
RESEARCH ARTICLE

Abiotic Stresses Downregulate Key Genes
Involved in Nitrogen Uptake and Assimilation
in Brassica juncea L.
Parul Goel1,2, Anil Kumar Singh1,2*

1 CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India, 2 Academy of
Scientific and Innovative Research, New Delhi, India

* anil@ihbt.res.in; anils13@gmail.com

Abstract
Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N)

uptake and assimilation in plants. However, little is known about the regulation of N pathway

genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the pres-

ent work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate

reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase

(GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned

from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to pre-

dict their subcellular localization, which confirmed localization of all the proteins in their

respective cellular organelles. The protein sequences were also subjected to conserved

domain identification, which confirmed presence of characteristic domains in all the pro-

teins, indicating their putative functions. Moreover, expression of these genes was studied

after 1h and 24h of salt (150 mM NaCl), osmotic (250 mMMannitol), cold (4°C) and heat

(42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible

for N assimilation and remobilization were found to be downregulated under abiotic

stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was down-

regulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1
and BjASN2 was downregulated after 24h of all the stress treatments. However, expression

of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while

no gene was found to be upregulated after 24h of stress treatments, commonly. These

observations indicate that expression of most of the genes is adversely affected under abi-

otic stress conditions, particularly under prolonged stress exposure (24h), which may be

one of the reasons of reduction in plant growth and development under abiotic stresses.

Introduction
Nitrogen (N) is a primary plant nutrient that plays a crucial role in determining plant growth
and productivity. Plants require nitrogen for the synthesis of vital molecules, such as proteins,
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nucleic acids and chlorophyll. Most plant species are capable to absorb and assimilate nitrate
(NO3

-) and ammonium (NH4
+). In plants uptake of nitrate and ammonium is an active process

mediated by nitrate transporters (NRT) and ammonium transporters (AMT), respectively. The
nitrogen assimilation involves reduction of nitrate to ammonium which is finally incorporated
into amino acids by the process of ammonia assimilation (Fig 1). In plants, several processes,
including N uptake and assimilation are known to be adversely affected by abiotic stresses,
such as salinity, drought, and extreme temperatures. The uptake of nitrogen, its translocation
from root to shoot and finally its assimilation has been found to be affected by high salinity in
cowpea [1]. Nitrogen use efficiency (NUE) was also reported to be reduced significantly with
increased salinity conditions in chile pepper [2]. During high salt stress, Na+ ions disrupt the
membrane integrity of plant roots by displacing the Ca2+ ions that maintains the integrity of
the membrane [3]. The high salinity has been shown to inhibit the activity of many enzymes
involved in nitrogen assimilation in maize, mung bean and tomato [4–7]. Similarly under
drought stress, activities of nitrate reductase (NR) and glutamine synthetase (GS) were found
to be reduced in barley [8]. In case of wheat, drought stress was shown to limit the nitrogen
translocation during grain filling, resulting in to low grain yield [9]. High temperature has also

Fig 1. Nitrogen uptake and assimilation process in plants. The uptake of nitrate (NO3
-) and ammonium (NH4

+) ions is mediated by nitrate (NRT) and
ammonium transporters (AMT), respectively. The NO3

- entered into the cell is reduced to nitrite ions (NO2
-) by an enzyme nitrate reductase (NR). The nitrite

ion then moves to plastid and reduced to ammonium ion by nitrite reductase (NiR) enzyme. The ammonium is then incorporated into amino acid by glutamine
synthetase and glutamate synthase via GS/GOGAT cycle. The ammonium ion transported by ammonium transporters directly enters into GS/GOGAT cycle.
The two additional enzymes glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) also participates in ammonium assimilation. The GS, GDH
and ASN are the key enzymes involved in synthesis of glutamine (Gln), Glutamate (Glu) and Asparagine (Asn).

doi:10.1371/journal.pone.0143645.g001
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been shown to inhibit the nitrate uptake and assimilation in creeping bentgrass, wheat and rice
[10–13].

Brassica juncea is an important oilseed crop worldwide. Increased level of salinity was
found to reduce the activities of various enzymes involved in nitrogen assimilation, viz. NR,
NiR, GS, GOGAT and GDH in B. juncea [14,15]. Salinity stress was also found to reduce the
biomass, shoot and root length and CO2 assimilation rate in B. juncea [16]. High temperature
was found to adversely affect certain morpho-physiological parameters such as leaf area index,
crop growth rate, chlorophyll stability, abortion of flower and also reduces the nitrogen, phos-
phorous and potassium content in B. juncea [17–20]. Drought stress was also found to
adversely affect both dry matter and seed yield of mustard and canola [21]. Effect of drought
stress on twenty two advanced breeding lines of B. juncea was studied, which showed that the
process of photosynthesis, transpiration, water use efficiency and other morpho-physiological
characters were adversely affected [22]. The effect of drought on yield and yield components
was also investigated on fourteen different genotypes of Indian mustard under irrigated and
rain fed conditions, which showed that plant height, primary and secondary branches per plant
and seed yield were inhibited [23]. Most of these studies have been done to study the effect of
abiotic stresses on morphological and physiological characteristics.

Several transgenics overexpressing genes of N pathway have shown improved tolerance
against abiotic stresses. Transgenic tobacco overexpressing NR gene showed retention of 50%
NR activity under drought stress as compared to untransformed plants, where NR activity was
not detected [24]. Overexpression of chloroplast GS2 has resulted in enhanced salt tolerance in
transgenic rice [25]. Ectopic overexpression of pine cytoplasmic glutamine synthetase (GS1) in
transgenic poplar showed enhanced tolerance to drought stress [26]. However, overexpression
of OsGS1;2 gene in rice conferred higher sensitivity to salt, drought and cold stress [27]. The
overexpression of OsGS gene in transgenic rice enhanced tolerance to cadmium stress by mod-
ulating the oxidative stress response [28]. Overexpression of E. coli gdhA conferred tolerance
under water deficit conditions in transgenic tobacco and maize [29–31]. These studies clearly
showed that by improving the nitrogen use efficiency of plants, optimum plant growth and
productivity may be obtained under stress condition. However, little is known about the regu-
lation of N pathway genes at transcriptional level under abiotic stress conditions. In the present
study, we have cloned twenty six genes encoding nitrate and ammonium transporters and
enzymes involved in N assimilation from B. juncea and carried out their expression profiling
under salt, osmotic, cold and heat stresses after 1h and 24h of treatment. Our results showed
that expression of some key genes involved in N-uptake and assimilation was downregulated
under abiotic stress conditions.

Materials and Methods

Plant material, growth conditions and stress treatments
Seeds of B. juncea cv. Varuna were kindly provided by Prof. Deepak Pental, Department of
Genetics, Delhi University South Campus, New Delhi, India. Healthy seeds were surface steril-
ized with 70% ethanol for 2–3 minutes followed by repeated washing with autoclaved distilled
water and allowed to germinate over sterile seed germination sheets in dark for 3 days and then
transferred to light. The one weak-old seedlings were transferred to ½ strength Murashige and
Skoog medium (MS medium) [32] and acclimatized in control conditions for 3–4 hours. For
stress imposition, the plants were treated with ½ strength MS medium supplemented with
150mMNaCl or 250mMmannitol or seedlings were exposed to 4°C or 42°C for 1hr and 24hr
duration. Plants treated with ½ strength MS medium grown under control conditions were
considered as untreated control. Each treatment had three replicates. Following stress
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treatments, the plants were washed with distilled water; tissues were harvested, wrapped in alu-
minium foil, frozen in liquid nitrogen and then stored in -80°C until future use.

Cloning and sequence analysis
Out of various genes involved in N uptake and assimilation only one gene encoding for high-
affinity nitrate transporter (Accession no. AEZ68614.1) of B. juncea was available in NCBI
database as on July 31, 2014. Since whole genome of B. juncea has not been sequenced, coding
DNA sequences of NRT1, NRT2, AMT, NR, NiR, GS, GOGAT, GDH and ASN of Arabidopsis,
B. napus and B. rapa were downloaded from the Arabidopsis information resource (TAIR ver-
sion 10) and NCBI database (http://www.ncbi.nlm.nih.gov/). Degenerate primers (S1 File)
were designed to amplify full length coding sequences using cDNA of B. juncea cv. Varuna
seedlings as a template. The PCR products were cloned in pGEMT Easy cloning vector (Pro-
mega) and confirmed by nucleotide sequencing. All the cloned cDNAs have been submitted to
GenBank and the accession numbers have been shown in Table 1. The isolated sequences were
BLAST searched against NCBI database in order to identify the homologous sequences. The
nucleotide sequences were translated using Expasy (http://www.expasy.org/). The molecular
weight and isoelectric point of predicted proteins were obtained using Compute PI/MW tool of
Expasy. The sub-cellular localizations of translated proteins were predicted using WoLF-P-
SORT program and Cell-PLoc 2.0 program [33–34]. Conserved domains in various proteins
were identified using PFAM database (http://pfam.xfam.org/). The amino acid sequence simi-
larity was also checked among the homologs using BLASTP. To perform phylogenetic analysis
of protein sequences with A. thaliana orthologs, the amino acid sequences were aligned using
clustalw and phylogenetic trees were made by neighbour-joining method with 1000 bootstrap
replicates using MEGA6 software [35].

RNA isolation and quantitative real-time PCR
Total RNA was extracted from all samples using iRIS method [36]. The concentration and
quality of RNA were checked using NanoDrop 1000. The total RNA was treated with DNase I
(Fermentas Life Sciences, USA) at 37°C for 30 minutes to degrade any DNA contamination in
RNA sample. For cDNA synthesis, 3μg of total RNA was reverse transcribed using Revert-Aid
HMinus Reverse Transcriptase kit (Thermo Scientific, USA) in a final volume of 20 μL accord-
ing to the manufacturer’s instructions and cDNA was diluted 10 times in nuclease free water.
The qRT-PCR analysis was performed using gene specific primers designed using PrimerEx-
press software version 3.0.1 (Applied Biosystems; S2 File). Proper amplification for BjASN3
and BjASN4 was not obtained, thus not included in expression analysis. The qRT-PCR reac-
tions were performed on Step One real-time PCR machine (Applied Biosystems, USA). Each
reaction contained 2.5μL diluted cDNA, 10mM each of gene specific forward and reverse prim-
ers and 5 μL of SYBR Green qPCRMaster Mix (Applied Biosystems, USA) in a final volume of
10μL. qRT-PCR was done in three technical and three biological replicates. The following ther-
mal profile was used for PCR amplification: 95°C for 10 min followed by 40 cycles of 95°C for
15s and 60°C for 1 min. The specificity of reactions was checked by melting curve analysis. The
B. juncea ubiquitin gene UBQ9 was used as an internal control for normalization of relative
mRNA abundance as suggested [37]. The qRT-PCR reactions were performed with three bio-
logical and three technical replicates. The relative expression ratios of target genes with respec-
tive controls were calculated using REST 2009 software (Qiagen).
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Statistical analysis of the data
The genes were considered to be significantly up or down-regulated if the change in expression
was� 2 fold or<0.5 fold and p-value<0.05 (Student’s t-test). The mean value of relative

Table 1. List of proteins along with their molecular weight (M. wt.), isoelectric point (PI), CDS and protein length, subcellular localization and Arabi-
dopsis thaliana orthologs.

Protein Accession
numbers

M. wt.
(KDa)

PI CDS
length
(bp)

Protein
length (aa)

Subcellular
localization

At ortholog
locus ID

At protein description Bit
score

BjNRT1.1 KT119578 64.97 8.57 1767 589 Plasma
membrane

AT1G12110 nitrate transporter 1.1/
AtNPF6.3

1013

BjNRT1.2 KT119579 63.84 8.79 1743 581 Plasma
membrane

AT1G69850 nitrate transporter 1:2/
AtNPF4.6

960

BjNRT1.3 KT119580 65.17 8.99 1764 588 Plasma
membrane

AT3G21670 AtNPF6.4/ NRT1/PTR
family 6.4

928

BjNRT1.4 KT119581 63.43 8.78 1731 577 Plasma
membrane

AT2G26690 AtNPF6.2/ NRT1/PTR
family 6.2

1003

BjNRT1.5 KT119582 69.49 5.7 1860 620 Plasma
membrane

AT1G32450 AtNPF7.3/ nitrate
transporter 1.5

1113

BjNRT1.7 KT119583 68.70 8.95 1866 622 Plasma
membrane

AT1G69870 AtNPF2.13/ nitrate
transporter 1.7

987

BjNRT1.8 KT119584 64.72 6.22 1749 583 Plasma
membrane

AT4G21680 AtNPF7.2,/nitrate
transporter 1.8

1043

BjNRT2.1 KT119585 51.19 9.2 1407 469 Plasma
membrane

AT1G08090 ACH1/nitrate transporter
2:1

899

BjNRT2.7 KT119586 51.84 9.06 1455 485 Plasma
membrane

AT5G14570 AtNRT2.7, high affinity
nitrate transporter 2.7

647

BjAMT1.1 KT119596 53.64 7.11 1509 503 Endoplasmic
reticulum

AT4G13510 ammonium transporter
1;1

822

BjAMT1.2 KT119597 54.57 8.04 1530 510 Plasma
membrane

AT1G64780 ammonium transporter
1;2

823

BjAMT2 KT119598 52.532 7.12 1464 488 Plasma
membrane

AT2G38290 ammonium transporter 2 825

BjNR1 KT119587 102.25 6.6 2730 910 Chloroplast AT1G77760 nitrate reductase 1 1698

BjNR2 KT119588 102.41 6.23 2733 911 Cytopalsm AT1G77760 nitrate reductase 1 1675

BjNiR KT119589 65.40 6.29 1755 585 Chloroplast AT2G15620 nitrite reductase/NiR1 1106

BjGS1.1 KT119590 39.163 5.28 1068 356 Cytopalsm AT5G37600 glutamine synthase 1;1 707

BjGS1.3 KT119591 38.59 6.4 1062 354 Cytopalsm AT3G17820 glutamine synthase 1;3 624

BjGS2 KT119593 47.37 5.84 1284 428 Chloroplast AT5G35630 glutamine synthetase 2 821

BjFd-GOGAT KT119603 154.66 6.35 4806 1602 Chloroplast AT5G04140 ferredoxin-dependent
glutamate synthase

3022

BjNADH-GOGAT KT119604 240.68 6.05 6597 2199 Chloroplast AT5G53460 nadh-dependent
glutamate synthase 1

3979

GDH1 KT119594 44.61 6.23 1233 411 Chloroplast AT5G18170 glutamate
dehydrogenase 1

814

GDH2 KT119595 35.13 5.78 984 328 Mitochondria AT5G07440 glutamate
dehydrogenase 2

658

ASN1 KT119599 64.52 5.92 1722 574 Cytopalsm AT3G47340 glutamine-dependent
asparagine synthase 1

1076

ASN2 KT119600 63.86 5.98 1695 565 Cytoplasm AT5G65010 asparagine synthetase 2 1045

ASN3 KT119601 65.33 6.25 1740 580 Cytoplasm AT5G10240 asparagine synthetase 3 1024

ASN4 KT119602 42.38 6.98 1128 376 Chloroplast AT2G03667 asparagine synthase
family protein

674

doi:10.1371/journal.pone.0143645.t001
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expression with respect to control was used to plot figures and error bars represent standard
error of three biological replicates. To identify statistical significance in the expression of genes
between two time points, Student’s t-test was used with p-value<0.05; p-value<0.001; p-value
<0.0001.

Results and Discussion

Cloning of genes involved in nitrogen uptake and assimilation
Full-length CDSs of various genes amplified using cDNA prepared from total RNA isolated
from seedlings of B. juncea cv. Varuna were cloned and their sequences confirmed through
nucleotide sequencing. The sizes of predicted proteins ranged between 328–2199 amino acids.
The molecular weight and PI of the predicted proteins ranged between 35.13 KDa-240.6 KDa
and 5.28–9.2, respectively (Table 1). The conserved domain analysis revealed that all the NRT1
proteins contain a single proton-dependent oligopeptide transporter (PTR; PF00854) domain
and NRT2 proteins contain major facilitator superfamily domain (MFS_1; PF07690) domain
(Fig 2). Members of the AMT family were found to contain a single ammonium transporter
domain (PF00909). The NR proteins contain 5 major domains, namely Mo_Co dimer
(PF03404), Oxidored molyb (PF00174), FAD binding_6 (PF00173), NAD binding _1

Fig 2. The conserved domain architecture of various proteins involved in nitrate and ammonium uptake, nitrate reduction and ammonia
assimilation in B. juncea.

doi:10.1371/journal.pone.0143645.g002
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(PF00970) and 1cyt_b5 (PF00175). The NiR proteins contain two NIR_SIR_Ferr (PF03460)
and NIR_SIR domains (PF01077). The GS proteins contain two domains, Gln_syn_N
(PF03951) and Gln_syn_C (PF00120). The Fd-GOGAT protein contains four domains
GTase_2 (PF00310), Glu_syn_central (PF04898), Glu _synthase (PF01645) and GXGXG
(PF01493) domain however NADH-GOGAT contain two additional domains Fer_4_20
(PF14691) and pyr_redox_2 (PF07992).The GDH proteins contain two domains, namely
ELFV_dehydrog_N (PF02812), ELFV_dehydrog (PF00208). The ASN1 protein contains two
domains, namely DUF3700 (PF12481) and Asn_synthase (PF00733), while ASN2, ASN3 and
ASN4 proteins contain GATase_7 (PF13537) and Asn_synthase domain (PF00733). To deter-
mine the phylogenetic relationship of B. juncea proteins with that of their A. thaliana ortho-
logs, phylogenetic trees were made (S1 Fig). The B. juncea proteins and their respective
Arabidopsis orthologs were found to be clustered together.

The prediction of subcellular localization has shown that most of the proteins were pre-
dicted to be localized in the organelles of their site of action (Table 1). For e.g., all the BjNRT1
and BjNRT2 transporters were predicted to be localized in plasma membrane. The BjAMT1.2
and BjAMT2 transporters were also predicted to be localized in the plasma membrane, while
BjAMT1.1 was predicted to be localized in endoplasmic reticulum (ER). Similarly in wild grass
Puccinellia tenuiflora, PtAMT1.1 was also shown to be localized in endomembrane [38]. The
BjNR and BjNiR were found to be localized in cytoplasm and chloroplast, respectively where
actual processes of nitrate and nitrite reduction takes place [39]. The two isoforms of glutamine
synthetase, BjGS1 and BjGS2 involved in ammonia assimilation were predicted to be localized
in cytoplasm and chloroplast [40]. The BjFd-GOGAT and BjNADH-GOGAT both were pre-
dicted to be localized in chloroplast, the main organelle where GS/GOGAT cycle takes place
[41].The BjGDH1 and BjGDH2 were predicted to be localized in chloroplast and mitochon-
dria, respectively. Similarly, GDH1 in Chlorella and GDH2 in Vitis vinifera were found to be
localized in chloroplast and mitochondria, respectively [42,43]. The BjASN1, BjASN2 and
BjASN3 proteins involved in asparagine synthesis were predicted to be localized in cytosol
[44]. Whereas, BjASN4 was found to be localized in chloroplast.

Effect of abiotic stresses on expression of genes encoding transporters
In plants, short term and long term exposure to stress leads to change in gene expression for
cellular adaptation to changing environment [45]. In present study, expression of all the genes
involved in N uptake and assimilation was studied following 1h and 24h of abiotic stress expo-
sure. The change in gene expression after 1h provides insights into the plant acclimation to an
early stress and can be considered as a general response to stress conditions. Whereas, tran-
scriptional changes have been found to become more specific to abiotic stress after prolonged
stress exposure [46]. Therefore, expression changes after 24h may reveal genes that are more
specific to abiotic stress under longer duration.

Nitrate transporters. The first step of NO3 assimilation is its uptake with the help of
nitrate transporters located on the plasma membrane of the root epidermal and cortical cells.
In higher plants, two types of nitrate transporters have been found, low affinity nitrate trans-
porters (NRT1) and high affinity nitrate transporters (NRT2). The amino acid sequence iden-
tity among seven NRT1 homologs ranges between 30.1–68.3%, while two NRT2 homologs
share 46% sequence identity (S3 File). Expression analysis of 7 genes encoding NRT1
(BjNRT1.1, BjNRT1.2, BjNRT1.3, BjNRT1.4, BjNRT1.5, BjNRT1.7, BjNRT1.8) and 2 genes
encoding NRT2 (BjNRT2.1, BjNRT2.7) was carried out under various abiotic stresses (Fig 3A,
S2 Fig). The expression of BjNRT1.1 and BjNRT1.5 was found to be upregulated after 1h of all
the stress treatments, while their expression was either downregulated or remained unaltered
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under 24h of the treatments. In Arabidopsis, CHL1 (AtNTR1.1) was shown to function as dual-
affinity nitrate transporter contributing to both low and high affinity nitrate uptake in Arabi-
dopsis roots [47], while NRT1.5 is mainly involved in long distance transport of nitrate from
root to shoot [48]. In plants, early response to environmental stresses is critical to ensure cell
survival. Therefore, initial upregulation of these genes might reflect their importance in plant
adaptation to various stresses. In plants, root is the first tissue to perceive stress signal and
repression in lateral root number and growth has been well established as an adaptive response
under stress conditions, like salt and drought [49,50]. In Arabidopsis, NRT1.1 was found to
accelerate lateral root growth in nitrate rich patches of external medium by accumulating
auxin in the lateral root tip [51]. The downregulation of BjNRT1.1 after 24h of stress exposure
might participate in altering root morphology that may in turn help plant to withstand stress
conditions. In normal conditions, majority of the nitrate is transported from root to shoot for
assimilation process but under stress conditions the reallocation of nitrate to root was observed
[52,53]. In A. thaliana, this reallocation due to downregulation of AtNRT1.5 has been found to
be involved in stress tolerance mechanism [54–55]. In present study, the downregulation of
BjNRT1.5 after 24h suggests its involvement in plant tolerance mechanism to abiotic stresses.
The expression of BjNRT1.2 was downregulated at 24h of cold and 1h of heat stress treatments,
while it remained unaltered under rest of the conditions. In Poplar, differential expression of
NRT1 and NRT2 genes in response to phytohormones and ion stress has been correlated with
difference in cis-regulatory elements in their promoter regions [56]. The expression of
BjNRT1.3 was upregulated under salt stress (1h, 24h) and under osmotic (1h) treatment, while
under rest of the conditions, its expression remained unchanged. In rice, expression of
OsNRT1.3 gene was upregulated under drought, while treatment with ABA and NaCl did not
affect its expression [57]. The expression of BjNRT1.4 was upregulated under salt (1h, 24h),
osmotic (1h) and cold (1h) stresses, while it was found to be downregulated under cold (24h)
and remained unchanged under rest of the conditions. The BjNRT1.7 was found to be the only
gene, expression of which was upregulated after 24h of all the stress treatments. The expression
of BjNRT1.8 was upregulated under salt (24h), cold (1h) and heat (1h) stresses, while in rest of
the conditions, its expression was either downregulated or remained unaltered. The expression
of AtNRT1.8 was found to be strongly upregulated in Arabidopsis roots under cadmium stress
[55]. The expression of BjNRT2.1 was downregulated under all the stress conditions, except
cold (1h) where it was unaltered and under heat (1h) where it was upregulated. The downregu-
lation of BjNRT2.1, which is a member of high affinity nitrate transporter (HATS) family, may
be due to the fact that all the stress treatments were given in ½ strength MS medium, where
nitrate concentration is 19.7mM. It is well known that members of HATS play role in nitrate
uptake when external nitrate concentration is very low (<250μM) [58]. Exposure to stress may
further lead to downregulation of BjNRT2.1. Downregulation of AtNRT2.1 gene under salt
stress was also reported in tomato [49]. In Arabidopsis, AtNRT2.1 was shown as an important
component of inducible high-affinity nitrate transport system (IHATS) and its disruption in
Atnrt2.1mutant led to 72% reduction in IHATS [59]. These observations suggest that downre-
gulation of two important nitrate transporter genes, BjNRT1.1 and BjNRT2.1 under abiotic
stress conditions disrupts both low- and high-affinity nitrate transport systems, which may be

Fig 3. Bar diagrams showing relative expression of various genes encoding (A) nitrate and (B) ammonium transporters and enzymes involved in
(C) nitrate and nitite reduction and (D,E) ammonium assimilation in B. juncea under abiotic stress conditions after 1h (grey bars) and 24h (white
bars) as compared to untreated control plants.Relative expression ratios were determined using qRT-PCR. Asterisks on the top of the bars indicate
statistically significant differences (* p-value<0.05 (significant), **p-value < .01(highly significant), ***p < .001 (very highly significant) between 1h and 24h
stress treated samples.

doi:10.1371/journal.pone.0143645.g003
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one of the key factors, inhibiting growth and development of B. juncea under abiotic stress
conditions.

Ammonium transporters. In most of the natural environmental conditions, ammonium
and nitrate are considered to be the main source of nitrogen for the plants growth. Uptake of
ammonium ions by plants is more rapid process over nitrate ions when both of these are pro-
vided with equal concentration [60]. The BjAMT1.1 and BjAMT1.2 share 94% percent amino
acid sequence identity (S3 File). Expression of two AMT1 genes and one AMT2 gene was stud-
ied under abiotic stress conditions. Expression of BjAMT1.2 was found to be downregulated
under 1h of salt, osmotic and cold stresses, while under 24h treatment of these stresses induced
its expression (Fig 3B, S2 Fig). Under heat stresses, expression of BjAMT1.2 was found to be
downregulated at both the time points (1h and 24h). The expression of BjAMT1.1 was downre-
gulated under all the treatments, except salt (24h), osmotic (1h) and heat (1h), where it
remained unaltered. The expression of BjAMT2 was found to be downregulated under all the
stress conditions. Transcriptomics study of Lotus japonicus has revealed the downregulation of
AMT1 gene under drought stress [61]. In plants uptake of ammonium ion is energetically less
expensive process as plants do not have to spend extra energy for reducing nitrate into ammo-
nium. Our result suggested that both, nitrate and ammonium uptake are inhibited under stress
conditions.

Effect of abiotic stresses on expression of genes encoding enzymes
involved in N assimilation

Nitrate and Nitrite reductases. Once the nitrate enters into the cytoplasm, it is reduced to
nitrite with the help of nitrate reductase (NR). The nitrite is then transported into chloroplast
and reduced into ammonium ion with the help of nitrite reductase (NiR). These enzymes have
been shown to be highly regulated at transcriptional and translational level and also influenced
by environmental factors [62]. The BjNR1 and BjNR2 were found to share 91% amino acid
sequence identity (S3 File). The expression of BjNR1 was found to be upregulated only under
salt stress at 24h (Fig 3C, S2 Fig). In all other conditions, expression of BjNR1 was found to be
downregulated. Expression of BjNR2 was found to be downregulated under all the stresses at
24h except, salt stress, while it remained unchanged under all the stresses at 1h. Similarly,
expression of BjNiR1 was downregulated under all the stress conditions, except osmotic stress
at 1h (Fig 3C, S2 Fig). As expression of nitrate assimilation genes is controlled by nitrate con-
tent in plants [63], a severe downregulation of BjNR2 and BjNiR1 can be correlated with reduc-
tion in nitrate transport by roots under stress conditions. Reduced NR activity under salinity
stress was reported in several plants, like barley, maize and tomato [64–66]. The reduction in
NR activity under salt stress may be either due to direct effect of Cl−ions in the external
medium causing reduction in nitrate uptake or may be due to low content of NR protein [67–
69]. However increased expression of NR2 gene was reported in Arabidopsis roots during first
week when treated with 100mMNaCl [70]. In leaves of winter wheat, activation of NR under
short term low temperature stress was observed [71]. Repression of nitrate and nitrite reductase
activity under osmotic and heat stress was also reported [72,73].

Glutamine synthetase and glutamate synthase. Glutamine synthetase (GS) is an ATP
dependent enzyme that fixes the ammonium into glutamate to form glutamine. In plants, gen-
erally two types of GS proteins are present, GS1 and GS2 which are cytoplasmic and chloro-
plastic, respectively. The BjGS1.1 and BjGS1.3 were found to share 86.12% sequence identity at
amino acid level (S3 File). Expression of BjGS1.1, BjGS1.3 and BjGS2 was studied under abiotic
stresses (Fig 3D, S2 Fig). Expression of BjGS1.1 was found to be downregulated under all the
stress conditions. Similarly, expression of BjGS1.3 was also found to be downregulated under
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all the stress conditions, except 1h of heat stress, where it was strongly upregulated. Expression
of BjGS2 was also downregulated under all the stress conditions, except salt (1h, 24h) and
osmotic (1h) stress. The GS activity and its transcript accumulation was found to be affected by
salt stress in an organ dependent manner, with increased ammonia assimilation in roots and
decreased assimilation in leaves of potato plants [74]. Reduction in GS activity was already
reported in tea bud under cold, drought and heat stresses [75]. Under stress conditions, devia-
tion of glutamate from GS/GOGAT cycle to the synthesis of organic osmoticum has been
observed [76]. Therefore reduction in the expression of glutamine synthetase gene under most
of the stress might be due to low availability of glutamate. Reduced expression of GS gene may
slow down process of ammonia assimilation and thus affects nitrogen metabolism. This sug-
gested that abiotic stress severely affected the process of ammonia assimilation in B. juncea.

In plants, glutamate synthase mainly occurs in two forms, Fd-GOGAT and NADH-GO-
GAT. This enzyme catalyzes the transfer of the amide nitrogen of glutamine to 2-oxoglutarate
to form two molecules of glutamate. In present study, BjFd-GOGAT and BjNADH-GOGAT
were found to share 44% sequence identity at amino acid level (S3 File). The expression of
BjFd-GOGAT was found to be downregulated after 24h of osmotic, cold and heat stress,
whereas expression of BjNADH-GOGAT was downregulated after 24h of salt, osmotic and cold
stress (Fig 3D, S1 Fig). In nodules of Vicia faba, activity of NADH-GOGAT was found to be
decreased more than that of GS under 100mMNaCl stress [77,78]. The activity of GOGAT
was also strongly inhibited in Cicer arietinum under 100 mM salt stress [79].

Glutamate dehydrogenase. Glutamate dehydrogenase enzyme catalyzes the reversible
reaction involving assimilation of ammonia into glutamate and deamination of glutamate to
form 2-oxoglutarate and ammonium. In plants, two types of GDH have been found, depending
on the cofactor viz. NAD(H) dependent (mitochondrial) and NADP(H) dependent (chloro-
plast). Glutamate dehydrogenase is considered as an alternative enzyme for GS/GOGAT cycle
under abiotic stresses [80]. Moreover, both aminating and deaminating properties of GDH
were found to be helpful for plant during stress condition, as amination leads to detoxification
of excess ammonium ions accumulated during stress [81] and deamination activity provides
intermediate to the TCA cycle and thus sustained carbohydrate metabolism [82]. The expres-
sion of BjGDH1 was downregulated under all the stress conditions, except 24h of cold stress,
(Fig 3E, S2 Fig). The percent identity between BjGDH1 and BjGDH2 was found to be 76% (S3
File). However, expression of BjGDH2 gene displayed a strong upregulation under both, 1h
and 24h of salt stress, while under osmotic, cold and heat stresses, its expression was upregu-
lated only at 1h time point. The GDH activity was found to be increased in salt tolerant rice
cultivar in response to high NaCl concentration upto 800mM as compared to salt sensitive cul-
tivar [82]. Increased expression of GDH under stress condition was also reported in tobacco
[83]. Expression of BjGDH2 was downregulated under 24h of osmotic and heat stress and
returned to basal level at 24h of cold stress. An early upregulation of BjGDH2 gene may have
protective role in adjusting B. juncea plant under initial exposure to stress condition.

Asparagine synthetase. Asparagine synthetase (ASN) is an ATP-dependent enzyme that
catalyses the transfer of the amide amino group of glutamine to a molecule of aspartate to gen-
erate glutamate and asparagine [84]. Increased asparagine level was reported under water dep-
rivation and salinity stress conditions [85,86]. The accumulation of asparagine under stress is
may be either due to increase in its biosynthesis or may be due to degradation of proteins.
However, in Coleus blumei, 14C labeling experiment has suggested involvement of de novo syn-
thesis in accumulation of free asparagines under salinity stress [86]. The sequence identity
among ASN homologs ranged between 76–90.79% at amino acid level (S3 File). Expression of
two genes encoding ASN was studied under different stresses, which revealed that expression
of BjASN1 was upregulated under salt (1h, 24h), osmotic (24h) and heat (24h) stresses, while it
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was and downregulated under cold (1h, 24h) and heat (1h) stresses (Fig 3E, S2 Fig). However,
expression of BjASN2 was found to be downregulated under all the stress conditions. Increased
expression of BjASN1 gene may lead to increased accumulation of asparagine under stress con-
ditions. Under abiotic stress conditions, expression of ASN1 was also reported to be induced in
wheat seedlings, maize and sunflower [87–89].

Conclusions
Abiotic stresses affect virtually all aspects of plant life, including nitrogen metabolism. However
in case of B. juncea, effect of abiotic stress on nitrogen metabolism has been studied only at
enzymatic level, so far. The present work represents the first report where effect of various abi-
otic stresses on expression of all the genes involved in Nitrogen transport, its reduction and its
assimilation has been shown in any plant species. In order to understand the interaction of N
pathway with abiotic stresses, expression profiling of N pathway genes was carried out under
salt, osmotic, cold and heat stresses. We have cloned twenty six genes encoding various trans-
porters involved in N uptake (NRT and AMT) and various enzymes involved in N assimilation
(NR, NiR, GS, GOGAT, GDH and ASN) in B. juncea. Detailed expression profiling revealed

Fig 4. Venn diagram showing genes commonly upregulated and downregulated after 1h and 24h of stress treatments.

doi:10.1371/journal.pone.0143645.g004
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that expression of various N pathway genes was modulated at different time points under vari-
ous abiotic stress conditions. Differential expression pattern of genes, which encode for pro-
teins involved in similar function may be due to the difference in regulatory motifs in their
promoter regions. After 1h of stress treatments, three genes (BjNRT1.1, BjNRT1.5 and
BjGDH2) were found to be upregulated, whereas five genes (BjAMT1.2, BjAMT2, BjGS1.1,
BjGDH1, and BjASN2) were found to be downregulated under all the stresses, commonly (Fig
4). However after 24h of stress treatments, no gene was found to be commonly upregulated,
while expression of six genes (BjNRT1.1, BjNRT2.1, BjAMT2, BjNiR1, BjGDH1 and BjASN2)
was found to be commonly downregulated. Taken together, this analysis revealed that downre-
gulation of BjNRT1.1 and BjNRT1.5, which are considered important for nitrate uptake and
translocation from root to shoot, respectively may lead to reduction in nitrate content in plant
tissues. The reduced nitrate content in plant tissues may lead to downregulation of gene
involved in N assimilation under stress conditions. Therefore, our analysis showed that longer
exposure of abiotic stresses adversely affect all the processes of N pathway viz. N uptake, assim-
ilation and mobilization in B. juncea. This may be one of the key components, which reduce
plant growth and productivity under abiotic stresses. In conclusion, the present study provides
an insight of regulation of various processes of genes of N pathway under abiotic stresses,
which may help in selecting some of the genes of N uptake and assimilation pathway to develop
transgenic plants with optimum yield potential under abiotic stress conditions.
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