
Towards a robust out‑of‑the‑box neural
network model for genomic data
Zhaoyi Zhang1†, Songyang Cheng1† and Claudia Solis‑Lemus2*

Background
The ability to accurately predict phenotypes from genomic data is one of the most cov-
eted goals of modern-day medicine and biology. Examples abound: from precision med-
icine where researchers want to predict a patient’s disease susceptibility based on the
genetic information [1–6] to prediction of antibiotic-resistant bacterial strains based on
the genomes of pathogenic microbes [7–11]. Examples extend beyond human health
into soil and plant health such as the prediction of crops yield (or plant disease suscep-
tibility) based on soil microbiome metagenomic data [12–14] and the prediction of pes-
ticide-resistant microbial strains from plant bacterial pathogen genomes [15–18]. Our
ability to anticipate outcomes from data is at our scientific core when we face human
disease, environmental challenges, and climate change.

Naturally, biologists and medical researchers have turned to the machine-learn-
ing community for answers given the great success of machine-learning methods in a

Abstract

Background: The accurate prediction of biological features from genomic data is
paramount for precision medicine and sustainable agriculture. For decades, neural
network models have been widely popular in fields like computer vision, astrophysics
and targeted marketing given their prediction accuracy and their robust performance
under big data settings. Yet neural network models have not made a successful transi‑
tion into the medical and biological world due to the ubiquitous characteristics of
biological data such as modest sample sizes, sparsity, and extreme heterogeneity.

Results: Here, we investigate the robustness, generalization potential and prediction
accuracy of widely used convolutional neural network and natural language process‑
ing models with a variety of heterogeneous genomic datasets. Mainly, recurrent neural
network models outperform convolutional neural network models in terms of predic‑
tion accuracy, overfitting and transferability across the datasets under study.

Conclusions: While the perspective of a robust out‑of‑the‑box neural network model
is out of reach, we identify certain model characteristics that translate well across data‑
sets and could serve as a baseline model for translational researchers.

Keywords: Generalization error, Phenotype prediction, Convolutional, Natural
language processing

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhang et al. BMC Bioinformatics (2022) 23:125
https://doi.org/10.1186/s12859‑022‑04660‑8 BMC Bioinformatics

*Correspondence:
solislemus@wisc.edu
†Zhaoyi Zhang and
Songyang Cheng: Equal
contribution with randomly
chosen order (reproducible
script in the Appendix)
2 Wisconsin Institute
for Discovery, Department
of Plant Pathology, University
of Wisconsin‑Madison,
Madison, WI, USA
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04660-8&domain=pdf

Page 2 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

plethora of applications such as computer vision [19, 20] and astrophysics [21, 22] to
name a few.

However, the success of machine-learning methods on other fields has not been eas-
ily translated to the biological realm [23–26]. Indeed, the complexity of biological omics
data has hampered the adoption of machine-learning models, especially neural net-
works. Among the main challenges of genomic data in neural network models are (1)
smaller sample sizes compared to other fields, (2) highly imbalanced datasets, and (3)
heterogeneity of training samples and testing samples.

First, despite the advance in high-throughput sequencing technologies, extracting
whole genomes remains a time-consuming and expensive task when sample sizes must
be in the order of thousands. In addition, data privacy and restrictions on data sharing
in medical research restrict scientists’ ability to combine multiple smaller datasets into
larger ones suitable for neural network modeling.

Second, more important than sample size, the weak link of deep learning in biologi-
cal applications is the assumption of homogeneity between training and testing samples.
This assumption is violated, for example, in microbial datasets where laboratory sam-
ples (training data) and environmentally or clinically collected samples (testing data) can
be intricately heterogeneous. This data heterogeneity can cause lack of robustness and
generalization errors in neural network models. Robustness is the key ingredient that is
needed for neural network models to translate into medical practice and into the pheno-
type prediction in the agricultural or environmental field.

In literature, there are multiple examples of successfully fit neural network models on
biological or medical genomic data [27–34]. However, it remains uncertain whether the
proposed models could be translated to other similar datasets with comparable perfor-
mance. That is, we ask whether the neural network models proposed in literature are
robust across heterogeneous (but similar in nature) datasets.

In addition, we approach the existing neural network models with the mindset of a
biological or medical user. A biological researcher would see the neural network model
in an existing publication and then would try to apply a similar model to their own data-
set. First, we explore how easy it is to replicate the analysis on existing publications. Sec-
ond, by making incremental changes to the model characteristics, we gauge the effect of
each model component on the overall performance.

We learn mainly three things: (1) in multiple instances, we are not able to replicate
the performance in existing publications either because data is not available, code is
not available, or code is corrupted, incomplete or not well-documented; (2) most of the
times the good performance of existing models does not translate to alternative datasets,
yet we do encounter some model characteristics that are generally robust across datasets
and that could serve as a potential baseline model—albeit with modest performance—to
start the prediction process from a user perspective, and (3) we find that accurate pre-
diction is a balancing game between underfitting and overfitting, and that small changes
in the architecture can have unpredictable outcomes.

The quest for robust neural network models that could tackle the complexities of bio-
logical data (and its intrinsic heterogeneity) is imminent. Neural network models can-
not be fully applicable in informed patient care, medical or agricultural framework if
they cannot guarantee some level of generalization potential given that genomic data

Page 3 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

are not static but constantly evolving. The difficulty of the prediction problem in biology
or medicine is such that it would be naive to believe that there will exist an out-of-the-
box model that will be fully transferable (recall the “No Free Lunch” (NFL) theorem [35]:
improved performance over one class of problems is offset by performance over another
class). Yet, from a user perspective, it is desirable to know if there are certain model
characteristics that perform modestly under scrutiny from a variety of different datasets.

While we advise biological or medical users against using out-of-the-box strategies,
we conclude from our study that recurrent neural networks are relatively robust across
genomics datasets and generally not affected by the size or type of the data. Overfitting
is an issue on more complex CNN models (as expected), but it is relatively controlled
via regularization schemes. We also found that a general LSTM layer for embedding
performed relatively well across datasets and outperforms more intuitive data encod-
ing schemes like doc2vec which performs poorly on all the scenarios we tested. Finally,
our work raises awareness to the importance of reproducibility and replicability. As
machine-learning scientists, it is crucial to accompany our work with reproducible
scripts that are relatively easy to follow by the scientific community so that our findings
have an impact across fields, in particular, into the biological and medical community.

Methods
We focus on convolutional neural networks (CNN) [30, 31, 33, 34] and natural language
processing (NLP) [32, 36, 37] on three datasets of increasing size from the available ones
in the papers under study (Table 1) and described below.

Splice data In [30], the authors included a splice dataset (also in the UCI machine
learning repository [38]). Splice junctions are points on a DNA sequence at which super-
fluous DNA is removed during the process of protein creation in higher organisms. This
dataset has 3190 sequences of length 60 bp and are classified into three classes: exon/
intron boundaries (EI: 24%), intron/exon boundaries (IE: 24%), and non-splice (N: 52%).

Histone data In [30], the authors included 10 datasets about DNA sequences wrap-
ping around histone proteins. We focus on the H3 occupancy from the histone dataset
that has 14,965 sequences of length 500 bp. The H3 indicates the histone type, and the
dataset has two classes: the positive class includes DNA sequences that contain regions
wrapping around histone proteins (51%) and the negative class does not contain such
regions (49%).

Motif discovery data In [31], the authors included two ChIP-seq datasets: motif dis-
covery and motif occupancy. These datasets contain the labels of the binding affin-
ity of transcription factors to DNA sequence in 690 different ChIP-seq experiments.
We only focus on a subset of 269,100 sequences from the motif discovery data (out of
20,464,149) of length 101 bp. The dataset contains two classes: positive class includes

Table 1 Datasets used to test the neural network models

Dataset Sample size Sequence Length (bp) References

Splice 3190 60 [30]

Histone 14965 500 [30]

Motif discovery 269100 101 [31]

Page 4 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

DNA sequences that are motif (50%) and negative class includes DNA sequences that
are not motif (50%).

Data splitting For all CNN models, we use the following split of the data. The splice
dataset is split into 75% for training and 25% for testing with 15% of training data used
for validation. The histone dataset is split into 70% for training, 15% for validation, and
15% for testing. The motif discovery data is split into 48.7% for training, 2.6% for valida-
tion, and 48.7% for testing. We note that the data partition for the motif discovery data-
set deviates from the standard 70-15-15 or 75-25 data partitions. The rationale for this
data partition is that the motif discovery data was stored in 690 different files each with
a different number of sequences. Given that we do not know how these datasets were
created, we wanted to have a uniform representation from all datasets in the training
process. The smallest file had 190 sequences, so we randomly selected 190 sequences
for each of the 690 files to be used in training. This represents 48.7% of samples used for
training. A higher proportion of training samples would imply that some files would be
over-represented which could introduce unintended biases in prediction. We choose the
same proportion for testing to be able to evaluate the model better given the high het-
erogeneity of the data leaving only 2.6% for validation.

Data encoding differs for the CNN models and the NLP models, so we describe the
encoding procedure in the next sections for each type of model.

Convolutional neural networks

We test the performance of four convolutional neural network (CNN) models found in
literature [30, 31, 33, 34] that have been successful on genomic-based prediction. We
assess their performance on their own datasets (when available) and on alternative simi-
lar datasets, as well as under incremental modifications of the model characteristics such
as data encoding, window size and number of layers. See Table 2 for a summary of the
performance tests and models. For all models, we use the cross-entropy loss.

CNN‑Nguyen model [30].

We implement the simple neural network in [30] as our baseline model (Fig. 1). The
model contains two 2D convolutional layers, each followed by a pooling layer, then the
output of the convolutional layers are connected to a fully connected layers. The fully
connected layer has a dropout rate of 0.5 to reduce the effect of overfitting. Finally, we
use a softmax layer to predict the labels of the input sequences. We denote this orig-
inal model as CNN-Nguyen2D in the results. In addition to this model, we construct
a new model with an extra 1D convolutional layer denoted CNN-Nguyen2D+1D for
performance comparison. We compare the performance of the model with a different

Table 2 CNN models along with the datasets used and the performance tests

Model Own datasets Outside datasets Performance tests

CNN‑Nguyen [30] Fig. 1 Splice, histone Motif discovery Number of layers, dimension

CNN‑Zeng [31] Fig. 3 Motif discovery Splice, histone Number of layers

DeepDBP [34] Fig. 4 Splice, histone, motif Discovery

DeepRAM [33] Figs. 5, 6, 7 Splice, histone, motif discovery Data Encoding

Page 5 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

dimension (1D) and increasing number of layers (Fig. 2). For splice and histone datasets,
the batch size is 32 and for motif discovery dataset, the batch size is 512. Kernel size is
(3, 3) for all 2D convolutional layers and (1, 3) for the 1D layer in CNN-Nguyen2D+1D.
The number of filters in convolutional layer doubles each time we add a new set of these
layers (e.g. 16 filters in the first convolutional layer, 32 in the second, 64 in the third).
We use the Adam optimizer with learning rate 0.001 and train for 50 epochs which was
assessed to allow sufficient training time for convergence (lack of change in loss over the
last few epochs) on all datasets. Early Stopping Callback is not used when training these
models as convergence was easily assessed in these cases by studying the loss dynamics.

CNN‑Zeng model [31].

We implement the neural network model in [31] (Fig. 3) that contains two 2D convo-
lutional layers each followed by a batch-normalization and max-pooling layer. The out-
put of the convolutional layers is connected to a fully connected layer. This layer has a
dropout rate of 0.5 to prevent overfitting. Finally, a softmax layer is used to predict the
class of the input sequence. We denote the original model as CNN-Zeng2 in the results
because it has two 2D convolutional layers. We create two new model extensions: CNN-
Zeng3 and CNN-Zeng4 with three and four 2D convolutional layers respectively. To
explore the effect of the number of layers, we add 2D convolutional, batch-normaliza-
tion, and max-pooling layers to the end of the convolutional network (Fig. 3). For splice
and histone datasets, the batch size is 32 and for motif discovery dataset, the batch size
is 512. Kernel size is (3, 3) for all 2D convolutional layers. The number of filters in convo-
lutional layer doubles each time we add a new set of these layers (e.g. 16 filters in the first

Fig. 1 Original CNN‑Nguyen (2D) [30]. The dense layer has a dropout rate of 0.5 to prevent overfitting

Fig. 2 Modified CNN‑Nguyen (2D+1D) [30]. The dense layer has a dropout rate of 0.5 to prevent overfitting

Fig. 3 Original CNN‑Zeng (2 layers), modified (3,4 layers) [31]. The dense layer has a dropout rate of 0.5 to
prevent overfitting

Page 6 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

convolutional layer, 32 in the second, 64 in the third). We use the Adam optimizer with
learning rate 0.001 and train for 50 epochs which was assessed to allow sufficient train-
ing time for convergence (lack of change in loss over the last few epochs) on all datasets.
Early Stopping Callback is not used when training these models as convergence was eas-
ily assessed in these cases by studying the loss dynamics.

DeepDBP model [34].

Even though the source code of this paper is not well structured and contains many dif-
ferent models that are not properly documented, we implement a model based on the
paper description which is what a domain scientist (like a biomedical researcher) would
do. The model architecture contains a embedding layer, a convolutional layer, max-pool-
ing layer, followed by fully connected layers and the output layer (Fig. 4). For splice and
histone datasets, the batch size is 32 and for motif discovery dataset, the batch size is
512. Kernel size is (1, 3) for the 1D convolutional layer with 128 filters. We use the Adam
optimizer with learning rate 0.001 and train for 50 epochs which was assessed to allow
sufficient training time for convergence (lack of change in loss over the last few epochs)
on all datasets. Early Stopping Callback is not used when training these models as con-
vergence was easily assessed in these cases by studying the loss dynamics. Unlike CNN-
Nguyen, CNN-Zeng and DeepRAM which only have one dropout layer at the dense
layer, the DeepDBP model has three dropout layers: dropout – dense – dropout – dense
– dropout – dense (output) with dropout rate of 0.3.

DeepRAM model [33].

We implement the three models in [33]: 1D convolutional neural networks (Fig. 5)
denoted DeepRAM-CNN, recurrent neural networks (Fig. 6) denoted DeepRAM-RNN,
and a mixture of 1D convolutional and recurrent neural networks (Fig. 7) denoted Deep-
RAM-CNN-RNN. For convolutional neural networks, we use two 1D convolutional
layers, each followed by a max-pooling layer, and finally fully connected layer (with a
dropout rate of 0.5 to prevent overfitting) and output layer. For splice and histone data-
sets, the batch size is 32 and for motif discovery dataset, the batch size is 512. Kernel
size is (1, 3) for the 1D convolutional layer. The number of filters in convolutional layer

Fig. 4 DeepDBP [34]

Fig. 5 DeepRAM‑CNN [33]. The dense layer has a dropout rate of 0.5 to prevent overfitting

Page 7 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

doubles each time we add a new set of these layers (e.g. 16 filters in the first convolu-
tional layer, 32 in the second). We use the Adam optimizer with learning rate 0.001 and
train for 50 epochs which was assessed to allow sufficient training time for convergence
(lack of change in loss over the last few epochs) on all datasets. Early Stopping Callback
is not used when training these models as convergence was easily assessed in these cases
by studying the loss dynamics. For recurrent neural networks, we use two Long Short-
Term Memory (LSTM) layers followed by fully connected layers and output layer. For
the hybrid neural networks, we use two 1D convolutional layers and two LSTM layers,
and finally fully connected layers and output layers. We note that the DeepRAM-RNN
and the DeepRAM-CNN-RNN models are not entirely CNN models and share many
characteristics with the Natural Language Processing (NLP) models we will describe
next. However, we present these models in this section given that they are all part of the
DeepRAM paper [33] and we follow the comparisons and analyses highlighted in this
work. We compare the changes in performance based on the data encoding as well as
comparing the performance of convolutional vs recurrent models.

Data encoding

For the first three models (CNN-Nguyen, CNN-Zeng and DeepDBP), we use the same
data encoding as in [30] described next. A sliding window of fixed size k allows us to
traverse the sequence focusing on windows of length k. The window of length k is a
sequence of k nucleotides denoted k-mer. The slide stride is how many nucleotides the
window moves to the right as it is traversing the sequence. At each step, a k-mer is read
from the sequence and added to the k-mer sequence. For example, if a sequence looks
like “ACTGG”, a window size of 3 with slide stride of 1 would produce the 3-mers [“ACT”,
“CTG”, “TGG”]. The process is similar to how n-grams are created from text with the
k-mer being the word and k being the “word size”. After that, one-hot encoding is applied
to the k-mers. To also include to spatial information of the sequences, we concatenate
the encoding of k-mers within a fixed region size. For example, for the 3-mers [“ACT”,
“CTG”, “TGG”], a region of 2 would imply that we concatenate [“ACT”, “CTG”] to build
the 2D encoded data matrix (see Fig. 4 in [30] for more details). As in [30], we choose a
window size of 3 with slide stride of 1 and a region of 2.

For the DeepRAM models, we experiment with two different ways of encoding the
sequences. One way is, as described before, to use one-hot encoding with word size 3

Fig. 6 DeepRAM‑RNN [33]. The dense layer has a dropout rate of 0.5 to prevent overfitting

Fig. 7 DeepRAM‑CNN‑RNN [33]. The dense layer has a dropout rate of 0.5 to prevent overfitting

Page 8 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

and region size 2. The other way is to convert sequences into overlapping k-mers, and
embed k-mers into dense vectors using embedding layers. Note that this embedding is
different from the one used in the NLP models (described in next section) because of the
unit used for encoding. Here, we use the k-mer as the unit for encoding while in NLP
models described next, we use the nucleotide as the unit.

Natural language processing in conjuction with neural networks models for prediction

Traditionally, genomic data is stored as a collection of long strings comprised of the four
nucleotides: A,C,G,T. It is thus intuitive to turn to Natural Language Processing (NLP)
theory for solid ways to embed the sequences in a latent space. Furthermore, NLP meth-
ods naturally overcome one of the main drawbacks of CNN models which is the sparsity
of the input vectors.

Here, we focus on two widely used NLP tools: doc2vec [36, 39] and Long Short
Term Memory (LSTM) [32, 39, 40]. Both methods share the same objective: represent
the input sequence with a low dimensional dense vector yet the specifics differ as is
explained below.

We first clarify that the NLP methods are not performing prediction (as the CNN
models). Since the purpose of this work is to compare the performance of neural net-
work models on the prediction of phenotypes from genomes, we need to add a neu-
ral network model to the NLP model that will perform the prediction of labels (Fig. 8).
Table 3 presents a summary of the performance tests and models.

LSTM‑layer model

We implement the neural network model (Fig. 9) that contains, after the input layer, an
embedding layer followed by an LSTM layer with size of 30 for both datasets. There are
four dense layers with size decaying by a factor of 2 (128-64-32-16). There is one dropout
layer between any two dense layers with dropout rate of 0.2. With this model, we study
the changes in performance when using different optimizers: Adam and SGD. For the
Adam optimizer, we use a learning rate of 0.001 and for SGD optimizer, we used a learn-
ing rate of 0.01. We use Early Stopping Callback on both Adam and SGD optimizers with
a maximum number of epochs set at 4000 for the splice and the histone data, and 200 for

Fig. 8 Simple NN for prediction after LSTM‑AE (encoder) and doc2vec

Table 3 NLP models along with the datasets used and the performance tests

Model Own datasets Outside datasets Performance tests

LSTM‑layer Fig. 9 splice, histone, motif discovery optimizer

doc2vec+NN [36, 39] Fig. 8 splice, histone, motif discovery embedding size

LSTM‑AE+NN [32] Figs. 8, 10 splice, histone, motif discovery batch size

Page 9 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

the motif discovery data. The patience parameter (the threshold to stop the training if
the loss stops decreasing further after a certain number of epochs) is set at 100 for both
optimizers for the splice data, at 100 and 400 for Adam and SGD respectively for the
histone data, and at 10 for both optimizers for the motif discovery data. Changes in the
patience parameter are due to differences in speed between the two optimizers when
training. For the splice data, training with the Adam optimizer stopped early at 289
epochs while training with SGD optimizer stopped early at 2872 epochs. For the histone
data, training with the Adam optimizer stopped early at 154 epochs and at 526 for the
SGD optimizer. Finally, for the motif discovery data, training stopped early at 51 epochs
for the Adam optimizer, but training reached the maximum number of epochs allowed
(200) for the SGD optimizer bringing into question the convergence of such training.

doc2vec+NN model [36, 39]

The nature of the doc2vec sequence representation as a semantic vector preserves simi-
larity of sequences in terms of frequency and location of n-grams. We apply the distrib-
uted memory mode (DV-PM) as in [36, 39], and then, we use the simple fully connected
neural network in Fig. 8 containing two dense layer with size shrinking by a factor of
2 with a dropout layer in between. We study the effect of embedding size in the per-
formance of the model. For all instances of this model, we use the SGD optimizer with
learning rate of 0.01 and momentum of 0.9. We use Early Stopping Callback with maxi-
mum number of iterations allowed as 1000 for the splice and histone data, and 400 for
the motif discovery data. The patience parameter is set at 50 for the splice data, 30 for
the histone data and 10 for the motif discovery data. Again, changes in the maximum
number of iterations and patience parameter are due to the speed of training for dif-
ferent sample sizes. Training stopped early on all instances of the model. For the splice
data, training stopped early at 119, 143, 166, and 264 epochs for the four embedding
sizes used (50, 100, 150, and 200). For the histone data, training stopped early at 114,
177, 61, and 118 for the four embedding sizes used (50, 100, 150, and 200). For the motif
discovery data, training stopped early at 36, 39, 58, and 11 for the four embedding sizes
used (50, 100, 150, and 200).

LSTM‑AE+NN model [32]

A LSTM autoencoder model (LSTM-AE) aims to represent a sequence by a dense vec-
tor that can be converted back to the original sequence. Indeed, LSTM-AE is comprised
of two parts: an encoder network (Fig. 10) that compresses the original sequence into a
low dimensional dense vector, and a decoder network (Fig. 11) that converts the vector
back to the original sequence. The encoder reads as input an encoded DNA sequence
and outputs a dense vector as the embedding for this sequence whose length is a hyper
parameter to tune. The decoder reads as input the dense vector produced by the encoder

Fig. 9 LSTM‑layer

Page 10 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

and produces a reconstructed sequence. The accuracy of the autoencoder is measured
by comparing the reconstructed sequence to the original sequence. We implement
a LSTM-AE following [32] based on the description in their publication given that no
reproducible script was available. The LSTM-AE model is trained to achieve maximum
reconstruction accuracy of the sequences. Then, since LSTM-AE is not performing clas-
sification, we add a simple fully connected neural network (Fig. 8) containing two dense
layer with size shrinking by a factor of 2 with a dropout layer in between for the predic-
tion of class labels. The size of the first dense layer is adjusted, as a rule of thumb, to
match 1 to 4 times the embedding dimension. We denote this model as LSTM-AE+NN.
We note that only the weights corresponding to the simple fully connected neural net-
work are optimized for classification which is different to the LSTM-layer model whose
embedding indeed changes during training. We highlight that the LSTM-layer and
LSTM-AE models differ on how an embedding is evaluated. The embedding produced by
the LSTM-layer model aims to better classify the sequences into the right category while
the embedding produced by the LSTM-AE model aims to better capture the sequence
itself. We study the effect of the batch size in the performance of the model. For the
LSTM-AE training, we use the Adam optimizer with learning rate of 0.001 while for the
training of the simple NN for prediction, we use the SGD optimizer with momentum of
0.9 and with learning rate of 0.01 for the splice and motif discovery data, and 0.001 for
the histone data. We use Early Stopping Callback on all cases with 2000, 4000 and 200
maximum iterations allowed for splice, histone and motif discovery data respectively for
the LSTM-AE training, and 1000, 1500 and 500 maximum iterations allowed for splice,
histone and motif discovery data respectively for the simple NN training. In terms of the
patience parameter, we set it at 100, 200 and 10 for the splice, histone and motif discov-
ery data respectively for both LSTM-AE and simple NN training. The LSTM-AE training
stopped early in almost all cases: (1) for the splice data, at epoch 1474, 424, and 1005 for
the three batch sizes used (32, 256, and 1024 respectively); (2) for the histone data, at
epoch 549, 422, and 646 for the three batch sizes used (32, 256, and 1024 respectively),
and (3) for the motif discovery data, at epoch 78 and 195 for batch sizes 32 and 256. For
this data, training reached the maximum number of iterations allowed (200) for the case
of batch size of 1024 bringing into question the convergence of this case. The training of

Fig. 10 LSTM‑AE (encoder) [32]

Fig. 11 LSTM‑AE (decoder) [32]

Page 11 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

the simple NN stopped early in all cases: (1) for the splice data, at epoch 123, 114, and
200 for the three batch sizes used (32, 256, and 1024 respectively); (2) for the histone
data, at epoch 212, 805, and 999 for the three batch sizes used (32, 256, and 1024 respec-
tively), and (3) for the motif discovery data, at epoch 185, 146, and 62 for the three batch
sizes used (32, 256, and 1024 respectively).

We summarize the training details for the NLP models in Table 4. We note that since
the training of the CNN was simpler (50 epochs in all cases), we do not need a summa-
rizing table for the training of the CNN models.

Table 4 Training details on NLP models. “Max. It.” means maximum number of iterations allowed

Model Data Max. It. Patience Early stop Optimizer

LSTM‑AE (32) Splice 2000 100 1474 Adam (LR=0.001)

LSTM‑AE+NN (32) Splice 1000 100 123 SGD (LR=0.01)

LSTM‑AE (256) Splice 2000 100 424 Adam (LR=0.001)

LSTM‑AE+NN (256) Splice 1000 100 114 SGD (LR=0.01)

LSTM‑AE (1024) Splice 2000 100 1005 Adam (LR=0.001)

LSTM‑AE+NN (1024) Splice 1000 100 200 SGD (LR=0.01)

LSTM‑layer Splice 4000 100 289 Adam (LR=0.001)

LSTM‑layer Splice 4000 100 2872 SGD (LR=0.01)

doc2vec+NN (50) Splice 1000 50 119 SGD (LR=0.01)

doc2vec+NN (100) Splice 1000 50 143 SGD (LR=0.01)

doc2vec+NN (150) Splice 1000 50 166 SGD (LR=0.01)

doc2vec+NN (200) Splice 1000 50 264 SGD (LR=0.01)

LSTM‑AE (32) Histone 4000 100 549 Adam (LR=0.001)

LSTM‑AE+NN (32) Histone 1000 100 212 SGD (LR=0.001)

LSTM‑AE (256) Histone 4000 200 422 Adam (LR=0.001)

LSTM‑AE+NN (256) Histone 1500 200 805 SGD (LR=0.001)

LSTM‑AE (1024) Histone 4000 200 646 Adam (LR=0.001)

LSTM‑AE+NN (1024) Histone 1500 200 999 SGD (LR=0.001)

LSTM‑layer Histone 3000 100 154 Adam (LR=0.001)

LSTM‑layer Histone 4000 400 526 SGD (LR=0.01)

doc2vec+NN (50) Histone 1000 30 114 SGD (LR=0.01)

doc2vec+NN (100) Histone 1000 30 177 SGD (LR=0.01)

doc2vec+NN (150) Histone 1000 30 61 SGD (LR=0.01)

doc2vec+NN (200) Histone 1000 30 118 SGD (LR=0.01)

LSTM‑AE (32) Motif 200 10 78 Adam (LR=0.001)

LSTM‑AE+NN (32) Motif 500 10 185 SGD (LR=0.01)

LSTM‑AE (256) Motif 200 10 195 Adam (LR=0.001)

LSTM‑AE+NN (256) Motif 500 10 146 SGD (LR=0.01)

LSTM‑AE (1024) Motif 200 10 200 Adam (LR=0.001)

LSTM‑AE+NN (1024) Motif 500 10 62 SGD (LR=0.01)

LSTM‑layer Motif 200 5 51 Adam (LR=0.001)

LSTM‑layer Motif 200 5 200 SGD (LR=0.01)

doc2vec+NN (50) Motif 400 10 36 SGD (LR=0.01)

doc2vec+NN (100) Motif 400 10 39 SGD (LR=0.01)

doc2vec+NN (150) Motif 400 10 58 SGD (LR=0.01)

doc2vec+NN (200) Motif 400 10 11 SGD (LR=0.01)

Page 12 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

Data encoding

For the LSTM-layer and the LSTM-AE models, we use the same data encoding as
described next. Each nucleotide is converted to a label number. For example, [“A”, “C”,
“G”, “T”], are encoded as [3, 2, 1, 0] in descending lexicographical order. The LSTM-
layer is crucial given the intractable growth in dimension of the input vector. That is, a
sequence containing 6000 nucleotides would be represented by a sequence of 6000 num-
bers. For the doc2vec model, we encode the sequences based on 3-mers with slide stride
of 1. For example, for the “ACTGG” sequence, the 3-mers are [“ACT”, “CTG”, “TGG”].
We construct a dictionary with all the 3-mers in the training set. While it is unlikely for
3-mers in the test set to not appear in the dictionary, we categorize these instances as
out-of-vocabulary (OOV) with a unique encoding.

Results
The role of dimension and number of layers on CNN

Figure 12 shows the training, validating and testing accuracy of the CNN models when
varying the number of layers for the three datasets. Nguyen2D corresponds to the origi-
nal CNN model in [30], while Nguyen2D+1D corresponds to the same model with an
extra 1D convolutional layer. Similarly, Zeng2 corresponds to the original model in [31]
which has two 2D convolutional layers while Zeng3 and Zeng4 correspond to models
with three and four 2D convolutional layers respectively.

For the smallest dataset (splice), all models have a testing accuracy higher than 80%
which is similar to what is reported in the original CNN-Nguyen paper [30] (88.9%)
except for the original model in CNN-Zeng [31]. Adding more layers improves the per-
formance of the CNN-Zeng model, but not the CNN-Nguyen model. There is not any
strong evidence of overfitting in any of the models in the splice data.

0.5

0.6

0.7

0.8

0.9

1.0

N
gu

ye
n2

D

N
gu

ye
n2

D
+1

D

Ze
ng

2

Ze
ng

3

Ze
ng

4

CNN
training validating testing

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

N
gu

ye
n2

D

N
gu

ye
n2

D
+1

D

Ze
ng

2

Ze
ng

3

Ze
ng

4

CNN
training validating testing

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

N
gu

ye
n2

D

N
gu

ye
n2

D
+1

D

Ze
ng

2

Ze
ng

3

Ze
ng

4

CNN
training validating testing

Motif discovery data

Fig. 12 Accuracy of CNN models of increasing number of layers on three datasets of increasing size.
Nguyen2D corresponds to the original CNN model in [30], while Nguyen2D+1D corresponds to the same
model with an extra 1D convolutional layer. Similarly, Zeng2 corresponds to the original model in [31]
which has two 2D convolutional layers while Zeng3 and Zeng4 correspond to models with three and four
2D convolutional layers respectively. There is an inverse relationship between accuracy and data size with
the largest dataset (motif discovery) having the lowest accuracy overall. Adding one layer with different
dimension (CNN‑Nguyen2D+1D) improves the accuracy slightly, but more layers of the same dimension
(CNN‑Zeng3 with 3 layers and CNN‑Zeng4 with 4 layers) only increase the overfitting

Page 13 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

For the medium size dataset (histone), all models have a similar testing accuracy
(slightly below 80%). In this dataset, adding more layers merely increases the training
accuracy and thus, the overfitting. Lastly, for the largest dataset (motif discovery), all
testing accuracies are below 70%. There is a slight improvement in the CNN-Nguyen
model when adding one more 1D layer, yet for the case of CNN-Zeng, more layers only
increase the training accuracy and thus, the overfitting. We compare the performance of
the CNN-Zeng model with and without regularization in the Additional file 1: Appendix.

To sum up, accuracy decreases with data size with the largest data having the low-
est reported accuracy. In addition, adding more layers to a CNN model does increase
accuracy for smaller datasets, but it appears to only increase overfitting on larger
datasets. This assertion is counterintuitive as overfitting is thought to be the result of

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

P
re

ci
si

on

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

CNN−Nguyen2D
CNN−Nguyen2D+1D
CNN−Zeng2
CNN−Zeng3
CNN−Zeng4

Motif discovery data

Fig. 13 Precision‑recall curves of CNN models of increasing number of layers on the three datasets of
increasing size. The higher the curve, the better performance with a horizontal dashed line to represent
random prediction. An ideal precision‑recall curve would cross the (1,1) point. The splice data has three
panels since precision‑recall curves assume binary classification and the splice dataset has three classes (0,
1, 2). Each panel corresponds to prediction one class vs the other two combined. Nguyen2D corresponds
to the original CNN model in [30], while Nguyen2D+1D corresponds to the same model with an extra
1D convolutional layer. Similarly, Zeng2 corresponds to the original model in [31] which has two 2D
convolutional layers while Zeng3 and Zeng4 correspond to models with three and four 2D convolutional
layers respectively. The CNN‑Nguyen models outperform the other models across datasets

Page 14 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

parameter-rich models on small size data. In our analyses, overfitting indeed appears as
a result of more complex models (more layers) yet only on larger datasets. It is impor-
tant to note that this atypical performance could be due to the distinct data partition
chosen for the motif discovery data (48-3-48 in contrast to a standard 70-15-15). For
this dataset, we prioritized a equal contribution to the training samples from each of the
690 input files in order to prevent unintended bias in predictions caused by heterogene-
ity in the sequences. This choice is not meant to be perfect and can create another set
of complications (e.g., the unexpected decreased accuracy). Future work should address
implications in prediction due to data partition choices when faced with highly hetero-
geneous datasets.

Finally, we investigate the precision-recall curves of the models in Fig. 13. The CNN-
Nguyen models outperform those in CNN-Zeng across datasets with the original

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Splice data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Histone data

0.00

0.25

0.50

0.75

1.00
0.

00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

CNN−Nguyen2D
CNN−Nguyen2D+1D
CNN−Zeng2
CNN−Zeng3
CNN−Zeng4

Motif discovery data

Fig. 14 ROC curves of CNN models of increasing number of layers on the three datasets of increasing size.
The higher the curve, the better performance with a 45◦ dashed line to represent random prediction. The
splice data has three panels since ROC curves assume binary classification and the splice dataset has three
classes (0, 1, 2). Each panel corresponds to prediction one class vs the other two combined. Nguyen2D
corresponds to the original CNN model in [30], while Nguyen2D+1D corresponds to the same model with
an extra 1D convolutional layer. Similarly, Zeng2 corresponds to the original model in [31] which has two 2D
convolutional layers while Zeng3 and Zeng4 correspond to models with three and four 2D convolutional
layers respectively. The CNN‑Nguyen models outperform the other models across datasets

Page 15 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

CNN-Zeng2 displaying the worse performance. This behavior is confirmed with the
ROC curves in Fig. 14.

The role of data encoding

It appears that the type of data encoding (one-hot encoding vs embedding layer) does
not have a strong influence on the performance of the DeepRAM models in [33]. Fig-
ure 15 shows the accuracy of the models which is lowest overall for the largest dataset
(motif discovery) yet there is not a clear difference across models or data encoding types.
The combined model (CNN-RNN) seems to slightly outperform the other models and
this behavior is also apparent in the precision-recall curves (Fig. 16) and in the ROC
curves (Fig. 17). However, care must be taken in that the combined model with embed-
ding layer (CNN-RNN-Embed) seems to overfit in the motif discovery data while the
one-hot encoding version of the same model does not show overfitting, so it appears
that one-hot encoding should be preferred.

Importantly, the behavior of DeepRAM seems to translate well across datasets. Accu-
racy lies between 80% and 90% for the smallest dataset (splice) and around 75% for the
largest dataset (motif discovery). As a point of comparison, the accuracy presented in
original DeepRAM paper [33] ranges from 83.6% to 99.4% on data from 83 ChIP-seq
experiments in the ENCODE project.

The role of the optimizer

The SGD optimizer outperforms the Adam optimizer on the LSTM-layer model for the
smallest dataset (splice) while Adam outperforms SGD for the two larger datasets (his-
tone and motif discovery). See Fig. 18 for accuracy, Fig. 19 for precision-recall curves
and Fig. 20 for ROC curves. While [41] has already discussed the convergence issues of
the Adam optimizer, we also need to note that the difference in performance can be due
to differences with the Early Stopping Callback patience parameter. It is widely accepted

0.5

0.6

0.7

0.8

0.9

1.0

C
N

N
−E

m
be

d

C
N

N
−O

ne
H

ot

C
N

N
−R

N
N

−E
m

be
d

C
N

N
−R

N
N

−O
ne

H
ot

R
N

N
−E

m
be

d

R
N

N
−O

ne
H

ot

DeepRAM
training validating testing

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

C
N

N
−E

m
be

d

C
N

N
−O

ne
H

ot

C
N

N
−R

N
N

−E
m

be
d

C
N

N
−R

N
N

−O
ne

H
ot

R
N

N
−E

m
be

d

R
N

N
−O

ne
H

ot

DeepRAM
training validating testing

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

C
N

N
−E

m
be

d

C
N

N
−O

ne
H

ot

C
N

N
−R

N
N

−E
m

be
d

C
N

N
−R

N
N

−O
ne

H
ot

R
N

N
−E

m
be

d

R
N

N
−O

ne
H

ot

DeepRAM
training validating testing

Motif discovery data

Fig. 15 Accuracy of DeepRAM models [33] with two different data encoding schemes: one‑hot encoding
(OneHot) and embedding layer (Embed) on three datasets of increasing size. CNN corresponds to the
convolutional model, RNN corresponds to the recurrent model and CNN‑RNN corresponds to the combined
model. Accuracy decreases with data size, and all models display a similar behavior on the different data
encoding schemes

Page 16 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

that SGD performs better in terms of finding global optima. However, due to its low
speed, it can get stuck in one plateau too long. We note that the comparison of optimizer
behavior has ignited multiple studies. For a more comprehensive investigation on the
role of optimizers in neural network models, see [42].

The role of the embedding size

Of all the neural network models compared in this work, the doc2vec version performs
the worse with accuracy barely exceeding 50% (Fig. 21). The size of embedding does not
appear to have a strong influence on the accuracy, and if anything, it appears to slightly
decrease accuracy as the size of embedding increases for some datasets (e.g. histone).
The poor performance of the doc2vec models is evident in the precision-recall curves

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

P
re

ci
si

on

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

DeepRAM−CNN−Embed
DeepRAM−CNN−OneHot
DeepRAM−CNN−RNN−Embed
DeepRAM−CNN−RNN−OneHot
DeepRAM−RNN−Embed
DeepRAM−RNN−OneHot

Motif discovery data

Fig. 16 Precision‑recall curves of DeepRAM models [33] with two different data encoding schemes:
one‑hot encoding (OneHot) and embedding layer (Embed) on three datasets of increasing size. The higher
the curve, the better performance with a horizontal dashed line to represent random prediction. An ideal
precision‑recall curve would cross the (1,1) point. The splice data has three panels since precision‑recall
curves assume binary classification and the splice dataset has three classes (0, 1, 2). Each panel corresponds
to prediction one class vs the other two combined. CNN corresponds to the convolutional model, RNN
corresponds to the recurrent model and CNN‑RNN corresponds to the combined model. Accuracy decreases
with data size, and all models display a similar behavior on the different data encoding schemes

Page 17 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

(Additional file 1: Appendix) and the ROC curves as well (Additional file 1: Appendix).
This behavior contradicts the results of the original work of doc2vec on sequences [39]
which reported 97% specificity (true negative rate), 93% sensitivity (true positive rate
or recall), and 95% accuracy for binary classification (as in histone and motif discovery
data) and 83% precision, 81.5% sensitivity, 81% accuracy for multiclass classification (as
in splice data). The lack of congruence could be due to lack of robustness of the model
across datasets, but more likely can be explained by the length of the sequences. While
the original study has an average length of 425 bp with sequences as long as 22,152 bp,
the sequences used here have length 60, 101 and 500 bp.

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Splice data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Histone data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

DeepRAM−CNN−Embed
DeepRAM−CNN−OneHot
DeepRAM−CNN−RNN−Embed
DeepRAM−CNN−RNN−OneHot
DeepRAM−RNN−Embed
DeepRAM−RNN−OneHot

Motif discovery data

Fig. 17 ROC curves of DeepRAM models [33] with two different data encoding schemes: one‑hot encoding
(OneHot) and embedding layer (Embed) on three datasets of increasing size. The higher the curve, the
better performance with a 45◦ dashed line to represent random prediction. The splice data has three panels
since ROC curves assume binary classification and the splice dataset has three classes (0, 1, 2). Each panel
corresponds to prediction one class vs the other two combined. CNN corresponds to the convolutional
model, RNN corresponds to the recurrent model and CNN‑RNN corresponds to the combined model.
Accuracy decreases with data size, and all models display a similar behavior on the different data encoding
schemes

Page 18 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

The role of batch size

Batch size has zero impact on the accuracy of the LSTM-AE model [32] (Fig. 22) with
all three batch sizes (32, 256 and 1024) showing the same accuracy levels for a given
dataset. Accuracy is instead affected by the size of the data with the largest dataset
(motif discovery) barely exceeding 50%. Also, this model appears to be robust to over-
fitting across datasets. The same conclusions can be drawn from the precision-recall
curves (Fig. 23) and the ROC curves (Fig. 24). In the precision-recall curve it stands
out that the class 0 in the splice data is harder to be predicted with his model com-
pared to the other classes.

Overall comparison of models

Among of all options, we select the models with highest testing accuracy for each
of the categories (listed in Table 5): CNN-Nguyen [30], CNN-Zeng [31], DeepRAM
[33], doc2vec, LSTM-AE [32] and LSTM-layer and for each of the three datasets
(splice, histone and motif discovery). We also add the model in DeepDBP [34] to the
comparison.

Regarding accuracy (Fig. 25), first, we note that the behavior of DeepDBP is not
robust across datasets with accuracy levels never exceeding 55% for the histone and
motif discovery data while the reported accuracy on the original paper [34] was
84.31% for a data of sample size of 1075 sequences. It appears that the performance of
DeepDBP is highly dependent on the specifics of the data at hand.

Next, we notice that doc2vec+NN behaves poorly with accuracy levels barely
exceeding 50% in all three datasets. We reiterate that this poor performance could be
due to the short length of the sequences used here. Overall, DeepRAM outperforms
all other models across datasets which has the added strength of robustness given
that the accuracy levels are not far from the accuracy levels reported in the original

0.5

0.6

0.7

0.8

0.9

1.0

ADAM SGD

LSTM−layer
training validating testing

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

ADAM SGD

LSTM−layer
training validating testing

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

ADAM SGD

LSTM−layer
training validating testing

Motif discovery data

Fig. 18 Accuracy of LSTM‑layer model with two different optimizers: Adam and SGD on three datasets of
increasing size. There is no evidence of overfitting with this model on any of the datasets. In addition, the best
optimizer varies with SGD outperforming Adam for the smallest dataset (splice) and Adam outperforming
SGD on the other two datasets. It is widely accepted that SGD performs better in terms of finding global
optima. However, due to its low speed, it can get stuck in one plateau too long

Page 19 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

DeepRAM paper [33] (88.9%). Both CNN models (CNN-Nguyen and CNN-Zeng)
perform well across datasets albeit less accurately than DeepRAM. Overfitting does
not appear to be a relevant factor among these models, except for CNN-Nguyen on
the histone data.

Figure 26 shows the precision-recall curves where the same conclusions are confirmed
with DeepRAM outperforming all models in the histone and motif discovery datasets.
The CNN models (CNN-Nguyen and CNN-Zeng) outperform all models for the splice
data. We note that prediction of class 0 in the splice data appears to be harder than pre-
diction of the other two classes as evidenced by lower overall curves. The doc2vec model
performs poorly on all datasets. Similar conclusions are drawn with the ROC curves

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

P
re

ci
si

on

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

LSTM−layer−ADAM
LSTM−layer−SGD

Motif discovery data

Fig. 19 Precision‑recall curves of LSTM‑layer model with two different optimizers: Adam and SGD on three
datasets of increasing size. The higher the curve, the better performance with a horizontal dashed line to
represent random prediction. An ideal precision‑recall curve would cross the (1,1) point. The splice data has
three panels since precision‑recall curves assume binary classification and the splice dataset has three classes
(0, 1, 2). Each panel corresponds to prediction one class vs the other two combined. The best optimizer varies
with SGD outperforming Adam for the smallest dataset (splice) and Adam outperforming SGD on the other
two datasets. It is widely accepted that SGD performs better in terms of finding global optima. However, due
to its low speed, it can get stuck in one plateau too long

Page 20 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

(Fig. 27) with DeepDBP behaving as a random predictor on the histone and motif dis-
covery data.

Discussion
Neural network models provide endless opportunities for prediction and classification
in biological applications [43, 44], yet much remains unknown regarding the transfer-
ability of the performance across datasets. Robustness across datasets of similar nature
is a key ingredient to translate neural network models into medical, agricultural or envi-
ronmental practice. Here, we study the performance on genomic data of convolutional
neural networks (CNN) and neural network models assisted by natural language pro-
cessing (NLP). We highlight that the conclusions we found are restricted to the datasets

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Splice data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Histone data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

LSTM−layer−ADAM
LSTM−layer−SGD

Motif discovery data

Fig. 20 ROC curves of LSTM‑layer model with two different optimizers: Adam and SGD on three datasets
of increasing size. The higher the curve, the better performance with a 45◦ dashed line to represent random
prediction. The splice data has three panels since ROC curves assume binary classification and the splice
dataset has three classes (0, 1, 2). Each panel corresponds to prediction one class vs the other two combined.
The best optimizer varies with SGD outperforming Adam for the smallest dataset (splice) and Adam
outperforming SGD on the other two datasets. It is widely accepted that SGD performs better in terms of
finding global optima. However, due to its low speed, it can get stuck in one plateau too long

Page 21 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

and the models selected, and thus, more work is needed to be able to extend conclusions
beyond the current study.

We find that DeepRAM outperforms all other models especially the recurrent ver-
sion (RNN) in terms of prediction accuracy, overfitting, and robustness across data-
sets. Compared to CNN models (CNN-Nguyen and CNN-Zeng) whose prediction
accuracy dramatically decreases with larger datasets, DeepRAM models experience a
much smaller accuracy decrease. Furthermore, the accuracy levels of DeepRAM that
we find here are comparable to those reported in the original DeepRAM paper [33]
and thus, we can conclude that the DeepRAM models are more robust, transferable
and generalizable across genomic datasets with varied characteristics. It is interesting
to notice that DeepRAM outperforms CNN-Nguyen and CNN-Zeng even when we
are using the original datasets in both CNN papers [30, 31].

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
embedding size

 doc2vec
training validating testing

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
embedding size

 doc2vec
training validating testing

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

50 100 150 200
embedding size

 doc2vec
training validating testing

Motif discovery data

Fig. 21 Accuracy of doc2vec+NN model with four different embedding sizes (50, 100, 150, 200) on three
datasets of increasing size. The performance is poor in all cases with accuracy barely exceeding 50% across
datasets

0.5

0.6

0.7

0.8

0.9

1.0

32 256 1024
batch size
 LSTM−AE

training validating testing

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

32 256 1024
batch size
 LSTM−AE

training validating testing

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

32 256 1024
batch size
 LSTM−AE

training validating testing

Motif discovery data

Fig. 22 Accuracy of LSTM‑AE+NN model [32] with three different batch sizes (32, 256 and 1024) on three
datasets of increasing size. There is no evidence of overfitting with this model, and accuracy seems to
decrease as the data size increases with the largest data (motif discovery) having the smallest accuracy
(barely above 50%)

Page 22 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

DeepDBP lacks robustness across datasets at least for the datasets compared in
this work. The original paper of DeepDBP [34] reported prediction accuracy levels
of 84.31% and while we find a prediction accuracy of around 90% for the splice data,
for the histone and motif discovery datasets, the DeepDBP prediction accuracy barely
exceeds 50%. Furthermore, the DeepDBP paper did not provide usable reproducible
scripts that we could follow, so the poor performance could be due to discrepancies
between the model implemented here and the model implemented in the original
DeepDBP. Given that our goal was to approach this study from the perspective of a
domain scientist (biomedical researcher), we believe that such researcher would read
a NN article (like the DeepDBP), and then try to fit such model on their own data.
When NN papers provide clear code (python notebooks, for example), they facili-
tate this task to domain scientists. The authors of DeepDBP, however, did not provide

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

P
re

ci
si

on

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

LSTM−AE−size32
LSTM−AE−size256
LSTM−AE−size1024

Motif discovery data

Fig. 23 Precision‑recall curves of LSTM‑AE+NN model [32] with three different batch sizes (32, 256 and
1024) on three datasets of increasing size. The higher the curve, the better performance with a horizontal
dashed line to represent random prediction. An ideal precision‑recall curve would cross the (1,1) point. The
splice data has three panels since precision‑recall curves assume binary classification and the splice dataset
has three classes (0, 1, 2). Each panel corresponds to prediction one class vs the other two combined. Unlike
other models, there is a clear distinction in the class 0 prediction performance of this model compared
to other classes in the splice data. It appears that class 0 is harder to predict with a lower recall for a given
precision value compared to the other classes

Page 23 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Splice data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Histone data

0.00

0.25

0.50

0.75

1.00
0.

00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

LSTM−AE−size32
LSTM−AE−size256
LSTM−AE−size1024

Motif discovery data

Fig. 24 ROC curves of LSTM‑AE+NN model [32] with three different batch sizes (32, 256 and 1024) on three
datasets of increasing size. The higher the curve, the better performance with a 45◦ dashed line to represent
random prediction. The splice data has three panels since ROC curves assume binary classification and the
splice dataset has three classes (0, 1, 2). Each panel corresponds to prediction one class vs the other two
combined. Again, we see no differences with respect to batch size and ROC curves close to the 45◦ dashed
line (random prediction) for the motif discovery data

Table 5 Models with the highest testing accuracy for each dataset

Model Splice Histone Motif discovery

CNN‑Nguyen Original (two 2D layer) Extra 1D layer Extra 1D layer

CNN‑Zeng Four layers L2‑reg Four layers L2‑reg Four layers L2‑reg

DeepRAM RNN‑Embed RNN‑OneHot RNN‑OneHot

LSTM‑layer SGD Adam Adam

LSTM‑AE Batch size 1024 Batch size 1024 Batch size 1024

doc2vec Embed size 150 Embed size 50 Embed size 150

Page 24 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

clear code to fit their models, so we test the performance of a model based on the
paper description (which is what the biomedical researcher would do). We hope to
bring attention to reproducibility practices to help domain scientists fit NN models
that appear in literature in their own datasets.

In terms of overfitting, the gap between training and testing accuracy increases
as the number of layers increases for CNN models. This behavior is more evident
for larger datasets (histone and motif discovery) than smaller datasets (splice). We
reiterate that this atypical performance could be due to the choice of data partition
into 48.7% training set for the motif discovery data (far from the standard 70-15-15
data partition). While this choice was made in an attempt to reduce bias caused by
heterogeneous input sequences, it is far from perfect. Future work should address
implications in prediction due to data partition choices when faced with highly het-
erogeneous datasets.

It is noteworthy that more LSTM layers do not seem to increase overfitting since
LSTM-layer (one layer), LSTM-AE (one layer) and DeepRAM-RNN (two layers) have
no noticeable overfitting patterns though a more thorough investigation of LSTM
layers is still lacking. The only overfitting case for DeepRAM happens on the motif
discovery data in the combined model (CNN-RNN) with embedding data encoding.
It seems advisable to utilize one-hot encoding for DeepRAM models to prevent the
potential of overfitting.

The doc2vec encoding performed poorly on all scenarios. Given that the prediction
model for doc2vec and LSTM-AE [32] is the same (the simple NN in Fig. 8) and LSTM-
AE dramatically outperforms doc2vec, we do not recommend the use of doc2vec for
data embedding and recommend the use of LSTM autoencoders instead. This is espe-
cially true for the case of shorter sequences. For the LSTM-AE model, the batch size
made no difference in performance and this model seems to be very robust to overfit-
ting, yet we do see smaller accuracy with larger datasets

We conclude by raising awareness to the importance of reproducibility in science. In
many instances, it was impossible to replicate the results of existing publications given

0.5

0.6

0.7

0.8

0.9

1.0

C
N

N
−N

gu
ye

n

C
N

N
−Z

en
g

D
ee

pD
B

P

D
ee

pR
A

M

do
c2

ve
c

LS
TM

−A
E

LS
TM

−l
ay

er

training validating testing

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

C
N

N
−N

gu
ye

n

C
N

N
−Z

en
g

D
ee

pD
B

P

D
ee

pR
A

M

do
c2

ve
c

LS
TM

−A
E

LS
TM

−l
ay

er

training validating testing

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

C
N

N
−N

gu
ye

n

C
N

N
−Z

en
g

D
ee

pD
B

P

D
ee

pR
A

M

do
c2

ve
c

LS
TM

−A
E

LS
TM

−l
ay

er

training validating testing

Motif discovery data

Fig. 25 Accuracy of the models with highest testing accuracy among all comparisons (Table 5) across
datasets. DeepDBP [34] shows the worst robustness across datasets, while DeepRAM [33] shows both
the best accuracy and robustness across datasets. Overfitting does not appear to be an issue except for
CNN‑Nguyen on the histone data

Page 25 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

the lack of reproducible well-documented scripts and available data. Reproducibility is
crucial not just for the sake of open science, but to maximize the applicability of our
machine-learning findings into a biological or medical community who might not have a
strong programming background.

Practical advice for domain scientists

Among the models here compared, recurrent neural network models (specifically Deep-
RAM-RNN [33]) outperform convolutional neural network models in terms of predic-
tion accuracy, overfitting and transferability across datasets. More LSTM layers produce
higher prediction accuracy without overfitting, unlike more convolutional layers which
tend to produce modestly higher accuracy, but also a larger gap between training and
testing accuracy. We recommend accompanying extra convolutional layers with regular-
ization. Convolutional neural networks have a reasonable performance overall, but their

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

Splice data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

P
re

ci
si

on

Histone data

0.5

0.6

0.7

0.8

0.9

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Recall

CNN−Nguyen
CNN−Zeng
DeepDBP
DeepRAM
doc2vec
LSTM−AE
LSTM−layer

Motif discovery data

Fig. 26 Precision‑recall curves of CNN models of increasing number of layers on the three datasets of
increasing size. The higher the curve, the better performance with a horizontal dashed line to represent
random prediction. An ideal precision‑recall curve would cross the (1,1) point. The splice data has three
panels since precision‑recall curves assume binary classification and the splice dataset has three classes (0,
1, 2). Each panel corresponds to prediction one class vs the other two combined. DeepRAM outperforms all
models in the histone and motif discovery datasets, and behaves well on the splice data. The CNN models
(Nguyen and Zeng) outperform all models on the splice data

Page 26 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

accuracy is affected by the size of the data with larger (more heterogeneous) datasets
having lower prediction accuracy, a behavior not seen with RNN. For data encoding, the
intuitive nature of doc2vec does not translate into good prediction performance and less
interpretable encoders like LSTM-AE [32] should be preferred, especially for the case
of shorter sequences as illustrated in the three datasets here used. The doc2vec encoder
followed by a simple NN performs poorly (accuracy barely exceeding 50%) in all tested
scenarios unlike LSTM-AE [32] followed by the same simple NN which manages mod-
erately good accuracy (comparable to CNN models) across datasets and without too evi-
dent overfitting. In terms of model characteristics, embedding size and batch size do not
seem to play any important role in our comparisons, while the optimizer in conjunction
with the patience parameter do seem to play a role in the comparisons (see also [42]).

0 1 2

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Splice data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Histone data

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

False Positive Rate

CNN−Nguyen
CNN−Zeng
DeepDBP
DeepRAM
doc2vec
LSTM−AE
LSTM−layer

Motif discovery data

Fig. 27 ROC curves of CNN models of increasing number of layers on the three datasets of increasing size.
The higher the curve, the better performance with a 45◦ dashed line to represent random prediction. The
splice data has three panels since ROC curves assume binary classification and the splice dataset has three
classes (0, 1, 2). Each panel corresponds to prediction one class vs the other two combined. DeepRAM
outperforms all models in the histone and motif discovery datasets, and behaves well on the splice data. The
CNN models (Nguyen and Zeng) outperform all models on the splice data. DeepDBP behaves as a random
predictor on the histone and motif discovery data

Page 27 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

We conclude by highlighting that while this work is intended to provide practical advice
to domain scientists who are interested in fitting neural network models on their data,
it does not intend for domain scientists to work in isolation as nothing can replace the
powerful interdisciplinary connections between the domain scientific community and
the machine-learning community.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 022‑ 04660‑8.

Additional file 1. Supplemental figures.

Acknowledgements
We thank Dr. Aurelie Rakotondrafara and Helena Jaramillo Mesa for the motivation to compare neural network models
on plant viral data. We acknowledge the work in [45] which helped us improve the scientific writing of this manuscript.
We thank the associate editor and the three anonymous reviewers for the insightful comments and suggestions which
greatly improved the manuscript.

Author contributions
ZZ and SC ran all the analyses, researched the literature to find the candidate models to compare, programmed all the
open‑source code (https:// github. com/ solis lemus lab/ dna‑ nn‑ theory) and wrote an initial draft of the manuscript. CSL
developed the idea, created all the plots in the manuscript and wrote the final version of the manuscript. All authors
read and approved the final manuscript.

Funding
This work is supported by the Department of Energy [DE‑SC0021016 to CSL].

Availability of data and materials
The data was made publicly available by the original manuscripts. All the scripts developed in this work are publicly
available in the GitHub repository https:// github. com/ solis lemus lab/ dna‑ nn‑ theory.

Declaration

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, University of Wisconsin‑Madison, Madison, WI, USA. 2 Wisconsin Institute for Discov‑
ery, Department of Plant Pathology, University of Wisconsin‑Madison, Madison, WI, USA.

Received: 11 May 2021 Accepted: 21 March 2022

References
 1. Ashley EA. The precision medicine initiative: a new national effort. JAMA. 2015;313(21):2119–20.
 2. Rost B, Radivojac P, Bromberg Y. Protein function in precision medicine: deep understanding with machine learning.

FEBS Lett. 2016;590(15):2327–41.
 3. Katuwal GJ, Chen R. Machine learning model interpretability for precision medicine. arXiv preprint arXiv: 1610. 09045

2016.
 4. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am

Coll Cardiol. 2017;69(21):2657–64.
 5. Lee S‑I, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller CP, Chien S, Dai J, et al. A

machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun.
2018;9(1):1–13.

 6. Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning snp based prediction for precision medi‑
cine. Front Genet. 2019;10:267.

 7. Fjell CD, Jenssen H, Hilpert K, Cheung WA, Pante N, Hancock RE, Cherkasov A. Identification of novel antibacterial
peptides by chemoinformatics and machine learning. J Med Chem. 2009;52(7):2006–15.

 8. Coelho JR, Carriço JA, Knight D, Martínez J‑L, Morrissey I, Oggioni MR, Freitas AT. The use of machine learning meth‑
odologies to analyse antibiotic and biocide susceptibility in staphylococcus aureus. PLoS ONE. 2013;8(2):55582.

https://doi.org/10.1186/s12859-022-04660-8
https://github.com/solislemuslab/dna-nn-theory
https://github.com/solislemuslab/dna-nn-theory
http://arxiv.org/abs/1610.09045

Page 28 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

 9. Pesesky MW, Hussain T, Wallace M, Patel S, Andleeb S, Burnham C‑AD, Dantas G. Evaluation of machine learning and
rules‑based approaches for predicting antimicrobial resistance profiles in gram‑negative bacilli from whole genome
sequence data. Front Microbiol. 2016;7:1887.

 10. Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y, Dillon N, Heckmann D, Anand A, Yang L, Nizet V, et al. Machine learn‑
ing and structural analysis of mycobacterium tuberculosis pan‑genome identifies genetic signatures of antibiotic
resistance. Nat Commun. 2018;9(1):1–9.

 11. Li L‑G, Yin X, Zhang T. Tracking antibiotic resistance gene pollution from different sources using machine‑learn‑
ing classification. Microbiome. 2018;6(1):1–12.

 12. Chang H‑X, Haudenshield JS, Bowen CR, Hartman GL. Metagenome‑wide association study and machine learn‑
ing prediction of bulk soil microbiome and crop productivity. Front Microbiol. 2017;8:519.

 13. Bokulich NA, Dillon MR, Bolyen E, Kaehler BD, Huttley GA, Caporaso JG. q2‑sample‑classifier: machine‑learning
tools for microbiome classification and regression. J Open Res Softw 2018;3(30).

 14. Carrieri AP, Rowe WP, Winn M, Pyzer‑Knapp EO. A fast machine learning workflow for rapid phenotype predic‑
tion from whole shotgun metagenomes. In: Proceedings of the AAAI Conference on Artificial Intelligence.
2019;33:9434–9.

 15. Yang X, Guo T. Machine learning in plant disease research. Eur J BioMed Res. 2017;3(1):6–9.
 16. Ip RH, Ang L‑M, Seng KP, Broster J, Pratley J. Big data and machine learning for crop protection. Comput Electron

Agric. 2018;151:376–83.
 17. Maino JL, Umina PA, Hoffmann AA. Climate contributes to the evolution of pesticide resistance. Glob Ecol Bioge‑

ogr. 2018;27(2):223–32.
 18. Duarte‑Carvajalino JM, Alzate DF, Ramirez AA, Santa‑Sepulveda JD, Fajardo‑Rojas AE, Soto‑Suárez M. Evaluating

late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote
Sens. 2018;10(10):1513.

 19. Hjelmås E, Low BK. Face detection: a survey. Comput Vis Image Underst. 2001;83(3):236–74.
 20. Egmont‑Petersen M, de Ridder D, Handels H. Image processing with neural networks: a review. Pattern Recognit.

2002;35(10):2279–301.
 21. Kucuk A, Banda JM, Angryk RA. A large‑scale solar dynamics observatory image dataset for computer vision applica‑

tions. Sci. Data. 2017;4: 170096.
 22. Jonas E, Bobra M, Shankar V, Hoeksema JT, Recht B. Flare prediction using photospheric and coronal image data. Sol

Phys. 2018;293(3):48.
 23. Chen P‑HC, Liu Y, Peng L. How to develop machine learning models for healthcare. Nat Mater. 2019;18(5):410–4.
 24. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Exploiting machine learning for end‑to‑

end drug discovery and development. Nat Mater. 2019;18(5):435–41.
 25. Teschendorff AE. Avoiding common pitfalls in machine learning omic data science. Nat Mater. 2019;18(5):422–7.
 26. Dacrema MF, Cremonesi P, Jannach D. Are we really making much progress? a worrying analysis of recent neural

recommendation approaches. In: Proceedings of the 13th ACM conference on recommender systems. RecSys ’19,
pp. 101–109. Association for Computing Machinery, New York. 2019 https:// doi. org/ 10. 1145/ 32986 89. 33470 58.

 27. Andrew BA, Delong MT. Weirauch frey brendan j: Predicting the sequence specificities of dna‑and rna‑binding
proteins by deep learning. Nat Biotechnol 2015;10.

 28. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning‑based sequence model. Nat
Methods. 2015;12(10):931–4.

 29. Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional
neural networks. Genome Res. 2016;26(7):990–9.

 30. Nguyen NG, Tran VA, Ngo DL, Phan D, Lumbanraja FR, Faisal MR, Abapihi B, Kubo M, Satou K. DNA sequence clas‑
sification by convolutional neural network. JBiSE. 2016;09(05):280–6.

 31. Zeng H, Edwards MD, Liu G, Gifford DK. Convolutional neural network architectures for predicting DNA‑protein
binding. Bioinformatics. 2016;32(12):121–7.

 32. Agarwal V, Reddy N, Anand A. Unsupervised representation learning of DNA sequences. arXiv: 1906. 03087, 2019.
 33. Trabelsi A, Chaabane M, Ben‑Hur A. Comprehensive evaluation of deep learning architectures for prediction of

DNA/RNA sequence binding specificities. Bioinformatics. 2019;35(14):269–77.
 34. Shadab S, Khan MTA, Neezi NA, Adilina S, et al.: DeepDBP: Deep neural networks for identification of DNA‑binding

proteins. Inform Med. 2020.
 35. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82.

https:// doi. org/ 10. 1109/ 4235. 585893.
 36. Le Q, Mikolov T. Distributed representations of sentences and documents. In: Xing, E.P., Jebara, T. (eds.) Proceedings

of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp.
1188–1196. PMLR, Bejing, China 2014. http:// proce edings. mlr. press/ v32/ le14. html

 37. Dutta TA, Dubey, Singh KK, Anand A. Splicevec: distributed feature representations for splice junction prediction.
Comput Biol Chem. 2018;74:434–41.

 38. Dua D, Graff C. UCI machine learning repository 2017. http:// archi ve. ics. uci. edu/ ml
 39. Kimothi D, Soni A, Biyani P, Hogan JM. Distributed representations for biological sequence analysis. arXiv: 1608. 05949,

2016.
 40. Hochreiter S, Schmidhuber J. Long short‑term memory. Neural Comput. 1997;9(8):1735–80. https:// doi. org/ 10. 1162/

neco. 1997.9. 8. 1735.
 41. Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond. arXiv: 1904. 09237, 2019.
 42. Nado Z, Gilmer JM, Shallue CJ, Anil R, Dahl GE. A large batch optimizer reality check: traditional, generic optimizers

suffice across batch sizes. arXiv preprint arXiv: 2102. 06356, 2021.
 43. Peng GCY, Alber M, Buganza Tepole A, Cannon WR, De S, Dura‑Bernal S, Garikipati K, Karniadakis G, Lytton WW, Perdi‑

karis P, Petzold L, Kuhl E. Multiscale modeling meets machine learning: what can we learn? Arch Comput Methods
Eng; 2020.

https://doi.org/10.1145/3298689.3347058
http://arxiv.org/abs/1906.03087
https://doi.org/10.1109/4235.585893
http://proceedings.mlr.press/v32/le14.html
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1608.05949
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/2102.06356

Page 29 of 29Zhang et al. BMC Bioinformatics (2022) 23:125

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 44. Alber M, Tepole AB, Cannon WR, De S, Dura‑Bernal S, Garikipati K, Karniadakis G, Lytton WW, Perdikaris P, Petzold
L, et al. Integrating machine learning and multiscale modeling‑perspectives, challenges, and opportunities in the
biological, biomedical, and behavioral sciences. NPJ Digit Med. 2019;2(1):1–11.

 45. Hotaling S. Simple rules for concise scientific writing. Limnol Oceanogr Lett. 2020;5(6):379–83. https:// doi. org/ 10.
1002/ lol2. 10165.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/lol2.10165
https://doi.org/10.1002/lol2.10165

	Towards a robust out-of-the-box neural network model for genomic data
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Convolutional neural networks
	CNN-Nguyen model [30].
	CNN-Zeng model [31].
	DeepDBP model [34].
	DeepRAM model [33].
	Data encoding

	Natural language processing in conjuction with neural networks models for prediction
	LSTM-layer model
	doc2vec+NN model [36, 39]
	LSTM-AE+NN model [32]
	Data encoding

	Results
	The role of dimension and number of layers on CNN
	The role of data encoding
	The role of the optimizer
	The role of the embedding size
	The role of batch size
	Overall comparison of models

	Discussion
	Practical advice for domain scientists

	Acknowledgements
	References

