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Abstract: Background: Long COVID can develop in individuals who have had COVID-19,
regardless of the severity of their initial infection or the treatment they received. Several
studies have examined the prevalence and manifestation of symptom phenotypes to com-
prehend the pathophysiological mechanisms associated with these symptoms. Numerous
articles outlined specific approaches for multidisciplinary management and treatment of
these patients, focusing primarily on those with mild acute illness. The various manage-
ment models implemented focused on a patient-centered approach, where the specialists
were positioned around the patient. On the other hand, the created pathways do not
consider the possibility of symptom clusters when determining how to define diagnostic
algorithms. Methods: This retrospective longitudinal study took place at the “Fondazione
IRCCS Policlinico San Matteo”, Pavia, Italy (SMATTEO) and at the “Ospedale di Cremona”,
ASST Cremona, Italy (CREMONA). Information was retrieved from the administrative
data warehouse and from two dedicated registries. We included patients discharged with a
diagnosis of severe COVID-19, systematically invited for a 3-month follow-up visit. Un-
supervised machine learning was used to identify potential patient phenotypes. Results:
Three hundred and eighty-two patients were included in these analyses. About one-third
of patients were older than 65 years; a quarter were female; more than 80% of patients
had multi-morbidities. Diagnoses related to the circulatory system were the most frequent,
comprising 46% of cases, followed by endocrinopathies at 20%. PCA (principal component
analysis) had no clustering tendency, which was comparable to the PCA plot of a random
dataset. The unsupervised machine learning approach confirms these findings. Indeed,
while dendrograms for the hierarchical clustering approach may visually indicate some
clusters, this is not the case for the PAM method. Notably, most patients were concentrated
in one cluster. Conclusions: The extreme heterogeneity of patients affected by post-acute
sequelae of SARS-CoV-2 infection (PASC) has not allowed for the identification of specific
symptom clusters with the most recent statistical techniques, thus preventing the generation
of common diagnostic-therapeutic pathways.
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1. Introduction
The British National Institute for Health and Care Excellence (NICE) describes long

COVID or post-COVID syndrome (PCS) as the continuation of signs and symptoms that
were present during or arose after a COVID-19 infection and persist for more than twelve
weeks, with no other explanation for their persistence [1]. In contrast, the United States
National Institutes of Health (NIH) refers to Long COVID as sequelae that persist beyond
four weeks from the onset of the initial infection, as the definition provided by the Centers
for Disease Control and Prevention (CDC) [2]. Nowadays, post-acute sequelae of SARS-
CoV-2 infection (PASC) are defined as symptoms that persist, relapse, or arise 30 or more
days after a SARS-CoV-2 infection [3].

Many studies examined the residual symptoms reported after contracting SARS-CoV-
2, including the incidence, risk factors, treatment, and management of long COVID [4,5].
Considering all these factors, it is evident that this virus can potentially result in lasting
health consequences [6]. Long COVID can impact individuals who experienced mild
symptoms during their initial illness, as well as those who battled against more severe forms
of the infection [7,8]. Long COVID can develop in any individual who has had COVID-
19, regardless of the severity of the initial infection or the treatment they received. This
includes patients treated in hospital wards or intensive care units, requiring oxygen therapy,
continuous positive airway pressure, or invasive ventilation, and those not hospitalized [9].

Several studies have used various methodologies to identify long COVID phenotypes,
including hierarchical cluster analysis, latent class analysis, and phenotype semantic simi-
larity methods. However, these approaches have significant limitations. First, many studies
have combined patients with varying acute disease severity, obscuring potential differences
in post-acute patterns between these groups. Inconsistencies between previous studies
are evident in the different numbers and types of clusters identified across the literature.
For instance, some studies describe three long COVID phenotypes based primarily on
symptom severity, while others identify up to six distinct clusters characterized by different
pre-existing comorbidities.

Severity-based analysis is essential for several reasons. First, patients with severe
COVID-19 might have distinct pathophysiological mechanisms underlying their post-acute
symptoms, including more extensive organ damage, more intense systemic inflammation,
and complications related to prolonged hospitalization. Second, this population represents
a significant care burden and requires dedicated management strategies.

Given the known association between COVID-19 and long-term cardiovascular alter-
ations, it is particularly important to investigate potential phenotypic patterns linked to
cardiovascular manifestations. Cardiovascular complications represent one of the most
concerning manifestations of PASC, with growing evidence suggesting specific patho-
physiological mechanisms such as persistent vascular inflammation, alterations in the
renin–angiotensin–aldosterone system, and direct endothelial damage.

Several studies have used various methodologies to identify long COVID phenotypes,
including hierarchical cluster analysis, latent class analysis, and phenotype semantic simi-
larity methods [10–13]. However, these approaches have significant limitations. First, many
studies have combined patients with varying acute disease severity, obscuring potential
differences in post-acute patterns between these groups [12,13]. Inconsistencies between
previous studies are evident in the different numbers and types of clusters identified across
the literature. For instance, some studies describe three long COVID phenotypes based
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primarily on symptom severity [10,11], while others identify up to six distinct clusters
characterized by different pre-existing comorbidities [14,15]. Severity-based analysis is
essential for several reasons. First, patients with severe COVID-19 might have distinct
pathophysiological mechanisms underlying their post-acute symptoms, including more
extensive organ damage, more intense systemic inflammation, and complications related to
prolonged hospitalization [12,13]. Second, this population represents a significant care bur-
den and requires dedicated management strategies. Given the known association between
COVID-19 and long-term cardiovascular alterations, it is particularly important to investi-
gate potential phenotypic patterns linked to cardiovascular manifestations. Cardiovascular
complications represent one of the most concerning manifestations of PASC, with growing
evidence suggesting specific pathophysiological mechanisms such as persistent vascular
inflammation, alterations in the renin–angiotensin–aldosterone system [16,17], and direct
endothelial damage [13–15,18].

Several studies examined the prevalence and manifestation of different symptom
phenotypes to comprehend the underlying pathophysiological mechanisms associated
with these symptoms [19]. However, these studies did not differentiate between patients
based on the severity of their acute illness [20,21]. They identified various phenotypes in
diverse populations of COVID patients, including both those who were hospitalized and
those who were not [22]. These studies are focused on deciphering the pathophysiological
mechanisms underlying PASC.

Numerous articles outlined specific approaches for the multidisciplinary management
and treatment of these patients, focusing primarily on those with mild acute illness [23]. The
various management models implemented focused on a patient-centered approach, where
the specialists involved were positioned around the patient [24]. The created pathways
did not consider the possibility of symptom clusters when determining how to define
diagnostic algorithms.

Thus, due to the complexity of the issue, a comprehensive and universally accepted
definition is challenging.

Our research seeks to determine how common lingering symptoms are, three months
after patients have been released from the hospital following a severe case of COVID-19.
Lombardy was a region with a high rate of COVID-19 infections during the initial phases of
the pandemic. Our primary research question is whether distinct symptom clusters can be
identified among these patients, potentially reflecting different phenotypes of PASC. Identify-
ing such clusters may support the development of targeted follow-up strategies, improve care
coordination, and inform standardized treatment pathways for long COVID patients.

2. Materials and Methods
2.1. Study Design

This is a retrospective longitudinal study part of a larger research project funded by
Fondazione CARIPLO, the “Chronic diseases management after the COVID-19 epidemic
trigger. Capturing data, generating evidence, suggesting actions for health protection. The
CHANCE Project” (cod. 2020-4238). This sub-project took place at the “Fondazione IRCCS
Policlinico San Matteo”, Pavia, Italy (SMATTEO) and at the “Ospedale di Cremona”, ASST
Cremona, Italy (CREMONA); the study was approved by the ethical committee of Pavia (26
July 2022, protocol number 0036061/22) as well as by the ethical committee of Val Padana
(30 September 2022, protocol number 34131).
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2.2. Data Source

Discharge data on hospitalization were retrieved from the administrative databases of
both hospitals, and follow-up data were derived from dedicated clinical COVID registries
maintained at both hospitals. Patients with multimorbidities were identified through the
ICD9-CM discharge diagnoses up to the 6th.

2.3. Study Population

Individuals with residual symptoms correlated with PASC were enrolled during
the outpatient follow-up visit at 3 months after discharge from the two medical facilities.
Subjects discharged between March 2020 and March 2022 with a diagnosis of severe COVID-
19 were eligible for the study. Specifically, subjects who required either CPAP (Continuous
Positive Airway Pressure) or Endotracheal Intubation and exhibited residual symptoms at
the 3- to 4-month visit were included. The following discharge ICD9-CM diagnoses were
considered: codes 48041, 51891, 9604, 311, 9670, 9671, 9672, and 9390. Table 1 reports the
descriptive characteristics of the study population, including sex, age, and comorbidities
(which were grouped according to ICD9-CM chapter), stratified by center.

Table 1. Subjects’ characteristics and disease main categories of the study population. Overall and by
participating center. Disease categories were derived from the ICD9-CM discharge diagnosis codes
and grouped according to the corresponding main chapter.

ICD9-CM
Chapter

Overall
N = 382

San Matteo Hosp
N = 242

Cremona Hosp
N = 140

Sex (F) - 102 (26.7%) 72 (29.8%) 30 (21.4%)
Age > 65 - 136 (35.7%) 84 (34.7%) 52 (37.4%)

Endotracheal
intubation - 97 (25.4%) 51 (21.1%) 46 (32.9%)

Multimorbidities - 324 (84.8%) 200 (82.6%) 124 (88.6%)
Circulatory 7 176 (46.1%) 126 (52.1%) 50 (35.7%)
Endocrin 3 76 (19.9%) 66 (27.3%) 10 (7.1%)

Genitourinary 10 34 (8.9%) 24 (9.9%) 10 (7.1%)
Neurological 6 25 (6.5%) 21 (8.7%) 4 (2.9%)

Gastroenterological 9 13 (3.4%) 11 (4.5%) 2 (1.4%)
Cancer 2 12 (3.1%) 8 (3.3%) 4 (2.9%)

Hematological 4 10 (2.6%) 9 (3.7%) 1 (0.7%)
Dermatological 12 8 (2.1%) 5 (2.1%) 3 (2.1%)

Trauma 17 6 (1.6%) 4 (1.7%) 2 (1.4%)
Mental 5 5 (1.3%) 4 (1.7%) 1 (0.7%)

Musculoskeletal 13 4 (1.0%) 4 (1.7%) 0 (0.0%)
Other 18 157 (41.1%) 28 (11.6%) 129 (92.1%)

Symptoms 16 113 (29.6%) 7 (2.9%) 106 (75.7%)

During the outpatient visit, information about the presence of residual symptoms was
collected, listed in Supplementary Table S1.

2.4. Data Analysis

All analyses were performed using the R (v. 4.3.1) software [25]. We used the Fisher
exact test to compare patient characteristics between the two hospitals. The prevalence
of each category of symptoms, collected at the 3-month follow-up visit, was computed
together with its exact binomial 95% confidence interval (95% CI). A list of the 36 variables
included in the analysis is reported in Supplementary Table S1. It is important to note that
all symptoms were analyzed as individual binary variables, without any aggregation, to
preserve the specificity and granularity of each clinical feature.



J. Clin. Med. 2025, 14, 3670 5 of 14

In order to elicit potential different aggregations of patients, we plotted the entire case
series over the first two components of a principal component analysis (PCA). For comparison,
PCA was also run on the random dataset. Additionally, other non-linear dimensionality
reduction techniques were investigated, such as t-distributed Stochastic Neighbor Embedding
(t-SNE) and Uniform Manifold Approximation and Projection (UMAP).

More formally, we applied a series of unsupervised machine learning techniques, such
as hierarchical clustering (either agglomerative or divisive), partition around medoids
(PAM), k-means, and Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN). These techniques attempt to find subgroups of patients that share common charac-
teristics and differ from the other subgroups. To rank the performance of such methods, we
calculated the following indices that measure the separation between potential clusters (the
higher the better): the average silhouette width, with a value >0.5 generally considered as
an acceptable performance, the separation index (range 0–1), and the cophenetic correlation
coefficient (range |0–1|). To further discriminate between these methods, we computed
the entropy, where lower values indicated lower heterogeneity within clusters. The results
of the clustering processes were reported graphically as dendrograms or cluster plots.
Patients for whom more than 50% of the selected variables were missing did not enter the
machine learning approach. A detailed description of these analyses is reported in the
Supplementary Materials.

Parameter sensitivity analyses were conducted for clustering methods that require
parameter specification (e.g., number of clusters for k-means and PAM, eps value for
DBSCAN) to ensure robust results. Age and sex were included as variables in the clustering
analysis to account for their potential influence on symptom patterns. Additionally, we
performed exploratory stratified clustering analyses by age group (≥65 vs. <65 years) to
assess whether age-specific symptom patterns might emerge more clearly.

To assess whether the exclusion of patients with more than 50% missing data intro-
duced any systematic bias, we compared key demographic and clinical variables between
included and excluded patients (Supplementary Table S3).

3. Results
3.1. Patient

In our study, we included 382 patients discharged with a diagnosis of severe COVID-19
and a 3-month follow-up visit. Their demographic and clinical characteristics are shown in
Table 1: about one-third of patients were older than 65 years, and a quarter were female;
25% of this case series had had endotracheal intubation during their hospitalization; more
than 80% of patients had multimorbidities. Diagnoses related to the circulatory system were
notably the most frequent, including 46% of cases, followed by those within the endocrine
ICD9-CM chapter at 20%. All other diagnoses had a prevalence below 10%. Notably, 40%
and 30% of diagnoses were unspecified and symptomatic, respectively. Table 2 reports
the prevalence of symptoms at follow-up. About 70% of patients (N = 253) attending
the outpatient clinic had residual symptoms at the 3-month follow-up visit, with 40% of
them with 2 or more symptoms. Dyspnea prevalence was largely the highest, with 60%
of patients affected. Fatigue (40%) and neuropsychological symptoms (30%) were other
frequent symptoms.
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Table 2. Prevalence of symptoms at follow-up (95%CI) overall and by participating center.

Symptom All
(N = 382)

San Matteo Hosp
(N = 242)

Cremona Hosp
(N = 140)

N % (95%CI) N % (95%CI) N % (95%CI)

Residual symptoms 253 67.8 (62.8, 72.5) 148 63.5 (56.9, 69.6) 105 75.0 (66.8, 81.8)

Multiple symptoms

1 107 28.0 (23.6, 32.9) 71 29.3 (23.8, 35.6) 36 25.7 (18.9, 33.9)
2 77 20.2 (16.3, 24.6) 46 19.0 (14.4, 24.6) 31 22.1 (15.8, 30.1)

3+ 74 19.4 (15.6, 23.8) 36 14.9 (10.8, 20.1) 38 27.1 (20.1, 35.4)

Dyspnea 170 60.9 (54.9, 66.6) 100 68.5 (60.2, 75.8) 70 52.6 (43.8, 61.3)

Fatigue 109 39.8 (34.0, 45.9) 64 45.7 (37.3, 54.3) 45 33.6 (25.8, 42.3)

Neuro-psychological symptoms 69 30.4 (24.6, 36.9) 33 35.9 (26.3, 46.6) 36 26.7 (19.6, 35.1)

Rheumatologic symptoms 47 21.1 (16.0, 27.1) 21 23.6 (15.5, 34.0) 26 19.4 (13.3, 27.3)

Cardiovascular symptoms 47 17.2 (13.0, 22.3) 28 20.3 (14.1, 28.2) 19 14.1 (8.9, 21.4)

Otorhinolaryngological symptoms 28 10.3 (7.1, 14.7) 20 14.5 (9.3, 21.7) 8 6.0% (2.8, 11.8)

Dermatologic symptoms 22 9.8 (6.4, 14.6) 6 6.7 (2.7, 14.5) 16 11.9 (7.1, 18.8)

Cough 18 6.6 (4.1, 10.5) 7 5.1% (2.3, 10.7) 11 8.1 (4.3, 14.4)

Gastrointestinal disorders 19 6.9 (4.3, 10.8) 16 11.4 (6.9, 18.2) 3 2.2 (0.6, 6.9)

Headache 11 4.9 (2.6, 8.9) 9 10.1 (5.0, 18.8) 2 1.5 (0.3, 5.8)

3.2. Unsupervised Machine Learning for the Identification of Patient Aggregation

Out of 253 subjects with residual symptoms, 19 patients (7.5%) with more than 50%
of missing data were excluded from the analysis. Therefore, these analyses included
234 patients with symptoms and sufficient available data.

As shown in Figure 1A, there was no clustering tendency at PCA, comparable to the
PCA plot of a random dataset (Figure 1B). Similarly, neither UMAP (Figure 1C) nor t-SNE
(Figure 1D) revealed distinct or stable clusters in the symptom data.

The unsupervised machine learning approach confirms these findings. Indeed, while
dendrograms for the hierarchical clustering approach may visually indicate some clusters
(Figure 2A,B), this is not the case for the PAM method (Figure 2C) and k-means (Figure 2D).
Notably, for the PAM method, most patients were concentrated in one cluster (181 out
of 234). All these methods were applied combined with parameter sensitivity analyses
(e.g., number of clusters for k-means and PAM, eps value for DBSCAN). Moreover, the
internal validation indices did not support the validity of patient aggregation, as evidenced
by inferior values (Table 3). Specifically, the average silhouette values were below the
acceptable threshold of 0.5 across all cases, indicating that the clusters might overlap or
were not well-defined. Similarly, the separation index was close to 0, confirming the lack
of separation between the hypothetical clusters. Among the clustering methods tested,
DBSCAN (Figure 2E) showed the best performance based on a higher silhouette index (0.47)
and separation index (0.55). However, further investigation of the clinical characteristics of
patients within the clusters identified by DBSCAN did not reveal any clinically meaningful
distinctions (Supplementary Table S3).
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Figure 1. Dimensionality reduction techniques applied to the dataset. PCA plot of the first two
principal components for patient data (A) and a randomly generated dataset (B). Uniform Manifold Ap-
proximation and Projection (UMAP) (C) and t-distributed Stochastic Neighbor Embedding (t-SNE) (D).

Table 3. Internal stability indexes for hierarchical (agglomerative and divisive), PAM, k-means, and
DBSCAN clustering of patients.

Method Average
Silhouette

Separation
Index (SI)

Cophenetic
Correlation
Coefficient

Entropy

Agglomerative
Clustering 0.31 0.05 0.61 1.10

Divisive
Clustering 0.31 0.03 0.74 0.74

PAM Clustering 0.18 0.01 - 1.27
K-Means 0.19 0.26 - 0.69
DBSCAN 0.47 0.55 - 1.01

In bold modals best performance.

The stratified clustering analyses by age group (≥65, 96 patients vs. <65, 138 patients)
did not yield well-defined or clinically meaningful clusters either, consistent with the results
from the overall cohort, further supporting the conclusion that the absence of clustering
reflects true heterogeneity in the presentation of long COVID symptoms rather than a
methodological limitation.
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Figure 2. Clustering results for the patient dataset using five different algorithms: (A) agglomerative
hierarchical clustering, (B) divisive hierarchical clustering, (C) PAM, (D) k-means, and (E) DBSCAN.
Each panel illustrates the clustering structure detected by the corresponding method.

4. Discussion
Patients included in this study were recruited from two major Centers in Lombardy

(IRCCS Policlinico San Matteo Foundation and Cremona Hospital), areas with a high
incidence of COVID-19 during the first two waves of the pandemic. The study aimed to
evaluate the prevalence of post-acute sequelae of SARS-CoV-2 infection (PASC) symptoms
in patients discharged after a severe COVID-19. It sought to identify symptom-based
patient clusters to facilitate structured management pathways. Utilizing a retrospective
longitudinal design within a larger project funded by Fondazione CARIPLO, the researchers
analyzed hospital discharge and follow-up data from COVID registries. A total of 382 patients
with severe COVID-19 were included. At the 3-month follow-up, 70% of patients exhibited
residual symptoms, predominantly dyspnea, fatigue, and neuropsychological issues.

The results of our investigation, in particular the application of an unsupervised
machine learning approach, indicate that there was no discernible clustering of patients,
thus precluding the identification of specific phenotypes among individuals, systematically
assessed three months after discharge with a diagnosis of severe COVID-19 and residual
symptoms of PACS.

Additionally, we observed a limited number of patients who required continuous
positive airway pressure (CPAP) or endotracheal intubation during their hospitalization.
This observation can be attributed to the fact that patients requiring such interventions
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were less likely to be discharged alive and, consequently, were unable to participate in the
three-month follow-up visit.

Our analysis revealed that the study population was characterized by a remarkably
high prevalence of multimorbidities (84.4%), with circulatory and endocrine diseases being
the most commonly observed comorbid conditions. This highlights the complexity of
managing post-COVID-19 patients, especially those with pre-existing health conditions,
and underscores the importance of comprehensive and tailored medical care to address
their diverse needs.

Regarding cardiovascular manifestations specifically, our analysis showed that car-
diovascular symptoms were present in 17.2% of patients at the 3-month follow-up, with a
slightly higher prevalence in patients from San Matteo Hospital (20.3%) compared to those
from Cremona Hospital (14.1%). However, the clustering analysis did not highlight patient
groupings primarily characterized by cardiovascular manifestations. This observation sug-
gests that cardiovascular symptoms, while clinically relevant, tend to present in variable
combinations with other post-COVID symptoms rather than constituting a distinct and
isolated phenotype.

The most common symptoms reported in clusters of PACS patients vary but generally
include a range of physical, cognitive, and psychiatric manifestations. Fatigue emerges as a
predominant symptom across multiple studies, often accompanied by dyspnea (shortness
of breath) and cognitive impairments such as forgetfulness and memory impairment. For
instance, one study identified clusters including fatigue alone and combinations of fatigue
with other symptoms like dyspnea, chest pain, and cognitive disturbances [26]. Similarly,
another study highlighted fatigue, dyspnea, and myalgia as the most common symptoms,
with women reporting more symptoms than men [27]. Psychiatric symptoms, including
anxiety and depression, are also frequently reported among long COVID patients. A
systematic review found sleep disturbances, depression, post-traumatic stress symptoms,
anxiety, and cognitive impairments to be common psychiatric manifestations [28]. More-
over, the risk factors for developing psychiatric symptoms include being female and having
a previous psychiatric diagnosis [29]. The heterogeneity of PASC symptoms is further evi-
denced by the identification of symptom clusters such as gastrointestinal, musculoskeletal,
neurocognitive, and cardiopulmonary in one study, with neurocognitive symptoms being
associated with increased odds of depression and anxiety [30]. Another study proposed
three phenotypes of PASC based on symptom severity, with the severe phenotype charac-
terized by fatigue, cognitive impairment, and depression [20]. Research also indicates that
the symptomatology of PASC can evolve over time, with variations in symptom clusters
observed across different waves of the pandemic and about SARS-CoV-2 variants [31].
Additionally, the presence of symptoms like joint pain, chest discomfort, and hair loss
points to the multisystemic nature of PASC [32,33]. In summary, long COVID presents with
a wide array of symptoms, predominantly fatigue, dyspnea, cognitive impairment, and psy-
chiatric symptoms, with significant variability in symptom clusters among patients [34]. To
highlight the natural history of long COVID, a study employed an unsupervised machine
learning method that utilized the semantic similarity of phenotype data to stratify patients
with long COVID. This approach identified six clusters of PASC patients, which differed in
terms of pre-existing comorbidities and the severity of acute COVID disease [13].

Our study differs from previous clustering studies in that it focused exclusively on
patients with severe COVID-19, using a rigorous unsupervised machine learning approach
with multiple techniques and internal validation metrics. The absence of distinct clusters
in our homogeneous cohort suggests that the heterogeneity of PASC symptoms might be
intrinsic rather than reflecting distinct phenotypes, at least in this specific population. This
contribution is relevant for clinical practice as it highlights that standardized approaches to
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PASC treatment might not be appropriate for previously hospitalized patients with severe
COVID-19, suggesting instead the need for highly personalized management strategies.

In our study, the application of a machine learning method in order to analyze the
population of patients hospitalized for severe COVID-19 disease and who developed PASC
confirmed the high heterogeneity of symptoms. However, this heterogeneity does not
allow for the identification of common treatment pathways, confirming the need to create
diagnosis and treatment pathways focused on every single patient.

To examine the influence of demographic factors on symptom patterns, we performed
stratified clustering analyses by age group (≥65 vs. <65 years). These analyses did not
reveal distinct or clinically meaningful clusters, consistent with findings from the overall co-
hort. Although we did not conduct regression-based adjustments for potential confounders,
we acknowledge their value and propose this as an important direction for future research
to better understand the relationship between patient characteristics and symptom profiles.

A possible limitation of our research is that symptoms were treated with equal weight,
without considering frequency or severity. While this preserved specificity across patients,
it may have limited the capacity to capture differences in symptom burden. However, by
focusing on the presence or absence of symptoms at a standardized 3-month follow-up,
we aimed to ensure comparability across patients and minimize recall bias, providing a
consistent snapshot of PASC.

Another limitation might be that a complete-case approach was used to handle missing
symptom data, leading to the exclusion of patients with more than 50% missing values.
This decision was made to avoid introducing artifacts in the clustering process due to
extensive imputation. However, only 19 patients (7.5%) were excluded, making it unlikely
that this choice substantially affected the sample size or introduced significant selection bias.
Nevertheless, future work will explore advanced imputation strategies, such as multiple
imputation by chained equations (MICE), to further validate the stability of clustering
results under different assumptions about missing data.

Finally, our study population was limited in size, and this aspect might hamper the
identification of clearly separated clusters. However, the substantial homogeneity of the
cohort, with all patients having been discharged after a severe COVID-19 infection, might
justify the lack of distinct phenotypes.

The absence of clearly defined and clinically significant symptom clusters in our cohort
has important implications for clinical practice. First, these findings strongly suggest that a
“one-size-fits-all” approach to PASC management in this population might be inadequate.
Instead, our results support the need for a highly personalized care strategy, where clinical
assessment, therapeutic planning, and monitoring are tailored to each patient’s specific
symptom manifestations and needs.

The observed heterogeneity might reflect the complexity of the pathophysiological
mechanisms underlying PASC, which likely involve a combination of direct organ damage,
persistent immune dysregulation, microvascular alterations, and psychosocial factors, all
manifesting in varying proportions in individual patients. This hypothesis is supported by
the high prevalence of multimorbidity (84.8%) in our cohort, which might further contribute
to variability in symptom presentation and disease response.

From a practical perspective, our findings suggest that clinicians should adopt a
holistic and patient-centered approach, systematically assessing the entire range of potential
post-COVID symptoms and complications, rather than focusing on specific symptom
clusters. Multidisciplinary teams, including specialists in internal medicine, pulmonology,
cardiology, neurology, psychiatry, and rehabilitation, remain essential to adequately address
these patients’ complex clinical pictures.
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5. Conclusions
The extreme heterogeneity of patients affected by PASC has not allowed for the

identification of specific symptom clusters even with the application of the most recent
statistical techniques. The characteristics of the different cohorts of patients enrolled in
previous studies may have been drivers for the emergence of cohort effects that make the
results not generalizable.

In our study, enrolling a large cohort of consecutive patients with severe acute COVID-19
did not yield distinct or clinically meaningful symptom clusters at the 3-month follow-up.
These findings underscore the complexity of post-COVID symptomatology and support the
need for individualized diagnostic and therapeutic pathways rather than uniform protocols.

Based on our findings, several promising directions for future research emerge:

1. Integration of biomarkers: future phenotyping studies could benefit from the inclusion
of inflammatory, immunological, metabolic, and specific organ damage biomarkers,
which might reveal underlying patterns not evident from symptom analysis alone.

2. Multimodal imaging data: incorporating structural and functional imaging data could
detect patterns of subclinical organ damage that might underlie reported symptoms.

3. Digital health data: the use of remote monitoring technologies could facilitate the
longitudinal collection of physiological data in real-world settings, revealing temporal
patterns not easily captured during standard clinical visits.

4. Integrated multi-omic approaches: high-resolution omic technologies could provide
in-depth molecular characterization of PASC patients, potentially identifying distinc-
tive molecular signatures.

5. Extended longitudinal analyses: longer-term follow-up studies (1–5 years) are needed
to understand the natural history of PASC and identify predictors of symptom persis-
tence or recovery.

6. Machine learning-based predictive models: developing models that integrate de-
mographic, clinical, biological, and imaging data could help early identification of
patients at risk for PASC.

7. Adaptive clinical trials: designing trials that dynamically respond to emerging data
could accelerate the development of effective therapeutic strategies for PASC.

The implementation of these complementary research approaches could lead to a more
nuanced understanding of the post-COVID syndrome, potentially revealing biologically
distinct subtypes that require differentiated management strategies, even in the absence of
clearly defined symptom clusters.
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mdpi.com/article/10.3390/jcm14113670/s1, Table S1: Set of variables recorded during outpatient
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pervised machine learning approach vs 234 included. References from [35–41] mentioned in the
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