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Non-autonomous multi-rogue 
waves for spin-1 coupled nonlinear 
Gross-Pitaevskii equation 
and management by external 
potentials
Li Li & Fajun Yu

We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled 
nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and 
external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave 
solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear 
Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile 
and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some 
non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in 
bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of 
these solutions are investigated analytically. The results could be of interest in such diverse fields as 
Bose-Einstein condensates, nonlinear fibers and super-fluids.

Rogue waves(RWs) are called the monster waves or extreme waves in the ocean, which are catastrophic natural 
physical phenomena (thunderstorms, earthquakes and hurricanes)1–5. The character of the rogue wave is: the 
amplitudes much higher than the average wave crests around them2. The nonlinear Schrödinger(NLS) equa-
tion and its variants are the most important basic models of mathematical physics in physical and engineering 
sciences. Especially some important applications are presented in nonlinear optics6 and water wave tanks7. It 
universality stimulates a great deal of attention devoted to searching for exact solutions of the generalized NLS 
models. The studies of rogue wave in single-component system have indicated that the rational solution of the 
NLS equation can be used to describe the phenomenon well8, 9. Ohta and Yang consdier the dynamics of rogue 
waves in the Davey-Stewartson Eq. 4. Searching for the rogue waves or rational solutions of NLS equation is an 
interesting work, which can describe new physical phenomena.

The spinor Bose-Einstein condensates (BECs), which have been experimentally realized in optical potentials, 
and exhibit a rich variety of magnetic effects10–12. For example, the spin-exchange interaction can be tuned by 
optics13, 14 or microwave Feshbach resonance techniques15 in a spinor condensate. The sign of the interaction in 
the ground state of spin-1 bosons is important, it gives rise to the phenomena are not be presented in the single 
component BECs16–18. The spinor BECs have been realized in the optical traps, the direction of the spin can 
change dynamically due to collisions between the atoms19–21. The spinor BECs can exhibit a rich variety of mag-
netic phenomena, including magnetic crystallization, spin textures and fractional vortices22–24.

A variety of complex systems, such as BECs, nonlinear optical fibers, etc., usually involve more than one com-
ponent25. Recently, some problems are extended to RWs in two-component systems25–28, and some new struc-
tures(bright-dark RWs) have been presented numerically27 and analytically28. Moreover, it is found that two RWs 
can emerge in the coupled system which is quite distinct from the high-order RWs in a one-component system28. 
In the two-component system, the interaction between a RW and other nonlinear waves is also a hot topic27, 28. 
The various approximations are also employed to study the solitons such as bright and dark solitons in the F = 1 
spinor BECs in ref. 25.
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On the other hand, some methods are proposed to solve the nonlinear partial differential equations (PDEs) 
in refs 29–31, e.g., the Darboux transformation(DT)32, inverse scattering transformation33, Bäcklund transfor-
mation (BT)34, 35, Painlevé test36 and Hirota method37. Among those methods, the BT can also be used to obtain 
a nontrivial solution from a seed solution in refs 37, 38. In recently, some important scientific studies of rational 
solutions and lump solutions in soliton equations are derived. An explicit formulation of a 2n-dimensional Lax 
integrable system is established with Darboux transformation by Ma in ref. 39, which contains some rational and 
analytic solutions. In ref. 40, Ma and You present a recursive procedure for constructing rational solutions of the 
Toda lattice equation through the Casoratian formulation, and obtain directly a broad class of rational solutions. 
Three ansätze transformations are used to construct exact solutions of NLS equation in ref. 41, and a more gen-
eralized rational solution including Ma soliton is presented. Ma, Zhou and Dougherty study systematically the 
lump-type solutions of nonlinear differential equations based on bilinear forms or generalized bilinear forms in 
ref. 42. The DT is a powerful method to construct the soliton solutions for the integrable equations. There are 
different methods to derive the DT, for instance the operator decomposition method, gauge transformation, 
loop group method and Riemann-Hilbert method. The DT can be used to construct multi-soliton and coherent 
structure solutions of nonlinear integrable equations in both (1 + 1) and (2 + 1) dimensions. Matveev and Salle 
consider some important applications on DT in solitons, and give rise to the transformation properties of the 
1-dimensional NLS equation in ref. 43. In ref. 44, the Darboux invariance of differential-difference evolution 
equation is defined and proved, some formulas involving determinants are applicable to an arbitrary initial solu-
tion of the Toda equation. Some applications of the DT method to study the reduced Maxwell-Bloch system and 
the self-induced transparency equations are considered, which systems describe the propagations of ultrashort 
opticas in ref. 45. The binary DT and the Zakharov-Shabat dressing method are considered for the Toda lattice 
equation by Babich, Matveev and Sail in ref. 46.

The rational dressing method was originally proposed in refs 47, 48 and developed in ref. 49. This method 
enables one to construct multi-soliton solutions and analyse soliton interactions in detail using basic knowledge 
of Linear Algebra. And, it allows one to apply the dressing method of Zakharov-Shabat-Mikhailov47–49 for cal-
culating their soliton solutions. Recently, Mikhailov et al. develop the dressing method to study the exact solu-
tions for the vector sine-Gordon equation50 and two-dimensional periodic Volterra system51. Some formulas for 
position shift of the kink and phase shifts of the breather are given. Especially, Mikhailov et al. propose a method 
for construction of Darboux transformations in ref. 52, which is a new development of the dressing method for 
Lax operators invariant under a reduction group. And they derive new vector Yang-Baxter map and integrable 
discrete vector sine-Gordon equation on a sphere.

In this work, extending the ideas in refs 38, 53–55, we further investigate a three-component coupled system 
with higher-order terms. The non-autonomous multi-rogue waves of the three-component coupled GP equation 
are reported by using the similarity transformation and Darboux transformation. Some structures with two peaks 
in bright rogue wave and dark rogue wave are found in the coupled system, which are quite distinct from the 
well-known shapes one presented before. Furthermore, we construct some new explicit solutions, which can be 
used to describe the dynamics of non-autonomous RWs, and discuss the managements by external potentials in 
BECs and nonlinear optics.

Results
Similarity reduction for the three-component coupled GP equation. It is well-known that the cou-
pled GP equation is often used to describe the interactions among the modes in nonlinear optics, components in 
BEC, etc. We consider the three-component coupled GP equation with variable coefficients, which can be written 
as following
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where Ψj = Ψj(x, t)(j = +1, 0, −1), ∂ = ∂/∂x, x is the propagation variable and t is the transverse variable. The Vj(t) 
and Dj(t)(j = +1, 0, −1) represent the group-velocity dispersion and the third-order dispersion, respectively. The 
parameters Aj(t) and Bj(t) are related to the self-steepenings, Cj(t) is the nonlinearity parameter, and the gain/
loss coefficient Γj(t) is real-valued function of time. One is the nonlinear density-density interaction which is 
associated with the c0 term, while the other is the spin-exchange coupling between the hyper fine states, which is 
associated with the c2 term.

We search for a similarity transformation connecting solutions of Eq. (1) with the 3-component coupled 
nonlinear schrödinger(CNLS) equation. The CNLS equation in a dimensionless form56, 57 is given as following
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the physical fields Φi(η, τ)(i = ±1, 0) are functions of the variables η = η(x, t) and τ = τ(t). The c0 and c2 are the 
mean-field and the spin-exchange interaction, and π= −c h a a M4 ( )/(3 )2

2
2 0  is the spin-exchange interaction, 

which is ferromagnetic if c 02 <  (as 87Rb) and anti-ferromagnetic if c 02 >  (as 23Na). The energy is in units of cn  
with n being the average particle density. Here a0 and a2 denote the s-wave scattering lengths of the total spin-0 
and spin-2 channels, respectively.

It has been reported that solitons could collide inelastically, and there are shape-changing collisions for a cou-
pled system, which is different from an uncoupled system13. However, it is not possible to study a vector RWs with 
a trivial background, we will solve Eq. (2) with the nontrivial seed solutions

According to the ansatz methods38, 53, 54, 58–60, we search for the solutions of physical fields
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with ρ(t) and ϕ(x, t) are the real-value functions of the indicated variables. The ansatz(3) can construct the rela-
tions between Eq. (1) and Eq. (2). And, we substitute the transformation (3) into Eq. (1) and get the following 
systems:
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We solve ηxx = 0, and obtain the functions η(x, t), ϕ(x, t) and ρm(t). If the function τ(t) is given, the functions 
Am(t), Bm(t), Cm(t) and Dm(t) can be expressed. Thus, we can establish a correspondence between selected solu-
tions of Eq. (1) and CNLS Eq. (2). In particular, we can obtain some non-autonomous multi-rogue wave solutions 
of Eq. (1).

Solving Eq. (4a), we get the similarity variables η(x, t) and τ(t) in the forms
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and obtain the function ρm(t), the phase ϕ(x, t) and external potential Vm(x, t) in the following forms

∫ρ ρ= Γt e( ) , (7a)m
s ds

0
( )

t

0

x t t x ab t
t

x d( , ) 1
2

(ln ( )) ( )
( )

,
(7b)m t

t2ϕ α
α

= − − +

V x t t x ab t
t

x t x ab t
t

( , ) 1
2

(ln ( )) ( )
( )

1
2

(ln ( )) ( )
( )

,
(7c)

m tt
t

t
t

t2
2

α
α

α
α

= − −










+




− −






where the d and ρ0 are constants.
We substitute Eqs (5, 6) and (7) into the ansatz (3) and prove the following result:
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We choose the different parameters ρm0, a, c, d and the different functions α(t), γ(t), b(t), the Figs 1 and 2 
depict the profiles of ρ(t), η(x, t), ϕ(x, t) and the external potential V(x, t) in Eqs (5) and (7). We present the quad-
ratic external potential in Fig. 2(d).

New rational solutions with arbitrary constants for CNLS equation. The rational solutions are con-
sidered in many works, such as the “Ma solitons” (MS) are presented in ref. 6, the “Akhmediev breathers” (ABs) 
are found in refs 7–9. Thus, the studies of rational solutions are of fundamental importance. They may resolve the 
mystery of rogue waves in the ocean and help in creating useful rogue waves in optical fibers. We take the gener-
alized Darboux transformation(GDT) technique to construct the new rational solutions with arbitrary constants 
for the CNLS Eq. (2).

We consider the system with the coupling constants c0 = c2 = −c < 0, Φ → (Φ+1, 2 0Φ , Φ−1)T, Eq. (2) becomes 
as following

∂ + ∂ + =τ η
+i QQ Q Q Q2 0, (9)

2

where Q 1 0

0 1
=





Φ Φ
Φ Φ






+

−

 and the “+” denotes the conjugate transpose, Eq. (9) is a completely integrable system. In 

ref. 61, a soliton hierarchy of multicomponent NLS equation is generated from an arbitrary order matrix spectral 
problem, which has a multicomponent Lax pairs. In this section, we consider the 3-component Lax pairs, which 
is similar to the multicomponent Lax pairs with m = 3 in ref. 61. We here aim to develop the GDT for Eq. (9) with 
the respective Lax pairs.

The Lax pairs U and V are presented as following

λ λ λ= + = + +i i iU J P V J P W, 2 2 , (10)2

with

Figure 1. The functions ρ(t), η(x, t), ϕ(x, t) and external potential V(x, t). (a) The nonlinearity ρ(t) is given by 
Eq. (7) with Γ(t) = sin(t)cos(t), ρ0 = 1. (b) The η(x, t) is given by Eq. (5) with α(t) = sin(t), b(t) = cos(t), a = 1, 
c = 1. (c) The function ϕ(x, t) is given by Eq. (7) with α(t) = sin(t), b(t) = cos(t), d = 1. (d) The external potential 
V(x, t) is given by Eq. (7) with α(t) = sin(t), b(t) = cos(t).
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with dependent variables rpq(η, τ), spq(η, τ)(p, q = 1, 2) and λ is the spectral parameter.
Considering a linear system as following:

Ψ Ψ Ψ Ψ= =η τU , V , (12)

from the system (12) and the condition of compatibility

Ψ Ψ=ητ τη,

we can get the CNLS Eq. (2).
Based on the Lax pairs (12) and introducing a transformation in the form

Figure 2. The functions ρ(t), η(x, t), ϕ(x, t) and external potential V(x, t). (a) The nonlinearity ρ(t) is 
given by Eq. (7) with Γ(t) = dn(t, k), ρ0 = 1, k = 0.6. (b) The η(x, t) is given by Eq. (5) with α(t) = 0.1dn(t, 
k), b(t) = 0.5cos(t), a = 1, c = 1, k = 0.6. (c) The function ϕ(x, t) is given by Eq. (7) with α(t) = 0.1dn(t, k), 
b(t) = 0.5cos(t), d = 1, k = 0.6. (d) The external potential V(x, t) is given by Eq. (7) with α(t) = 0.1dn(t, k), 
b(t) = 0.5cos(t), k = 0.6.
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The Darboux transformation for Eq. (9) takes from P1 as following

Q Q 2( )( ) , (16)1 2 1
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1 1⁎ ⁎ ⁎λ λ= + + Ψ Ψ + Ψ Ψ− − −

it should be noted that S* = S implies the above-mentioned property ⁎Q Q1 1= +. From Eqs (12) and (16), it can be 
deduced that Eq. (16) generates a new solution Q1 for Eq. (9) once a seed solution Q is known. In particular, a 
one-soliton solution can be generated if the seed is a trivial (zero) state. If, taking Q1 as the new seed solution, one 
can derive from Eq. (16) the corresponding two-soliton solution. This can be continued as a recursion procedure 
generating multi-soliton solutions.

According to Eqs (11) and (12), the following large set of linear equations is presented, which contains 16 
linear equations of rpq(η, τ), spq(η, τ)(p, q = 1, 2) as following
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where the 16 linear equations in Eqs (17) and (18) are given in the Appendix A of Supplementary information, 
and φ φ φ φ φ φ= = =− −

⁎ ⁎ ⁎, ,10 0 11 1 11 1 . Eqs (12, 17) and (18) establish a one-to-one correspondence between the 

solution 1

2





Ψ
Ψ





 of the CNLS equation and the solution of the linear system (12).

Noting that Q1 in Darboux transformation Eq. (16) should be a symmetric matrix, we require

= = .r r s s, (19)21 12 21 12

Inserting Eq. (16) into the linear system of Eq. (12), we obtain the following compatible conditions:
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We choose a “seed solution” ( )Q e1 1
1 1

i
0

4=
−

τ and use the GDT to obtain the higher order rational solutions 
for the 3-component CNLS equation.

Our next step is to find two linear functions rij(η, τ) and sij(η, τ) that make system (12) compatible with 
Q = Q0. The GDT scheme gives rise to

→ → → → → .r r s s r r s sQ Q Q Q( [1], [1], [1], [1]) ( [2], [2], [2], [2]) (21)0 11 22 11 22 1 11 22 11 22 2 3

We solve the linear functions r11[1], r22[1], s11[1] and s22[1] in the scheme by directly solving the linear set of 
Eqs (17) and (18) with Q0, the first-order solutions for Q1 are given as following
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with the functions D1, G1, G0 and G−1 in Eqs (22–24) are given in the Appendix B of Supplementary information. 
The solutions(22), (23) and (24) include the arbitrary real constants c1, c2, c3 and c4.

Specifically, the first-order solutions for Q1 with four arbitrary constants c1 = 1, c2 = 0, c3 = 1 and c4 = 0 are 
given as following
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with the functions D1, G1, G0 and G−1 in Eqs (25–27) are given in the Appendix C of Supplementary information.
It is easy to see that the rational-like solutions (25)–(27) are different from the known rational solutions of 

the CNLS Eq. 56, since it contains four parameters, which will generate abundant structures related to the optical 
rogue waves in Fig. 3.

Figure 4 gives the plots of the functions |φ1|2, |φ0|2 and |φ−1|2 on the central line t = 0, and it shows that the 
amplitudes are not symmetrical. The function |φ1|2 has two peaks. The higher peak has an approximate amplitude 

Figure 3. The first rational solution. (a) The first rational solution |Φ+1|2 of Eq. (25). (b) The first rational 
solution |Φ0|2 of Eq. (26). (c) The first rational solution |Φ−1|2 of Eq. (27).
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of 3.6179 and the lower one has an amplitude of 1.3672. The function |φ0|2 has four zeros and two peaks, whose 
peak amplitudes are close to the background amplitude. The function |φ−1|2 has different locations for peaks.

We search for the functions r11[2], r22[2], s11[2] and s22[2] in this scheme by directly solving the linear set of Eqs 
(17) and (18) with Q1 function at the previous step, the second-order solutions for Q2 with arbitrary constants are 
given. Specifically, the second-order solutions for Q2′  are shown in Fig. 5 as following (c1 = 1, c2 = 1, c3 = 1, c4 = 1),
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Figure 4. The amplitude of the first rogue wave solution. Plots of the amplitudes of the first rogue wave 
solutions |φ1|2, |φ0|2, |φ−1|2 in Eqs (25–27) on the central line t = 0.

Figure 5. The second rational solution. (a) The second rational solution |Φ+1| of Eq. (28). (b) The second 
rational solution |Φ0| of Eq. (29). (c) The second rational solution |Φ−1| of Eq. (30).
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It is clear that the rational-like solutions (28–30) are same to the rational solutions of the CNLS Eq. 56, the 
profile of the function φ0 has similar characteristics as the solution of the NLS equation except higher amplitude 
and location of zeros, while the profile of function φ−1 exhibits some interesting features different from the NLS 
equation. However, it is interesting that the profile of function φ+1 possesses a dark rogue wave role in Fig. 6.

Non-autonomous multi-rogue wave solution and management for Eq. (1). In the following 
section, we also suggest a mechanism to tame the non-autonomous rogue waves by manipulating the external 
potential. We consider the management and dynamic of the non-autonomous rogue wave under time-dependent 
quadratic potential. As two representative examples, we use the first order and second order rational solutions of 
the CNLS equation. Based on the similarity transformation(3) and the rational solutions (25–27), we obtain the 
first-order non-autonomous rogue wave solutions of Eq. (1) in the forms

∫ρ η τΨ = Φ = ±αΓ + − − +α( )x t x t t e m( , ) [1] [1] ( ( , ), ( )) , 0, 1, (31)m m
s ds i t x x d

0
( ) (ln ( ))

t
t

abt t
t0

1
2

2 ( )
( )

with η(x, t) = α(t)x + ab(t) + c and ∫τ α=t s ds( ) ( )t

0
2 . We choose the free functions α(t), b(t), Γ(t) of time t, the 

Fig. 7 depicts the dynamical behaviors of the rogue wave solutions(31). Where α(t) can be associated with the 
inverse of the pulse width, b(t) represents the position of its center of mass, and c is a free constant.

To manipulate the rogue wave under the quadratic potential, we choose the arbitrary functions 
α(t) = sin(t), b(t) = cos(t), a = 1, c = 1 in Eq. (31) and derive the non-autonomous rogue wave solutions for the 
three-component GP equation in Fig. 7. According to Fig. 7(a–c), we find that the modulation of the amplitude 
function Γ(t) affects only the location of the peak. The peak of the pulse is obtained at t = 0. The higher peak has 
an approximate amplitude of 15.51 and the lower one has an amplitude of 1.26.

We use the second order rational solutions(28)–(30) of Eq. (2). As a result, we obtain the second-order 
non-autonomous rogue wave solutions of Eq. (1) in the forms

x t x t t e m( , ) [2] [2] ( ( , ), ( )) , 0, 1, (32)m m
s ds i t x

ab t
t

x d

0

( ) 1
2 (ln ( ))

( )
( )

t
t

t

0

2∫ρ η τΨ = Φ = ±
α

α
Γ +





− − +






with η(x, t) = α(t)x + ab(t) + c and ∫τ α=t s ds( ) ( )t

0
2 . If we choose different free functions α(t), b(t), Γ(t), the 

Fig. 8 depicts the dynamical behaviors of the multi-rogue wave solutions(32) with different parameters.

Figure 6. The amplitude of the second rogue wave solution. Plots of the amplitudes of the second rogue wave 
solutions |φ1|2, |φ0|2, |φ−1|2 in Eqs (28–30) on the central line t = 0.



www.nature.com/scientificreports/

1 0Scientific REPORts | 7: 10638  | DOI:10.1038/s41598-017-10205-4

Figure 8 shows that their interactions and the peaks of the pulse at t = 0 in the three-component GP equation. 
The higher peak has an approximate amplitude of 2000, and the lower one has an amplitude of 2.26. In Fig. 8(a–c), 
the functions η(x, t) and τ(t) affect the wave shapes of peak. As a specific example, we consider the case of an 
oscillating harmonic potential of α(t). The peak intensity of the non-autonomous rogue wave soliton is located at 
t = 0. The background is obtained in the large t-limit. Noting that while α(t) is bounded, the integral ρ(t) is not 
bounded in the large t-limit, the background intensity will be given by ρ ∫ Γe s ds

0
( )t

0 . This may be useful to generate 
novel experimental results.

Based on Eqs (31) and (32), we find that the function ϕ(x, t) appears only in the phase factor, and it dose not 
effect on the property of the rogue wave and its location. We point out the importance of the two arbitrary func-
tions α(t) and b(t) in Eqs (31) and (32), the α(t) can be associated with the inverse of the pulse width, the b(t) 
represents the position of its center of mass.

Figures 7 and 8 show such a non-autonomous multi-rogue wave solution as a result of an oscillating quadratic 
potential α= −V x t t x( , ) (ln ( ))m tt

1
2

2 − 
α( ) xab t

t t

( )
( )
t  + ( )t x(ln ( ))t

ab t
t

1
2

( )
( )

2
tα− −

α
. Fast oscillations with t e( ) s ds

0
( )t

0ρ ρ= ∫ Γ  

show that the non-autonomous rogue wave retrieves back its density profile for the inhomogeneous case, apart from 
some small amplitude fringes. They show such a focused multi-rogue wave soliton as a result of an oscillating quadratic 
potential. The non-autonomous multi-rogue wave solutions possess arbitrary functions, which are possible to control 
the rogue waves. The non-autonomous multi-rogue wave solutions (31) and (32) of Eq. (1) are localized both in time 
and in space and reveal the usual “rogue wave” features. We choose different free functions and parameters, the Figs 7 
and 8 depict the different dynamical behaviors of the rogue waves.

Figure 7. The first-order non-autonomous rogue wave. (a) The first-order non-autonomous rogue wave 
solution |Ψ+1|2 of Eq. (31) with Eq. (25), Γ(t) = 0.02cost, ρ0 = 1, α(t) = sin(t), b(t) = cos(t), a = 1, c = 1. (b) 
The first-order non-autonomous rogue wave solution |Ψ0|2 of Eq. (31) with Eq. (26), Γ(t) = 0.8cost, ρ0 = 1, 
α(t) = sin(t), b(t) = cos(t), a = 1, c = 1. (c) The first-order non-autonomous rogue wave solution |Ψ−1|2 of Eq. 
(31) with Eq. (27), Γ(t) = 0.02cost, ρ0 = 1, α(t) = sin(t), b(t) = cos(t), a = 1, c = 1.

Figure 8. The second order non-autonomous rogue wave. (a) The second order non-autonomous rogue wave 
solution |Ψ+1|2 of Eq. (32) with Eq. (28), Γ(t) = 0.02cost, ρ0 = 1, α(t) = sin(t), b(t) = cos(t), a = 1, c = 1. (b) The 
second order non-autonomous rogue wave |Ψ0|2 of Eq. (32) with Eq. (29), Γ(t) = 0.5cost, ρ0 = 1, α(t) = sin(t), 
b(t) = cos(t), a = 1, c = 1. (c) The second order non-autonomous rogue wave solution |Ψ−1|2 of Eq. (32) with Eq. 
(30), Γ(t) = 2.5cost, ρ0 = 1, α(t) = sin(t), b(t) = cos(t), a = 1, c = 1.
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These figures of the non-autonomous multi-rogue wave solutions (31) and (32) are different from the known 
rational solutions of the higher-order NLS equation55, 56, 58, and may be useful to raise the possibility of relative 
experiments and potential applications for the rogue wave phenomena. It is noted that Eq. (32) can also describe 
the dynamics of non-autonomous matter-wave solitons in BECs, where the soliton management can be realized 
by adjusting the related control parameters via the technique Feshbach resonance. This may provide the way to 
design external potential and to control soliton in nonlinear systems.

Discussion
In this paper, we consider the effect of time-dependent quadratic potential on the structure and dynamic of rogue 
waves. We use the similarity reduction of the three-component coupled nonlinear GP equation to CNLS equa-
tion. We investigate some rogue wave solutions in a three component CNLS equation using the Darboux trans-
formation method. We find the external potential of quadratic and some novel spatial temporal structures for 
non-autonomous multi-rogue wave solutions in the coupled system. The coupled system can be used to describe 
three-component BECs, multi-mode optical transmission, and so on. We obtain some novel spatial temporal 
structures for single, double and triple vector RWs in the coupled system, our method can be applied to the F = 2 
spinor BECs. These obtained solutions can be used to describe the possible formation mechanisms for optical, 
oceanic and matter rogue wave phenomenon in optical fibre, the deep ocean and BECs, respectively.

Methods
New rational solutions by employing the Darboux transformation. It is well known that the 
Darboux transformation can apply directly to obtain the rogue wave solutions for the nonlinear evolution equa-
tions. We take the DT technique to construct the new rational solutions with arbitrary constants for the CNLS 
Eq. (2).

Now we recommend a gauge transformation T of the matrix NLS Eq. (9):

Ψ Ψ= =










∼ T T
T T
T T

, ,
(33)

11 12

21 22

and

Ψ Ψ= = +
∼ ∼

η η
−U U T TU T, ( ) , (34)

1

V V T TV T, ( ) (35)1Ψ Ψ= = + .
∼ ∼

τ τ
−

If the ∼U, V∼ and U, V have the same types, the system (33) is called Darboux transformation of the matrix NLS 
Eq. (9).

Let Ψ = (Ψ1, Ψ2)T, Φ = (Φ1, Φ2)T are two basic solutions of the systems (34) and (35), then we give the follow-
ing linear algebraic systems:

IA A M

A A M M
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1

where λj and νj (λi ≠ λj) should choose appropriate parameters, thus the determinants of coefficients for Eq. (45) 
are nonzero.

Defining a 4 × 4 matrix T, and T is of the form as following
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where N is a natural number, the I is an 2 × 2 unit matrix, the m n iA ( , 1, 2, 0)mn
i = ≥  are the 2 × 2 matrix func-

tions of x and t. Through calculations, we can obtain ΔT as following

∏ λ λ∆ = −
=

T ( ),
(39)j

N

j
1

2

which proves that λj (1 ≤ j ≤ 2N,) are 2N roots of ΔT. Based on these conditions, we will proof that the ∼U and V∼ 
have the same forms with U and V, respectively.
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Proposition 1. The matrix ∼U defined by (34) has the same type as U, that is,

λ

λ
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− −







∼
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∼
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I
U Q

Q
,

(40)
⁎

in which the transformation formulas between old and new potentials are shown on as following

Q Q A

Q Q A

2 ,

2 (41)
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= − .

∼

∼⁎ ⁎

The transformation (41) is used to get a DT of the spectral problem (34).

Proof. By assuming 
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=−
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λ λ
λ λ
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( ) ( )
( ) ( )

,
(42)

x
11 12

21 22

⁎

it is easy to verify that Bsl (1 ≤ s, l ≤ 2) are 2N-order or 2N + 1-order polynomials in λ.
Through some accurate calculations, λj (1 ≤ j ≤ 2) are the roots of Bsl (1 ≤ s, l ≤ 2). Thus, Eq. (42) has the fol-

lowing structure
⁎T TU T T C( ) ( ) ( ) (43)λ+ = ∆η

where
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and Cmn
k( )  (m, n = 1, 2, k = 0, 1) satisfy the functions without λ. The Eq. (43) is obtained as following

λ+ = .ηT TU C T( ) ( ) (45)

Through comparing the coefficients of λ in Eq. (45), we can obtain
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In the following section, we assume that the new matrix ∼U has the same type with U, which means that they 
have the same structures only Q and Q* of U transformed into Q∼ and ∼

⁎
Q  of U∼. After careful calculation, we com-

pare the ranks of λN, and get the objective equations as following:
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from Eqs (34) and (45), we know that U C( )λ=
∼ . The proof is completed.

Proposition 2. Under the transformation (41), the matrix V∼ defined by (35) has the same form as V, that is,
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λ λ
=







+ +

− + − −






.

∼
∼∼ ∼ ∼

∼ ∼ ∼ ∼
η

η

⁎

⁎ ⁎ ⁎
i I i i

i i i I i
V

QQ Q Q

Q Q Q Q

2 2

2 2 (48)

2

2

Proof. We assume the new matrix V∼ also has the same form with V. If we obtain the similar relations between Q, 
Q* and ∼ ∼⁎

Q Q,  in Eq. (41), we can prove that the gauge transformations under T turn the Lax pairs U, V into new 
Lax pairs ∼∼U V,  with the same types.

By assuming T−1 = T
T
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∆
 and

T TV T
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τ

it is easy to verify that Esl (1 ≤ s, l ≤ 2) are 2N + 1-order or 2N + 2-order polynomials in λ.
Through some calculations, λj (1 ≤ j ≤ 2) are the roots of Esl (1 ≤ s, l ≤ 2). Thus, Eq. (49) has the following 

structure

T TV T T F( ) ( ) ( ), (50)λ+ = ∆τ
⁎

where
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In the above section, we assume the new matrix ∼V has the same type with V, which means they have the same 
structures only Q and Q* of V transformed into Q∼ and 

⁎∼Q  of V∼. From Eqs (41) and (53), we know that V F( )λ=
∼ . 

The proof is completed.
The Propositions 1 and 2 show that the transformations (33) and (41) are Darboux transformations connect-

ing matrix NLS equation. In what follows, we can apply the above DT (41) to construct exact solutions of matrix 
NLS equation. Firstly, we give a set of seed solutions and substitute the solutions into Eqs (34) and (35), we will 
get the basic solutions for these equations:
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based on Eqs (56) and (57), we can obtain the following system
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the analytic soliton solutions of matrix NLS equation are obtained by the DT method(41) as following
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According to Eq. (61), we get
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Based on Eqs (61) and (62), we can obtain the following system
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(63)12

12

the analytic soliton solutions of matrix NLS Eq. (9) are obtained by n-th iteration of the DT as following

NQ Q A2 [ ] (64)n 0 12= − .
∼

We apply a simplify expression (16) from the n–th iteration of the DT (64) and choose a “seed solution” 

( )eQ 1 1
1 1

i
0

4=
−

τ , the higher order rational solutions for the 3-component CNLS equation are derived in 
Eqs (22–30).
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