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ABSTRACT It is commonly understood that dietary nutrition will influence the composi-
tion and function of the animal gut microbiome. However, the transmission of organisms
from the diet-source microbiome to the animal gut microbiome in the natural environ-
ment remains poorly understood, and elucidating this process may help in understanding
the evolution of herbivores and plant defenses. Here, we investigated diet-source micro-
biome transmission across a range of herbivores (insects and mammals) living in both
captive and wild environments. We discovered a host bias among cohabitating herbivores
(leaf-eating insects and deer), where a significant portion of the herbivorous insect gut
microbiome may originate from the diet, while in deer, only a tiny fraction of the gut
microbiome is of dietary origin. We speculated that the putative difference in the oxygen-
ation level in the host digestion systems would lead to these host biases in plant-source
(diet) microbiome transmission due to the oxygenation living condition of the dietary
plant’s symbiotic microbiome.

IMPORTANCE We discovered a host bias among cohabitating herbivores (leaf-eating
insects and deer), where a significant portion of the herbivorous insect gut micro-
biome may originate from the diet, while in deer, only a tiny fraction of the gut
microbiome is of dietary origin. We speculated that the putative difference in the ox-
ygenation level in the host digestion systems would lead to these host biases in
plant-source (diet) microbiome transmission due to the oxygenation living condition
of the dietary plant's symbiotic microbiome. This study shed new light on the coevo-
lution of herbivory and plant defense.

KEYWORDS diet-source microbiome transmission, gut microbiomes, wild herbivores,
host-plant interaction

Host phylogeny and diet are two major factors shaping the animal gut microbiome (1–
4). It is also commonly understood that dietary nutrition influences the composition

and function of the animal gut microbiome (5, 6). In nature, herbivorous animal food sour-
ces (e.g., plants) harbor a number of the symbiotic microbiome (7, 8). This leads to the
question of whether these diet-source microbiomes would survive in the animal intestinal
tract and become an integrated part of the animal gut microbiome. The development of
the animal gut microbiome includes vertical (e.g., from mothers to offspring) and horizon-
tal (e.g., from the living environment to individuals) transmission (9–14). However, how
diet-source microbiome transmission occurs in nature is still poorly understood.

Our previous study on the Père David’s deer (Elaphurus davidianus; Chinese milu)
gut microbiome found that the enzymes natA and natB, involved in the sodium
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transport system, were enriched in the gut microbiome in a translocated population
(15). This was possibly due to their high salt diet, which is primarily composed of
Spartina alterniflora and Phragmites australis (15), the most abundant plants in the wild
translocation site (coastal area) (see Fig. S1 in the supplemental material) (16–18). We
also observed abundant insect life (e.g., grasshoppers and locusts) in the S. alterniflora
and P. australis habitat of this area, of which the main dietary sources were also these
two highly abundant plants. Thus, this area was a suitable field site to test diet-source
microbiome transmission in nature for the following reasons: (i) the plant community
in the area is straightforward, (ii) the major dietary plants are the same for both insects
(e.g., grasshoppers and locusts) and mammals, and (iii) the sympatric distribution of
the insects (e.g., grasshoppers and locusts) and milu.

Insects (e.g., grasshoppers and locusts) belong to invertebrates, and the milu are verte-
brates. The oxygenation of insect guts varies from fully aerobic to anaerobic (19), while the
milu, a type of ruminant, harbors an anaerobic gut (20). Plants harbor a number of symbi-
otic microbiomes, the majority of which exist in an aerobic environment (7, 8). Therefore,
we hypothesized in this study that there would be a bias in the transmission of diet-source
microbiome between the sympatric herbivorous insects (e.g., grasshoppers and locusts)
and mammal (e.g., milu) in the wild habitat and that the gut microbiome of grasshoppers
and locusts would harbor a higher proportion of diet-source microorganisms, while the
milu would harbor a much lower proportion. Moreover, we also investigated diet-source
microbiome transmission among other herbivores (insects and mammals) living in both
captive conditions and in the natural environment.

RESULTS AND DISCUSSION

We obtained 16S rRNA gene data from 285 samples (Table 1). The main phyla in the diet
(81 dietary plant samples and five forage samples) included Proteobacteria, Firmicutes, and
Bacteroidetes. The dominant phyla in the gut microbiomes of herbivorous insects (43 pooled
samples from leaf-eating grasshoppers, locusts, and Pyralidae) included Proteobacteria,
Firmicutes, and Bacteroidetes, while in the sap-sucking cicadas, the main phyla included
Proteobacteria, Firmicutes, Bacteroidetes, and Tenericutes. The dominant phyla in herbivorous
mammals (89 samples including Père David's deer [milu], musk deer, and rabbits) included
Firmicutes and Bacteroidetes (Fig. 1A).

Moreover, the dominant genera in the dietary samples included Pantoea, Pseudomonas,
Enterobacter, and Acinetobacter. The dominant genera in herbivorous insects included
Pseudomonas, Enterobacter, Acinetobacter, Pantoea, and Lactococcus. In contrast, the domi-
nant genera in herbivorous mammals included Ruminococcaceae UCG 005, Ruminococcaceae

TABLE 1 Sample information in this study

Sample name Sample size Sample type Location Living style
Red rabbit 29 Feces Dayi Captive
Dietary food-red rabbit 2 Forage Dayi
Musk deer 44 Feces Dujiangyan Captive
Dietary food-musk deer 28 Plant and forage Dujiangyan
Grasshoppers and Locusts 27a Gut contents Dafeng Wild
Père David's Deer 45 Feces Dafeng Wild
Dietary food in Dafeng 34 Plant Dafeng
Cicadas 16a Gut contents Liyang Wild
Pyralidae 6a Gut contents Liyang Wild
Dietary food in Liyang 5 Plant Liyang
Cicadas 22a Gut contents Xuzhou Wild
Dietary food-Cicadas 6 Plant Xuzhou
Pyralidae 10a Gut contents Anji Wild
Dietary food-Pyralidae 11 Plant Anji
aDue to the small amount of gastrointestinal content available in a single insect, the gut contents from five
individuals were pooled as one insect sample for DNA extraction, and the majority of the 81 insect samples
were pooled samples.
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UCG 010, Christensenellaceae R7 group, and Bacteroides, and in sap-sucking cicadas, they
included “Candidatus Sulcia,” Spiroplasma, Lactococcus, Rickettsia, Bacillus, and Pseudomonas
(Fig. 2B). Thus, based on the microbiome composition, we found some common features
(relatively high proportion of Proteobacteria, Pseudomonas, Enterobacter, and Pantoea)
between the herbivorous insect gut microbiome and diet-source microbiome. Moreover, per-
mutational multivariate analysis of variance (PERMANOVA) using unweighted UniFrac dis-
tance showed a significant dissimilarity (P, 0.01) in the gut microbiome community among
these host groups.

Herbivorous insects harbored a significantly higher proportion of diet-source
microbiome in their gut microbiome than sympatric deer. Although the total number
of amplicon sequence variants (ASVs) in the milu gut microbiome was largest (6,033 ASVs in
milu, 4,621 in insects, and 1,259 in dietary plants), we found that the gut microbiome of her-
bivorous insects harbored a greater number of organisms originating from their diet than
that harbored by herbivorous milu (Fig. 2). For example, the shared ASVs in the gut micro-
biome between herbivorous insects and dietary plants was 305 (see Table S2 in the supple-
mental material) compared with 23 shared (see Table S3 in the supplemental material)
between milu and dietary plants (Fig. 2A; see also Fig. S2 in the supplemental material). The
ASVs shared between herbivorous insects and dietary plants primarily belonged to the
Proteobacteria (Gammaproteobacteria including Pantoea, Kluyvera, Escherichia, and Shigella
from the Enterobacteriales; Acinetobacter and Pseudomonas from the Pseudomonadales; and
Pseudoalteromonas from the Alteromonadales) and Firmicutes (Bacillus and Exiguobacterium)
(see Fig. S3 in the supplemental material). The proportion of the putative diet-source micro-
biome was significantly higher in the insect gut microbiome (0.506 0.328) than in the milu
gut microbiome (0.006 0.011) (nonparametric t test, P, 0.001) (Fig. 2B). This finding indi-
cated that a high proportion of the gut microbiome of herbivorous insects might originate
from the symbiotic microbiome of their dietary plants. Finally, the pairwise unweighted
UniFrac distance was significantly lower between the insect gut microbiomes and diet-source
microbiome than that between the milu gut microbiome and diet-source microbiome (non-
parametric t test, P, 0.001) (Fig. 2C). This finding indicated a high similarity between the
insect gut microbiome communities and the dietary plant symbiotic microbiome.

Interestingly, the proportion of the aerobic microbiome in the insect gut micro-
biome and diet-source microbiome was significantly higher than that in the milu gut
microbiome (Fig. 3A), while the opposite trend was observed for the respective anaero-
bic microbiomes (Fig. 3B). We speculated that this could be due to the level of oxygen-
ation in these animal guts (7, 8, 19, 20), and this would explain the survival of the die-
tary source microbiome in herbivorous insect guts. Therefore, based on this evidence,

FIG 1 The dominant microbial groups in diet and herbivores of this study. (A) Phylum level. (B) Genus level. Herbivorous insects included 43 pooled
samples from the following: leaf-eating grasshoppers, locusts, and Pyralidae. Herbivorous mammals included 89 samples from the following: Père David’s
Deer (milu), musk deer, and rabbits. Diet included 81 dietary plant samples and five forage samples. Cicadas were of the sap-sucking type.
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we conclude that there is evidence for host bias in diet-source microbiome transmis-
sion among the gut microbiomes of wild cohabitating herbivores. However, there
remained the question of whether there was a common pattern among other herbivo-
rous animals.

Host bias in diet-source microbiome transmission was confirmed across other
herbivores (insects and mammals) living in captive and wild environments. Next,
we investigated the potential for host bias across different herbivorous animals (including
invertebrates [wild Pyralidae insects and cicadas] and vertebrates [captive musk deer and
rabbits]) (Fig. 4). We confirmed host bias in diet-source microbiome transmission among
gut microbiomes. For instance, the proportion of diet-source microbiome in herbivorous
musk deer and rabbits was close to zero. In contrast, the mean proportion in the Pyralidae
insects (living in two separate wild regions) was about 25% (Fig. 4). However, the propor-
tion in cicadas, which suck juice and saps from perennial plants, from two wild regions was
close to zero. The discrepancy between the Pyralidae insects and cicadas might be partially

FIG 2 The diet-source microbiome transmission in wild cohabitating herbivores. (A) ASVs (amplicon
sequence variants) shared only between the gut microbiome herbivorous insects (leaf-eating
grasshoppers and locusts) and dietary plants (left) and only between the gut microbiome of milu and
dietary plants (right). (B) Mean proportion of diet-source microbiome in herbivorous insect gut
microbiome (left) and milu gut microbiome (right). (C) Mean pairwise unweighted UniFrac distance
between insect and diet samples (left) or between milu and diet samples (right). Nonparametric t test
was used to test the significance of the difference. SAL, Spartina alterniflora; PAU, Phragmites australis;
SGL, Suaeda glauca.
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due to the different feeding habits (leaf eating versus sap sucking). The pairwise
unweighted UniFrac distance between the host microbiome and dietary plant symbiotic
microbiome was lower in Pyralidae insects than in other animals (including milu, rabbits,
and cicadas) (Fig. 4) and further supported our findings regarding host bias in the transmis-
sion of diet-source microbiomes.

The development of the animal gut microbiome includes vertical transmission (e.g.,
from mothers to offspring) and horizontal transmission (9–14). Previous studies have
revealed a putative connection between the host gut microbiome and diet-source
microbiome (13, 21, 22). However, in nature, we showed a host bias in the diet-source
microbiome. The proportion of diet-source microbiome was higher in some herbivo-
rous insects due to the potential oxygen level in their gut. Thus, we speculated that

FIG 3 The putative phenotype in the microbiome in this study. (A) Proportion of putative aerobic. (B) Proportion of putative anaerobic. The Mann-Whitney-
Wilcoxon test was used to assess the hypothesis of whether the proportion of aerobic microbiome in either insect gut microbiome or diet-source
microbiome was significantly higher than that in the milu gut microbiome. Herbivorous insects included leaf-eating grasshoppers and locusts in the Dafeng
region. Diet included dietary plants for the insects and milu in the Dafeng region.

FIG 4 The diet-source microbiome transmission across different herbivorous animals from invertebrates (wild Pyralidae insects and cicadas) to vertebrates
(captive musk deer and rabbits). The first row presents the mean proportion of diet-source microbiome in herbivorous insect and mammal gut
microbiome. The second row presents the mean pairwise unweighted UniFrac distance between herbivore and diet samples. Pyralidae collected in the
Liyang region were adults. Pyralidae collected in the Anji region were adults and larva.
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these diet-source microbiomes would survive in the animal intestinal tract. This study
uncovered new evidence that a portion of the animal gut microbiome might be
derived from their diet. The amount would be host-specific, depending on the condi-
tions present in their inner intestines.

The implications for evolution in herbivores and plant defense. Plant defense
and optimal foraging by herbivores are typical interactions in nature (23, 24). Plant secondary
metabolites (PSMs) are considered a defense against pathogens or herbivores (both inverte-
brate and vertebrate) (24, 25). Herbivores utilize both behavioral methods and physiological
strategies to detoxify and limit the harmful effects of PSMs (25–28). For example, in addition
to the digestion of the plant primary compounds (e.g., carbohydrates, proteins, and lipids), her-
bivores have developed numerous enzymes (e.g., P450s, glutathione S-transferases [GSTs],
choline/carboxylesterases [CCEs], and glucuronosyltransferases) to detoxify PSMs (25, 29–31).
Some studies have found that the animal gut microbiomemight be involved in the detoxifica-
tion of PSMs (32, 33). Our previous studies found that Enterobacteriales and Pseudomonadales
(belonging to Proteobacteria) in the gut microbiomes of bamboo-eating panda were associ-
ated with the detoxification of bamboo PSM (e.g., cyanide compounds) (34, 35). Spartina
alterniflora, one of the major dietary plants in this study, also contains cyanide com-
pounds (concentration, about 0.1mg/g) (34). Many strains from the Enterobacteriales
and Pseudomonadales play essential roles in biodegradation and detoxification of PSMs
(36–39). For example, many Pantoea strains are plant pathogens (40, 41), some of which
can degrade specific PSMs (tannic acid) and environmental polyphenols (42–45).

Interestingly, the main organisms transferred from the dietary plant symbiotic
microbiome into herbivorous insects included Enterobacteriales and Pseudomonadales
(Table 2). Here, we didn't make the functional analysis for these microbiomes. The func-
tional evaluation in the closed phylogenetic microbiome of Enterobacteriales and
Pseudomonadales was presented in previously published studies (36–39). Thus, we
could only speculate that the adaptation to host plants by herbivorous grasshoppers
and locusts in this study might be associated with their gut microbiome acquiring
organisms from the dietary plant symbiotic microbiome. Moreover, typical herbivorous
mammals (e.g., ruminant deer and rabbits) harbored a low (close to zero) proportion of
diet-source microbiome. While, as previously stated, one of the main functions of their
gut microbiome (high abundance of Ruminococcaceae) is to digest primary plant com-
pounds (e.g., celluloses, hemicellulose, and proteins) (46, 47), they also play an impor-
tant role in the detoxification of PSMs (32, 33). Compared to the herbivorous insects in
this study, we speculated that those typical herbivorous mammals (e.g., milu, musk
deer, and rabbits) might have evolved a different mechanism to detoxify PSMs.

Therefore, we speculated that the simplest and superior way for the adaptation to
host-plant interactions might be to harbor select organisms from the dietary plant’s
symbiotic microbiome beyond host generated enzymes. In addition, here, we didn't
sample all of the animals in the environment or test the hypothesis in all of the ani-
mals. Therefore, the current findings are limited to the animals that we investigated
(e.g., grasshopper, locust, cicada, Pyralidae, milu, and musk deer).

Conclusion. Here, we uncovered host bias in the diet-source microbiome of cohabi-
tating herbivores and show that a variable portion of the normal animal gut microbiome
might be derived from dietary sources. We speculated that the putative difference in the
oxygenation level in the host digestion systems would lead to these host-biases in plant-
source (diet) microbiome transmission due to the oxygenation living condition of the
dietary plant’s symbiotic microbiome. Furthermore, we suggest that future work focuses
on functional evaluation of the colonization of the dietary plant symbiotic microbiome
in herbivorous insects and tests whether they play an important role in detoxifying and
decreasing the negative effects of PSMs.

MATERIALS ANDMETHODS
Sample collection. We collected the sympatric insects (grasshoppers and locusts) and milu fecal

samples in the wetlands of Dafeng (Jiangsu Province) (Table 1; see also Table S1 in the supplemental
material). The leaves and stems of the major dietary plants were collected at the same time. We also
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collected samples from captive and wild herbivores (insects and mammals) (Table 1; Table S1). For exam-
ple, in the bamboo forest in Liyang city, we collected cicadas, Pyralidae, and dietary bamboo samples. In
the bamboo forest in Anji city, we collected Pyralidae and dietary bamboo samples. In the forest in
Xuzhou city, we collected cicadas and dietary plant samples. In the rabbit breeding center in Dayi city,
we collected fresh feces for each rabbit individual and dietary forage samples. During sampling, each
cage only has one rabbit; thus, we could collect fresh feces. In the musk deer breeding center in
Dujiangyan city, we collected fresh feces for each musk deer individual and dietary plant samples. Each
cage only has one musk deer individual, so we could collect fresh feces for each individual. The fresh
feces were placed into 15-ml sterile tubes. Because the deer live alone, the feces could be marked to
each individual. The forage and plant samples were reserved in aseptic plastic bags.

All instruments and materials were sterilized prior to sampling. The insects were frozen after sam-
pling and then shipped to the lab on dry ice. Each insect was successfully dissected. We cut the whole
gut (including the contents) using the dissecting microscope and then transferred the whole gut into 2-
ml aseptic centrifuge tubes. Due to the small amount of gastrointestinal content available in a single
insect, the gut contents from five individuals were pooled as one insect sample for DNA extraction, and
the majority of the 81 insect samples were pooled samples. In this study, in total, we collected 86 sam-
ples from the diet (including 81 dietary plant samples and five forage samples) (Table S1). Fresh feces
were collected from the herbivorous mammals. All plant samples and fresh feces were frozen (220°C)
upon collection and then shipped on dry ice to the laboratory for analysis.

DNA extraction and metagenomic sequencing. The FastDNA spin kit for feces (MP, OH, USA) was
used to extract microbial DNA from the gut contents and fecal samples once they were thawed at room tem-
perature. The FastDNA spin kit for soil (MP, OH, USA) was used to extract microbial DNA from the plant sam-
ples. We used primers 515F (59-GTGCCAGCMGCCGCGGTAA-39) and 806R (59-GACTACHVGGGTWTCTAAT-39)
to amplify the V4 region of the bacterial 16S rRNA gene. The thermocycling reaction conditions were as fol-
lows: 95°C for 5min and 35 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 45 s, with a final extension step
at 72°C for 10min. High-throughput sequencing of amplicons was performed using the Illumina MiSeq plat-
form. Sequencing was performed by Mingke Biotechnology Co., Ltd. (Hangzhou, China).

16S rRNA gene-based sequence analysis. We performed quality control (e.g., demultiplex and
denoise) and taxon classification (against the SILVA132 database) in QIIME 2 (48). ASV (amplicon sequence
variant) abundance tables for downstream analysis were obtained using QIIME 2. We chose to rarefy our sam-
pling depth at 19,902 reads per sample to equalize the sampling depth across all samples. We used four strat-
egies to investigate diet-source microbiome transmission in the herbivore gut microbiomes.

First, to assess which herbivores possessed a gut microbiome that was more similar to the diet source,
we estimated the number of ASVs shared between them. Second, SourceTracker (49) was used to assess the
contribution (microbiome transmission) of the diet-source microbiomes to the herbivore samples. For exam-
ple, in each sampling region, the diet was treated as the source, and the herbivorous insects (groups) or
mammals were treated as sinks. For some sampling regions in this study, sap-sucking (cicadas) rather than
leaf-feeding insects were sampled, and thus, we treated them as a different insect group.

The nonparametric t test was used to analyze the differences in the contribution of the diet-source
microbiome in the gut microbiome between the herbivorous insect and mammal samples. Third, we cal-
culated the pairwise unweighted UniFrac among these samples in QIIME 2 (48). Then, we gauged the
mean distance between the herbivorous animal and diet samples. Nonparametric t test was used to ana-
lyze the differences in the mean pairwise distance between the herbivorous insect (versus diet) and
mammal (versus diet). This could show the similarity in the microbiome community between the herbi-
vore and diet samples. Fourth, BugBase was used to classify samples into different microbial groups.
Group classifications included aerobic and anaerobic bacteria (50). We tested (Mann-Whitney-Wilcoxon
tests) the hypothesis of whether the proportion of aerobic microorganisms in either insect gut micro-
biome or diet-source microbiome was significantly higher than that in the milu gut microbiome.

In addition, SourceTracker (49) was also used to assess the contribution (microbiome transmission)
of the diet-source microbiomes to other herbivorous insects (e.g., Pyralidae and cicadas) and the herbiv-
orous mammals (e.g., musk deer and red rabbits) (Table 1). For example, in each sampling region, the di-
etary food was treated as the source; the herbivorous insects (groups) or mammals were treated as sinks.
For some sampling regions in this study, sap-sucking (cicadas) rather than leaf-feeding insects were
sampled, and thus, we treated them as a different insect group.

Data availability. The 16S rRNA gene data have been submitted to figshare (10.6084/m9.figshare.
15073920) and are public (https://figshare.com/articles/dataset/The_fasta_clean_data/15073920).
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