than 15 
min). These four participants did the first part of RLWM before 
the issues were mentioned, and were still eligible to be selected 
for the present study. After the first phase of RLWM was fin-
ished, remote access was stopped and started again for another 
behavioral task and then for the second phase of RLWM.

Data analysis

Programming tools and statistical testing All the codes 
responsible for data processing, visualization, and computa-
tional modeling were implemented using a Python 3.9 envi-
ronment. The most relevant libraries used in this project were 
pandas 1.2.3 (McKinney et al., 2010), for data manipulation 
and organization, and scipy 1.6.1 (Virtanen et al., 2020), for 
parameter optimization and auxiliary model functions. This 
code is organized in a git repository, which contains a com-
plete list of its dependencies. We also made extensive use of 
the free Google Colaboratory ® infrastructure to run code for 
data analysis, model training and simulations.

Following previous publications with RL tasks, we 
divided our analysis into model-free and computational 
modeling (Collins, 2018; Daw, 2011). The model-free analy-
sis involves using statistical tests to evaluate to what extent 
task-related procedures impact behavioral performance.

All data were analyzed using trial-by-trial records in order 
to assess how WM load (set size 3 or 6), stimulus iteration, 
delay, positive reinforcement history (PR), and blocks number 
impact chances of correct responses and RT. Multiple regres-
sions were conducted then for correct/incorrect feedback 
(binary logistic model) and for RT (linear model). Because our 
supervised remote testing relied on an Internet connection, we 
assumed that problems with RT latency and distribution could 
have happened. RT distribution can be higher for online exper-
iments (e.g., Semmelmann & Weigelt, 2017) and pre-buffering 
the entire experiment or relying on online software for psycho-
logical experiments might reduce this noise (Grootswagers, 
2020; Sauters et al., 2020). In our case, however, these options 
were not a choice since online software for psychological 
experiments are recommended for short assessments, which 
was not the case in our study (Sauter et al., 2020).

On operant learning procedures, a decrease in RT is 
expected as a function of learning because individuals are 
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becoming faster in their response after the response-outcome 
associations. Therefore, an inspection of our data should 
reveal the expected effects of learning over RT (see Figure 2 
on Collins, 2018 for an example). To verify whether RT was 
decreasing as a function of stimulus presentation, a graph for 
the interaction between mean group RT and stimulus itera-
tion was plotted (Supplementary Material - Figure S1A) and 
revealed that participants had the expected performance 
through the task even when the raw RT was considered: A 
decrease in RT was observed as stimulus iteration increased, 
and high-WM load blocks had higher RT than low-WM blocks. 
However, RT distribution was not normal. To remove response 
outliers, we deleted RT slower than 200 ms or higher than the 

mean plus three standard deviations for each subject (a total of 
1.99% [323 out of 16200] responses were deleted and a maxi-
mum of 3.33% responses were deleted for a single subject). 
Supplementary figure S1B shows that corrected RT still had 
a non-parametric distribution (Figure S1C). Log transforma-
tion was then applied and this transformed score was included 
as an outcome on linear regression because of its parametric 
distribution (Supplementary Figure S1D).

The predictors chosen are supposed to reflect the effects 
of WM and learning through the task. WM load represents 
the expected effect of set size over RL. Delay also indicates 
how WM impacts task performance and it is calculated using 
the number of trials between a correct response for stimulus 

Experimenter conduct:

A. Participants were invited to be alone in a room 

and in front of computer during 60 minutes.

B. Participants were invited to listen to an 

explanation of the procedure and provide a new 

informed consent.

Waits until the participant is alone. Reschedule the online experiment 

if the participant is not able to be alone and focused.

Answers doubts regarding the experimental procedure. Conducts the 

experiment if participants provided consent. **

C. Participants were invited to access GRA and start 

the first phase of RLWM.

D. Subjects were instructed to wait for another GRA 

password and then start the inhibitory control task.

E. Participants once again were instructed to wait 

for new GRA password and then start the final phase 

of RLWM.

Starts OpenSesame, guide the participant through remote access and 

initiates RLWM first phase. Continue with the experiment if 

participants do not have questions. **

Ends remote access for the first phase of RLWM. Stops experiment if 

participants ask. Or if problems on internet connection were reported 

by participants.

Ends remote access for inhibitory control task. Starts the last phase of 

RLWM on OpenSesame and sends a third GRA password for 

participant. **

Instructions:

Waits until the participant is alone. If participant is alone, request them 

to put cellphone on silence mode and explain the experiment. **

Answers doubts regarding the experimental procedure. Stops 

experiment if participants decline to participate.

Starts OpenSesame, guide the participant through remote access and 

stop procedure if problems on internet connection or instruction 

comprehension are observed. 

Ends remote access for the first phase of RLWM. Opens inhibitory 

control task on OpenSesame and sends GRA password. **

Ends remote access for inhibitory control task. Stops experiment if 

participants ask. Or if problems on internet connection were reported 

by participants.

Fig. 2  Instruction and experimenter conduct for the remote behavio-
ral experiment. The instructions were divided into five steps (A to E) 
and each step needed to be finished before going to the next. Dashed 
lines indicate cases in which experimenters would need to stop data 

collection. ** Indicates that experimenters were registering the pro-
cess in the lab book. GRA  Google Remote Access. RLWM Reinforce-
ment Learning and Working Memory task
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x and the next time a correct response for x occurs. The vari-
able PR counts the number of previous correct choices for a 
given stimulus, and the block number counts the number of 
blocks from the beginning to the end of the task. While WM 
load and delay are expected to negatively impact the chances 
of correct response and increase RT, PR, and block number 
are expected to increase correct responses and decrease RT. 
All predictors were transformed into z scores before regres-
sion analysis and influential cases were controlled using 
Cook’s distance 4/n criteria. All statistics were conducted 
using R programming language and RStudio (R Core Team, 
2020; RStudio Team, 2019).

Computational modelling Computational modelling was 
used to fit subject behavior data and to study the effects of RL 
and WM in task performance. Four candidate models were 
tested, all based on previously published models and algo-
rithms (Collins, 2018; Collins & Frank, 2012; Collins et al., 
2014; Master et al., 2020) to verify the computational validity.

Classic RL The original models were built upon a simple 
RL algorithm. The classic RL is the simplest model as 
described by Sutton and Barto (2018): Qt+1(s, a) = Qt(s, 
a) + αRLδt, Including the two-parameter Q-learner, which 
updates each learned value, that is, the expected reward 
“Q” for the selected action “a”, given the stimulus “s” upon 
each trial’s reward outcome “rt” , where rt = 1 for correct 
or rt = 0 for incorrect. Choices were generated probabilisti-
cally and actions were selected with likelihood according to 
higher Q-values. The rule for choosing actions in response 
to a stimulus was defined stochastically by a Softmax Choice 
Policy: P(a|s) = exp(βQ(s, a))/Σi(exp(βQ(s, a))), where β is 
the inverse temperature parameter which determines the 
degree to which differences in Q-values are translated into a 
more deterministic choice; the sum is over the nA = 3 possible 
actions and Q-values were initialized to the uniform random 
policy U = 1/nA. The β parameter varies significantly from 
one study to another (e.g., 0 to 100 or 0 to 500) and some 
authors suggest constraining its range as a free parameter 
or adopting small values in order to achieve a good model 
fit (Daw, 2011; Wilson & Collins, 2019). Based on previ-
ous studies using the RLWM task (Masters et al., 2020), we 
decided to fix β as 50 because parameters distribution was 
close to normal in this way and because free beta ranges (e.g., 
0 to 50 or 0 to 500) lead to extreme values of beta in many 
cases with minimal or no change on function cost.

Additional parameters (ε, init, pers, φRL) Classic RL assumes 
that participants will learn from trial and error, but biases 
might influence participants performance and additional 
computational parameters might control response bias. 
These parameters are included in the models RLWMi and 
pure WM, shown in the next section.

An example of response bias is that participants may pre-
fer to follow a certain order on their choices or choose to 
always press a specific button at the beginning of each trial. 
To control for this type of response an “initial bias” param-
eter titled init was created. In this parameter, the first action 
selected by the participant for each image they see acts as a 
marker of a potential bias and then boosts the value of this 
choice before the first learning rate update. The following 
formula is followed for the init parameter: Q0(s, afirst(s)) = 
1/nA + init * (1 − 1/nA).

Slips of action are also possible and we captured in an 
undirected noise parameter, ε, which is a free parameter 
independent from learning that represents the amount of 
noise in the data: the agent chooses an action based on the 
softmax probability with the probability 1 – ε, and lapses or 
chooses randomly with the probability ε. The definition of 
the new mixture choice policy becomes: P(s|a)’ = (1 − ε)
P(s|a) + εU.

Forgetting the previous responses may also influence per-
formance. The potential decay at each trial toward the initial 
uninformed Q-value was modeled following the formula Q0 
= 1/nA: Qt+1 = Qt + φRL(Q0 − Qt), where 0 < φRL < 1 is the 
forgetting parameter for the RL model, named decay.

Finally, on the RLWM task, some participants might be 
neglecting negative feedback and show perseverative errors 
despite negative outcomes. The persistence parameter (pers) 
was modeled to control perseverative responses and it repre-
sents a positive learning bias parameter so that the learning 
rate α is maintained in positive prediction errors (δ ≥ 0), and 
it is reduced by αRL = (1 − pers). Values of pers that equal 0 
indicate equal learning from positive or negative feedback, 
whereas values that equal 1 indicate complete neglect of 
negative feedback, that is, there is a tendency to repeat a 
behavior that led to negative feedback.

WM model The pure working memory model (Collins & 
Frank, 2012; Collins et al., 2014) performs rapid updating 
but capacity-limited WM to learn stimulus action values W(s, 
a). In this model, participants’ performance is supposed to be 
influenced only by WM. Fast learning is represented by αWM 
= 1, and outcome value is rt = 1 for correct or rt = 0 for incor-
rect responses. This model includes a probabilistic capacity 
limitation to attenuate the working memory effect for blocks 
containing more than K stimuli. In our case, we supposed 
that the best scenario would be to assume that participants 
were able to remember all six stimuli from the high-WM load 
condition, and thus K = 6. For the WM model, the effect of 
memory over performance is represented by the variable ηWM 
= η.min(1, K/ns), where η is a policy mixture parameter. The 
model also considers the influence of the additional decay 
parameter (φWM), and shares with the RL model the param-
eters persistence (pers), noise (ε) and the inverse temperature 
(β). The overall choice policy that expresses the WM-only 
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involvement in choice becomes P(a|s) = ηWMPWM(a|s) + (1 
− ηWM)POther(a|s), where PWM(a|s) is the softmax adjusted 
policy over W(s, a) including all mechanisms described 
above, and POther(a|s) = U .

Reinforcement learning and working memory interaction 
model (RLWMi) The RLWMi model was created using as 
a reference the RLWM model. The RLWM model assumes 
that information stored for each stimulus in WM also per-
tains to action–outcome associations and includes two inde-
pendent and non-interacting mechanisms of learning at the 
level of choice. The first mechanism is an RL module similar 
to the classic RL, including as parameters the learning rate 
αRL and the softmax inverse temperature β. However, the 
RL module model also considers the additional parameters 
ε, init, pers, and decay (φRL).

The second mechanism of the RLWM is a WM module 
that includes fast storage of information according to weights 
between stimuli and actions using the formula Wt+1(st+1, 
at+1) = rt. The WM module is initialized similarly to the 
previous RL Q-values but captures perfect retention of the 
information from the previous trial so that the learning rate 
is αWM = 1. As WM maintenance tends to fail increasingly in 
time and with the intervention of other stimuli, we assumed 
that WM is delay-sensitive and so weights also decay on 
each trial according to the formula Wt+1 = Wt + φWM(W0 
− Wt). The WM module shares three parameters with the 
RL module of the RLWM model (i.e., softmax choice β, 
the indirect noise parameter ε, and response bias parameter 
pers). Finally, the limitations of WM use on the task were 
modeled using a two-mixture parameter that considers the 
WM involvement on the low- (𝜂3 for set size 3) and high- 
(𝜂6 for set size 6) WM load conditions through the formula 
P(a|s) = 𝜂ns Pwm(a|s) + (1 - 𝜂ns)PRL(a|s).

The RLWMi is the same as the RLWM model, with the 
exception that the WM module influences the RL computations 
(Collins, 2018). The RL module still follows the Q-learning 
equation from the classic RL model, however, WM contributes 
to the computation of the reward prediction error δt according 
to the proportion to WM’s involvement in choice, where δt = rt 
- (ηns Wt(s, a) + (1 - ηns) Qt(s, a)). The main contribution of the 
RLWMi is the prediction on the cooperation of the interaction 
between both modules, including opposite effects of set size 
in learning, in which performance is worse in higher set sizes.

Model optimization Once implemented, models must be 
instantiated with numeric values for parameters to be able 
to reproduce an individual behavior during the experiment. 
For each model and individual pair, there is a set of values 
that makes the model output as close as possible to the data 
observed, and the task of finding these values is considered 
a model parameter optimization problem.

The first step in this task is to define a cost function that 
would enable a quantitative measure of the fitness of each 
model equipped with a given set of parameter values. Con-
sidering the maximum likelihood criterion, one could start 
with a probability of the experiment answers, which for an 
individual whose output is given in d1:T, and a model with a 
set parameters, can be directly derived from its policy:

that is, the probability of this model taking the choices 
a=ct at each respective trial. Introducing the logarithm to 
avoid numerical stability problems, and to work as a cost 
minimization task, the final function to be optimized can 
be defined as

This function can be easily calculated with the model 
policy and data, and was then minimized using the scipy.
optimize.minimize tool, configured for bounded optimiza-
tion of its free parameters. The optimization procedure was 
repeated 20 times for each case, with random initial values, 
to avoid local minima.

Results

Model free

Learning curves were plotted considering the effects of WM 
load condition over learning. Figure 3A reveals that partici-
pants had the expected learning curves. As iteration increases, 
the mean percentage of correct responses increases as a func-
tion of WM load: under low cognitive load, participants had 
improved learning, while under high-load condition, an atten-
uation in the learning curve was revealed. Multiple logistic 
regression analysis confirmed the effects of WM variables and 
learning predictors. WM load had a negative effect over learn-
ing (B = − 0.421, SE = 0.047, p < 0.001), with the chances 
of making a correct response decreasing on set size 6. Delay 
also decreased the chances of correct responses, meaning that 
the number of trials between correct responses for the same 
stimulus impaired learning (B = − 0.508, SE = 0.028, p < 
0.001). PR had a positive effect on learning, with the chances 
of making a correct response increasing as participants made 
correct choices for the same stimulus (B = 2.262, SE = 0.043, 
p < 0.001). Block number also increased the chances of correct 
responses (B = 0.136, SE = 0.035, p < 0.001), meaning that 
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performance was improving throughout the task. Importantly, 
predictors had an opposite effect on log-RT, also confirming 
the expected results. WM load condition (B = 0.139, SE = 
0.005, p < 0.001) and delay (B = 0.046, SE = 0.004, p < 
0.001) increased RT in the task, showing that WM load might 
influence slower reactions. The two other predictors were asso-
ciated with performance improvement because both predicted 
faster RT in the task: PR (B = − 0.139, SE = 0.004, p < 0.001) 
and block number (B = − 0.032, SE = 0.004, p < 0.001).

Computational modeling

Of the three computational models tested, RLWMi had the 
best fit according to AIC (see Table 1). This result was also 

observed when learning curves using model simulations 
were created, as shown in Fig. 3. The classic RL model 
(Fig. 3B) was unable to capture learning differences related 
to cognitive load, as can be seen by the overlap between 
learning curves. While the pure WM model captured differ-
ences in performance that are related to the WM conditions, 
this model was still insufficient to account for the ascendant 
proportion of correct trials in the last iterations (Fig. 3C). 
Finally, learning curves obtained with the RLWMi model 
were closer to the ones obtained with real subjects, repre-
senting both the effects of WM condition and the acquisi-
tion of learning from the first to the last stimulus iteration. 
To further validate the RLWMi model, a logistic regression 
using values obtained with 100 simulations for each subject 

Fig. 3  Learning curves as a function of stimulus iteration for each 
condition and correspondence between computational models and 
raw data. Simulations for the computational models were executed 
100 times for each subject (see Model optimization for more details). 

A Learning curves for each condition. B Correspondence between 
Classic RL model simulation and raw data. C Correspondence 
between a pure WM model simulation and raw data. D Correspond-
ence between RLWM model simulation and raw data
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was executed. The results of the simulations replicate the 
ones obtained with the real data for the chances of making 
a correct response (R2 Nagelkerke = .49), with significant 
effects of WM load (B = − 0.790, SE = 0.001, p < 0.001), 
delay (B = − 0.293, SE = 0.006, p < 0.001) and PR (B = 
3.133, SE = 0.006, p < 0.001). Table 1 provides the descrip-
tive statistics for each parameter obtained with the compu-
tational models).

Discussion

This paper tested the behavioral and computational valid-
ity of a remote and synchronous RL experiment using 
free software and an online methodology. Each step of the 
experiment was designed to provide a reliable and feasible 
remote assessment for researchers interested in conducting 
long and complex online behavioral experiments. The pro-
cedures applied in the present study follow the main recom-
mendations from previous task forces for online neuropsy-
chological research, as such: participants received online 
informed consent with specific instructions for the remote 
assessment and information regarding the security of their 
data; only participants with the appropriate technological 
hardware (e.g., work desktop or laptop) were eligible to par-
ticipate in the study; recommendations were provided to be 
at a quiet place with no distractions; identity was confirmed 
using information (e.g., name, phone number, and e-mail) 
consented to by participants at an early phase of the study; 
instructions were provided on what to do in case of Internet 
connection problems; finally, participants were followed at 
each step of the experiment (see Box 2 from Tailby et al., 
2020, for an example of a similar procedure).

The choice for a remote assessment with a scheduled 
date may seem counterintuitive, given that one of the main 
advantages of online experiments is self-application. How-
ever, our method was designed to ensure that participants 
were engaged in all steps of the experiment for a long period 

of assessment (~ 1 h). A similar approach has already been 
taken in other studies in which neuropsychological tests 
were applied through videoconference (Cuttler et al., 2021; 
Wadsworth et al., 2016). Importantly, in the present study, 
participants self-applied the behavioral task, while the 
experimenters passively observed the responses on-screen, 
without any videoconferencing. This choice was made to 
attenuate observer effects, but the participants were aware 
that their response was being observed and this may have 
biased the data.

One way to assess the feasibility of new data collection 
methods is to compare their results with results from previous 
studies using other data collection methods. Face-to-face and 
online/remote behavioral assessments have previously been 
compared in the psychological literature, and results suggest 
that both are reliable (Brearly et al., 2017; Carr et al., 2020; 
Chaytor et al., 2021; Wadsworth et al., 2016). Since this com-
parison was not possible in this study, the only way to verify 
the feasibility of our assessment method was to test its capac-
ity to replicate previously published behavioral phenomena. 
Different versions of the RLWM have been applied in many 
studies in recent years: in all cases, WM load impaired or 
improved RL performance as a function of the number of 
stimuli presented in the task blocks (Collins, 2018; Collins 
& Frank, 2012; Collins et al., 2014; Master et al., 2020). To 
our knowledge, all studies were applied face-to-face, and 
the behavioral data were always analyzed considering both 
model-free and computational methods. Our results indi-
cate that we were able to replicate the effects of WM on RL 
observed in other studies and both the model-free and the 
computational analysis results observed here were in line with 
previous data (Collins, 2018; Collins & Frank, 2012; Collins 
et al., 2014; Master et al., 2020). In addition, we could also 
observe the expected effects of WM and RL on RT responses 
in the task adapted for this study (e.g., with fewer trials per 
block) and applied online. This suggests that performance and 
timing issues sometimes observed in online behavioral assess-
ments could not disrupt the expected effects of WM load 
and RL. Regarding timing issues, we assumed that response 

Table 1  Mean and standard deviation for model parameters

M mean. SD standard deviation. For all models, β = 50. For the WM model, α = 1, K = 6, and 𝜂6 = 𝜂; 𝜂 is the estimated use of working memory
on the task to obtain the expected behavioral outcome; init was not considered in the WM model. For the RLWMi model, 𝜂3 and 𝜂6 indicated the 
use of working memory on low and high working memory conditions, respectively. AIC Akaike information criterion, WM Working Memory 
Model, RLWM Reinforcement Learning and Working Memory Interaction model.

Models Parameters

Learning rate (α) Decay (φ) Persistence (pers) Random noise (ε) Initial bias (init) 𝜂 3 𝜂 6 AIC

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Classic .03 (.008) __ __ __ __ __ __ 638.14 (128.00)
WM __ .20 (.058) .85 (.069) .02 (.043) __ __ .90 (.074) 608.81 (137.46)
RLWMi .11 (.168) .07 (.034) .68 (.256) .04 (.039) .01 (.011) .59 (.265) .18 (.192) 592.03 (134.64)
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outliers were attenuated when the mean RT was considered 
since our reduced version of the RLWM task still had many 
trials (540). Nonetheless, a comparison between in-person 
and remote assessments with the same version of the RLWM 
would be useful to clarify whether the assessment method sig-
nificantly influenced RT responses and would also contribute 
to the assumption of computational validity.

Finally, another potential contribution of this paper is 
the use of free and open-source software (FOSS) tools for 
data analysis and data collection. In Brazil, around 70% 
of research funding is provided by government agencies 
(McManus & Neves, 2021), and federal investment in sci-
ence has been in decline (Angelo, 2019; Rodrigues, 2021). 
Low-income and upper-middle-income countries still lack 
access to software and researchers overwhelmingly still rely 
on proprietary software (Vermeir et al., 2018). FOSS can 
be a helpful tool for academic and commercial research in 
low-income countries, as it helps investigators to collect 
data, handle databases, and organize and analyze complex 
digital information with software technology that is freely 
available to everyone. The adapted RLWM task applied in 
the current study, for instance, was designed using OpenS-
esame, easy-to-work free software with an intuitive inter-
face that enables the construction of a myriad of behavioral 
tasks (Mathôt et al., 2012). Visual and auditory stimuli are 
easy to manipulate in this software, and additional manipu-
lations not available in the user interface can be included 
using basic Python programming skills. FOSS was also used 
for statistical analyses and computational modeling in this 
study. Statistical testing was conducted using R and its most 
used interface, RStudio. R is an open-source language that 
also has many libraries designed for numerical and statistical 
computation, so researchers can explore statistical models 
using guides provided by researchers that create data analy-
sis libraries (e.g., Revelle & Wilt, 2019).

For our data synthesis and computational analysis, 
the Python language was used. Python is already used 
in neuroscience research to simulate experiments, con-
gregate neuroimaging data, and process raw data using 
machine learning methods (Muller et  al., 2015). The 
present study used Python to replicate previous com-
putational analyses using other software (see Collins, 
2018, for instance) and implement computational mod-
els of RL – and its interaction with the WM – that fit 
actual behavioral data. These achievements using Python 
code are especially relevant for two reasons. First, the 
computational analysis of behavioral data is the core of 
computational psychiatry, a growing research field that 
intertwines psychiatry and computational neuroscience to 
understand how the interaction between context and brain 
computations explains ‘abnormal’ behavior (Adams et al., 
2016 Huys et al., 2021). We believe that the availability of 
Python code with computational models can engage many 

researchers in computational psychiatry since Python is a 
growing programming language. Second, the application 
of computational analysis in this study replicated previ-
ous data collected in-person and with a longer version 
of the RLWM task (Collins, 2018), which suggests that 
the RLWMi model applied here is valid between stud-
ies, between distinct methods of data assessment, and for 
distinct versions of the same behavioral paradigm. This 
endorses the idea of computational validity (Redish et al., 
2022) for the RLWMi model and reinforces the assump-
tion made in previous publications that this model is rel-
evant to comprehend interactions between RL and WM 
load (Collins, 2018; Collins & Frank, 2012; Collins et al., 
2014; Master et al., 2020).

There are limitations in our study that need to be men-
tioned. Our supervised remote experiment has not been com-
pared to face-to-face assessment or to asynchronous data 
collection methods. It will be useful to do it in the future to 
reveal problems or advantages of our assessment method 
for complex and long behavioral experiments. The Inter-
net connection latency of participants (i.e., ping responses) 
was not registered, and this is recommended for tasks with 
reaction time outcomes. The pandemic’s context was also 
a limitation: Besides the fact that we replicated behavioral 
and computational data from other studies, it is still pos-
sible that our data were influenced by the context of social 
isolation. Analyses comparing subjects before and after the 
pandemic and comparing groups of people with different 
levels of social isolation would be relevant to control for the 
effects of isolation; however, they were not within the scope 
of this study. The use of FOSS tools was intentional in this 
study because we aimed for free solutions to our assess-
ment method. We acknowledge that the use of FOSS in our 
study did not remove the need of human resources in our 
supervised remote testing. However, given the complexity 
and the duration of our assessment, we do not think that our 
data collection would be possible without the use of human 
resources and additional costs from proprietary software that 
would just increase our research expenses. In future studies, 
comparisons between FOSS and paid options can be carried 
out to test which software tools are best suited for online 
assessments involving long and complex experiments.

The computational validation and the detailed descrip-
tion of the procedures of the remote experiment described 
in this paper may be useful for researchers interested in 
conducting long and complex experiments online. The 
authors are happy to provide further information about the 
procedures described here to researchers interested in run-
ning experiments online. The data and the codes used for 
data analysis and computational modeling are also avail-
able. We hope that this paper will encourage researchers 
to conduct complex and long experiments online using 
supervised remote testing as an option.
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