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Abstract

Background: |-(+)-tartaric acid (L-TA) is an important organic acid, which is produced from the cream of tartar or
stereospecific hydrolysis of the cis-epoxysuccinate. The former method is limited by the availability of raw material
and the latter is dependent on the petrochemical material. Thus, new processes for the economical preparation of
L-TA from carbohydrate or renewable resource would be much more attractive. Production of 5-keto-D-gluconate
(5-KGA) from glucose by Gluconobacter oxydans is the first step to produce L-TA. The aim of this work is to enhance
5-KGA accumulation using combinatorial metabolic engineering strategies in G. oxydans. The sldAB gene, encoding
sorbitol dehydrogenase, was overexpressed in an industrial strain G. oxydans ZJU2 under a carefully selected
promoter, Pgig0. TO enhance the efficiency of the oxidation by sldAB, the coenzyme pyrrologuinoline quinone (PQQ)
and respiratory chain were engineered. Besides, the role in sIdAB overexpression, coenzyme and respiratory chain
engineering and their subsequent effects on 5-KGA production were investigated.

Results: An efficient, stable recombinant strain was constructed, whereas the 5-KGA production could be
enhanced. By self-overexpressing the sldAB gene in G. oxydans ZJU2 under the constitutive promoter Py;40, the
resulting strain, G. oxydans ZJU3, produced 12248 + 041 g/L of 5-KGA. Furthermore, through the coenzyme and
respiratory chain engineering, the titer and productivity of 5-KGA reached 144.52 +2.94 g/l and 2.26 g/(L-h),
respectively, in a 15 L fermenter. It could be further improved the 5-KGA titer by 12.10 % through the fed-batch
fermentation under the pH shift and dissolved oxygen tension (DOT) control condition, obtained 162 +2.12 g/L
with the productivity of 2.53 g/(L - h) within 64 h.

Conclusions: The 5-KGA production could be significantly enhanced with the combinatorial metabolic engineering
strategy in Gluconobacter strain, including sIdAB overexpression, coenzyme and respiratory chain engineering.
Fed-batch fermentation could further enlarge the positive effect and increase the 5-KGA production. All of these
demonstrated that the robust recombinant strain can efficiently produce 5-KGA in larger scale to fulfill the industrial
production of L-TA from 5-KGA.
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Background
L-(+)-tartaric acid (L-TA), an important naturally exist-
ing hydroxyl carboxylic acid, is mainly used as antioxi-
dant in food industry, as a chiral reagent in organic
synthesis, as an acidic reducing agent in the textile in-
dustry and in galvanochemistry [1-3]. It is also an alter-
native to citric acid as an acidulant in food additives for
its superior organoleptic properties [4]. Currently, the L-
TA that is commercially available is produced exclusively
through the stereospecific hydrolysis of cis-epoxysucci-
nate [5-7]. In this process, the reaction is catalyzed by the
cis-epoxysuccinate hydrolase from Rhodococcus rhodo-
chrous, Nocardia tartaricans, Corynebacterium sp. or
Pseudomonas sp. [7]. However, cis-epoxysuccinate is de-
rived from petrochemical-based precursor maleic anhyd-
ride, and this limits the production of L-TA. Therefore,
development of the sustainable alternative solution for L-
TA manufacture has recently attracted increasing attention.
A promising route has been employed for the pro-
duction of L-TA by sequential whole-cell catalyzed
oxidation and chemical catalysis, in which the glucose
was first biologically converted to 5-keto-D-gluconate
(5-KGA) by Gluconobacter oxydans, then to L-TA in
the presence of ammonium vanadate as a trace elem-
ent [4, 8]. Thus, the strategy towards an efficient syn-
thetic route to L-TA was to optimize the enzymatic
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Through genomic analyses, the genome sequence of
G. oxydans 621H has been published, which leads to
new insights into its metabolic pathway [10]. The essen-
tial genetic elements related to 5-KGA metabolism have
been systematically identified (Fig. 1). The membrane-
bound glucose dehydrogenase (mGDH, GOX0265), a
quinoprotein  containing pyrroloquinoline quinone
(PQQ), oxidizes D-glucose to D-glucono-d-lactone,
which is subsequently converted to gluconic acid (GA)
spontaneously or by gluconolactonase [11-13]. GA can
be further oxidized to 5-KGA or 2-keto-D-gluconate
(2-KGA) by PQQ-dependent sorbitol dehydrogenase
(SLDH, GOX0854-0855) or FAD-dependent gluconate
2-dehydrogenase (GA2DH, GOX1230-1232), which
transfer electrons from glucose to the respiratory
chain ubiquinone and then to terminal ubiquinol oxi-
dases to generate the proton motive force [10, 14].
PQQ, heme ¢ or FAD serve as prosthetic groups [15,
16].

So far several attempts have been made to increase 5-
KGA production, such as overexpression of gluconate:
NADP 5-oxidoreductase [9], inactivation of GA2DH [3, 17]
and overexpression of SLDH [18, 19] and optimization of
the media conditions [20]. The highest yield achieved of 5-
KGA was 240-295 mM (about 60 g/L) in a batch fermenta-
tion over periods as long as 72 h with a productivity of

production of 5-KGA [4, 9]. 0.83 g/(L-h) [18]. However, the methods used are
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individual engineering approaches and the efficiency of 5-
KGA production was unsatisfactory, especially there was a
large amount of residual GA left at the end of the biotrans-
formation process.

In early work, we constructed the recombinant strain
G. oxydans ZJU2, in which the GOX1231 and GOX1081
genes were markerless deleted [21]. The engineering of
2-KGA and acetic acid metabolism pathway could en-
hanced the 5-KGA production, but the titer and prod-
uctivity of 5-KGA was unsatisfied. Hence, we set out to
develop an efficient Gluconobacter cell factory to facili-
tate 5-KGA biosynthesis using combinatorial strategies.
The sldAB gene, encoding the SLDH, was plasmid-based
overexpressed with a strong promoter, Pyi9 [22]. In-
spired by the mechanism from most of the Gluconobac-
ter, it is proposed that the cofactor PQQ and respiratory
chain engineering could be enhanced efficiency of the
membrane-bound quinoaproteins. As a result, the genes
involved with the PQQ cluster [23, 24] and terminal ubi-
quinol cytochrome boz oxidase [25] were fused expres-
sion. The related specific enzyme activity, H'/O ratio
and 5-KGA titer were investigated. Base on the pH shift
and dissolved oxygen tension (DOT) control, the robust
G. oxydans cells were more facilitated 5-KGA accumula-
tion by the fed-batch fermentation. This study repre-
sents combinatorial engineering approaches collectively
increased the titer of 5-KGA in the G. oxydans, which
can provide insights into devising engineering strategies
to improve the object production.
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Results and discussion

Promoter selection in G. oxydans strain

Increasing interest in Gluconobacter has led to investiga-
tions on strain improvement. The well characterized
promoter is a prerequisite to the understanding of gene
expression. So far, a few studies concerning the isolation
and characterization of G. oxydans promoters, such as
Po16o [22], Peuss [26], Poosa [27], and Poss, [27], have been
reported. However, which one is more suit for gene ex-
pression in G. oxydans is inconclusive. To select the ap-
propriate promoter for gene expression in G. oxydans,
we generated the different promoters in front of a gfp re-
port gene in a pBBRIMCS5 vector. The promoter activ-
ity was indirectly determined by measuring the whole
cell fluorescence intensity (RFU/ODggp). As shown in
Fig. 2, the RFU/ODgq presented a linear increase
with the cell growth until 24 h. Green fluorescent
protein (GFP) contains a fluorescent cyclic tri-peptide,
and oxygen is required for the final oxidation of the
mature, cyclized fluorophore of GFP [22]. For this
reason, the RFU was impacted by the level of the
DO, which explained that the RFU/ODggy, remained
stable after 24 h. However, among this four different
promoters, the cells expressing gfp under regulation
of Pyi169 promoter exhibited outstanding effect in the
G. oxydans. The observation elucidated that the Pg;g9
promoter was evidently recognized by G. oxydans and
could reliably drive heterologous gene expression in
G. oxydans.
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Enzyme activity and relative transcriptional level of sIdAB

overexpression strain

The glucose metabolism of the mutant G. oxydans ZJU2
strain showed the positive effect on the 5-KGA produc-
tion [21], but it remained low productivity of 5-KGA. To
boost the 5-KGA production, the sldAB gene was
plasmid-based overexpressed in G. oxydans ZJU2 under
the control of the selected Py169 promoter, generating G.
oxydans ZJU3. The enzyme activity of SLDH of G. oxy-
dans ZJU3 toward GA and the mRNA abundance of
sldAB were investigated (Table 1). The SLDH activity
was 2.55+0.04 U/mg protein, which was more 3-fold
higher than that of the reference strain. The sIdAB ex-
pression data obtained were normalized to the transcrip-
tional level of the 16S RNA. G. oxydans ZJU3 achieved
the relative transcriptional level of 4.12 +0.04, which
was 4-fold higher than those of the control. The results
showed that the specific enzyme activities and transcrip-
tion of the sldAB gene in G. oxydans could be markedly
enhanced by sldAB overexpressed under the control of
the selected Pg169 promoter. In the literature [26], the
stability and transcriptional level of the mRNA by
adding poly (A/T) tails at the 3’-UTR of the sIdAB were
discussed. It was revealed that an artificial poly (A/T)
tail was proposed to slow down the mRNA degradation
process in bacteria and the high s/dAB expression levels
were achieved. This well demonstrated the importance
of the mRNA stability on the gene expression, which
should be considered in our late study.

Batch fermentation by sIdAB overexpression strain

The batch fermentation by the recombinant G. oxydans
ZJU3 strain was performed on a 15 L agitation tank
under DOT rich condition. The results demonstrated
that all tested strains had the similar trend of glucose
consumption rate and cell growth (Fig. 3). The glucose
was rapidly oxidized and exhausted at 30 h, while about
130 £1.76 g/L of GA was accumulated over the same
time frame. The reference strain, G. oxydans ZJU2, accu-
mulated 82.48 + 1.10 g/L 5-KGA in the broth, but the re-
sidual GA was quite high at about 62.07+1.04 g/L
(Fig. 3a). In the fermentation process using recombinant
G. oxydans ZJU3, 122.48 + 0.41 g/L of 5-KGA with the
productivity of 1.92 g/(L-h) were obtained at 64 h

Table 1 Enzyme activities and relative transcriptional levels of
the membrane-bound SLDH in G. oxydans strains

Specific SLDH activity
(U/mg protein)

Strains Relative transcriptional

levels of sldAB gene

G. oxydans ZJU2 0.75+0.02 1.03+£0.02
G. oxydans ZJU2/ 074001 JrLe
PBB5-Poieo T
G. oxydans ZJU2/ 255+004

PBB5-Py;60-5IdAB
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(Fig. 3b). Compared with the reference strain, the titer of
5-KGA was increased 48.99 % and the residual GA was
24.95+ 0.76 g/L, decreased 59.80 %.

However, the DCW of the tested strains was about
3.58 +0.13 g/L, which was lower than other bacteria. In
recent study, DNA microarray analysis and "*C meta-
bolic flux analysis (**C -MFA) are used to characterize
the two growth phases of G. oxydans in the presence of
glucose [25]. In the first growth phase, 90 % of the glu-
cose is oxidized by the mGDH to GA, accompanied by
reasonable growth, high demand for oxygen and a low
formation of CO,. The onset of phase II results in re-
duced biomass and demand for oxygen while the GA
was oxidized in the periplasm to 5-KGA (Fig. 3). Thus,
only a small percentage of the carbon source is taken up
by cell, resulting in modest cell growth and poor cell
yield. G. oxydans IFO3293 and G. oxydans 621H cells
cultivated on glucose medium provids a cell yield of
0.09 g caw/g glucose [28, 29]. In comparison to these
values, E. coli reaches a value of 0.49 g cqw/g glucose [30],
and Bacillus subtilis reaches a yield of 0.32 g cqw/g glucose
[31]. In phase I and II, the cytoplasmic sugar catabolism
proceeded predominantly via the PPP, particularly in
phase II [28].

During the glucose metabolism by G. oxydans, the
mGDH and SLDH serve as the main enzymes, and PQQ
is the cofactor. The PQQ supplementation experiments
showed that the control strain G. oxydans ZJU2 was not
significantly influenced by the exogenous PQQ (Fig. 3c),
but the G. oxydans ZJU3 strain showed the respond to
PQQ supplementation in a similar manner, achieving
the highest 5-KGA production when the added PQQ
was up to 500 pg/L (Fig. 3d). A total of 131.92 + 2.11 g/L
of 5-KGA was produced by G. oxydans ZJU3. These re-
sults indicated that the addition of PQQ could enhance
the production of 5-KGA in the SLDH overexpression
strain, which was in agreement with a recent report that
the overexpression of PQQ-dependent dehydrogenases
could lead to imbalance between coenzyme PQQ level
and the corresponding quinoproteins [24].

Enhanced PQQ biosynthesis to improve 5-KGA production
To further augment the 5-KGA production, the PQQ
biosynthesis gene, pgqgABCDE, was engineered and the
biomass growth, PQQ concentration and 5-KGA pro-
duction were shown in Table 2. In G. oxydans ZJU4,
overexpression of pgqgABCDE gene cluster under the
control of Pyje9 promoter led to the excretion of 674.82
+4.12 pg/L of PQQ into the supernatant, which was en-
hanced by 383.53 % compared with that by the parent
strain while the 5-KGA concentration was 131.76 +
1.89 g/L, an increase of 7.58 %. This also confirmed the
results from the PQQ supplement experiment (Fig. 3)
that the coenzyme PQQ was the key factor driving the
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5-KGA production. In G. oxydans ZJU5, simultaneous
expression of the PQQ gene cluster and an associated
tldD gene produced 757.83 +2.43 pg/L of PQQ, which
was increased by 12.30 % compared with that from G.
oxydans ZJU4. These results were consistent with the lit-
erature finding that the t/dD gene was related to the
PQQ biosynthesis [32]. The 5-KGA production by G.
oxydans ZJU5 was 134.88 + 2.16 g/L. In addition, the cell
growth of G. oxydans ZJU5 was comparable to that of

G. oxydans ZJU4. This finding implied that t/dD gene
expression did not affect the cell growth.

Overexpression of metabolic pathways involving redox
reactions may lead to cofactor imbalances, thus impair-
ing the yield of products. Cofactor engineering ap-
proaches are often adopted to compensate for imbalance
of cofactors to improve product biosynthesis [33], for ex-
ample, manipulating the availability of intracellular
NADH [34] and NADPH [35]. In G. oxydans,

Table 2 Effects of overexpression pggABCDE cluster and tldD genes in G. oxydans strains

Strains Max. DCW PQQ concentration (ug/L) 5-KGA concentration (g/L)
(g/L)

G. oxydans ZJU3 358+0.13 139.56+1.87 12248 +041

G. oxydans ZJU3/pUCpr 339+ 0.09 13774+ 224 11889+ 1.28

G. oxydans ZJU3/pUCpr-T1 341+0.11 674.82+4.12 131.76 £1.89

G. oxydans ZJU3/pUCpr-T2 340+ 0.08 75783 +£243 13488+ 2.16
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quinoproteins and their cofactor PQQ can catalyze the
oxidation of substrates by PQQ regulated electron trans-
fer in the respiratory chain. However, the biosynthesis of
quinoproteins and their cofactor PQQ are usually inde-
pendent [24]. Therefore, the PQQ gene cluster was over-
expressed in Gluconobacter oxydans WSH-003 [23] and
Ketogulonigenium vulgare [24], which demonstrated to
improve 2-keto-L-gulonic acid (2-KLG) production by
cofactor engineering. These advance significantly facili-
tated the development of the efficient strains to produce
5-KGA.

Notably, it was reported that disruption of t/dD gene
in G. oxydans led to a drop of PQQ excretion below the
detection limit and a decrease in cell growth, indicating
that the related t/dD gene was essential for PQQ biosyn-
thesis [32]. The TldD protein of G. oxydans 621H, re-
lated to the E. coli TldD, is a peptidase involved in
processing of small peptides. In other PQQ-producing
bacteria, the peptidase-like protein PqqF is required for
PQQ synthesis and has a similar function as the TldD in
G. oxydans [32]. Therefore, our study demonstrated that
overexpression of the tldD gene could increase PQQ
level by 12.30 % in G. oxydans ZJU5 compared with that
of G. oxydans ZJU4 (Table 2). This cofactor engineering
was adopted to compensate the shortage of cofactors in
the PQQ-dependent SLDH overexpression strain and to
improve the 5-KGA production.
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The engineering of the respiratory chain

In an earlier study, the cytochrome bo; oxidase
(cyoBACD, GOX1911-1914) was found to be the main
component for proton extrusion via the respiratory
chain in G. oxydans 621H [25]. To enhance the respira-
tory chain activity and the 5-KGA production, the cyto-
chrome bos oxidase was engineered. The ¢yoBACD
genes were fused into the PQQ overexpression plasmid
(pUCpr-T1 and pUCpr-T2) under the Pyi69 promoter
control, generating pUCpr-T3 and pUCpr-T4. The cor-
responding plasmids were electrotransferred into G. oxy-
dans ZJU3, resulting in G. oxydans ZJU6 and G.
oxydans ZJU7, respectively.

The batch fermentations of G. oxydans ZJU4, G.
oxydans ZJU5, G. oxydans ZJU6, and G. oxydans ZJU7,
under an excess of oxygen, showed that all recombinant
G. oxydans strains reached their maximal OTR. The
time points of maximal OTR correlated with the time
points at which about 60 % glucose had been predomin-
antly oxidized to GA in the periplasm (Fig. 4). G. oxy-
dans ZJU4 and G. oxydans ZJU5 reached their maximal
OTR of 26.52 mmol/L-h and 29.85 mmol/L - h, respect-
ively at 19 h. After complete consumption of glucose,
the OTR decreased to 1.5 to 1.8 mmol/L - h. The specific
maximal CO, production rate (CTR) of both strains was
7.5 mmol/L - h at 32 h, then it began to decrease (Fig. 4a,
b). The CTR decreased below 5.0 mmol/L -h at 57 h for
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the G. oxydans ZJU5 strain, but it decreased below this
level at 60 h for G. oxydans ZJU4. This meant that the
tldD gene overexpression could increase the PQQ bio-
synthesis and the oxidation rate of SLDH. The situations
of G. oxydans ZJU6 and G. oxydans ZJU7 were remark-
able different with those of G. oxydans ZJU4 and G. oxy-
dans ZJU5, where 141.86 + 2.89 g/L and 144.52 +2.94 g/
L 5-KGA was accumulated, respectively. The glucose
oxidation rate was accelerated, and glucose was
exhausted at 20 h. The maximal OTR of 35.83 mmol/L -
h and 38.97 mmol/L - h were achieved at 11 h, respect-
ively. After 22 h, the CTRs of ZJU6 and ZJU7 reached
the maximal values of 8.38 mmol/L-h and 8.98 mmol/
L-h, respectively. The CTR of G. oxydans ZJU7 de-
creased to 0.5 mmol/L-h at 47 h, which was 13 h and
3 h short than those of G. oxydans ZJU5 and G. oxydans
ZJUe6, respectively (Fig. 4c, d). This indicated that the
oxidation of GA to 5-KGA by G. oxydans ZJU7 had
completely finished at 47 h.

Using the constructed G. oxydans strains, the H'/O
ratio and terminal ubiquinol bo; oxidase activity were
also measured when the cells were in the logarithmic
growth phase (DCW of 1.5). The results were shown in
Table 3. The average H'/O ratio and terminal ubiquinol
oxidase activity of the control strain G. oxydans ZJU3
were 1.24 £ 0.11 and 0.31 £ 0.04 pmol/min - mg, respect-
ively. The G. oxydans ZJU4 and G. oxydans ZJU5 had an
H"/O ratio and terminal ubiquinol oxidase activity com-
parable to those of the control strain, implying the mu-
tant growth was not impaired under conditions of PQQ
cluster overexpression. However, the recombinant G.
oxydans ZJU6 and G. oxydans ZJU7 showed a 64 % in-
crease of the H*/O ratio (1.95 +0.23 and 2.01 + 0.16) and
1.5-fold of the ubiquinol oxidase activity (0.78 +
0.05 pmol/min - mg and 0.80 £ 0.06 pumol/min-mg) com-
pared with the control strain, respectively. A total of
141.86 £2.89 g/L and 144.52 £ 2.94 g/L 5-KGA was accu-
mulated by G. oxydans ZJU6 and G. oxydans ZJU7, re-
spectively. This indicated the expression of ubiquinol bo;
oxidase could enhance respiratory proton translocation
and increase the 5-KGA production in G. oxydans.

G. oxydans possesses a branched respiratory chain con-
sisting of two terminal ubiquinol oxidases, cytochrome
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bos oxidase and cytochrome bd oxidase (cydAB,
GOX0278-0279) (Fig. 1). The genome sequence also re-
vealed genes for a cytochrome bc; complex (grcABC,
GOX0565-0567) and a soluble cytochrome ¢ (GOX0258)
[10]. The absence of cytochrome bd oxidase did not affect
the cell growth or proton extrusion via the respiratory
chain, whereas absence of the genes encoding cytochrome
boz oxidase caused a severe growth defect [25]. Plasmid-
based overproduction of cytochrome bo; oxidase under
the Pgieo promoter control increased the respiration-
driven proton extrusion by 66.7 % in G. oxydans ZJU6
and G. oxydans ZJU7, compared with the control strains
(Table 3). The increase in the H*/O ratio might be owing
to the presence of more bos quinol oxidase and its pro-
posed high oxygen affinity, which should favor oxygen re-
duction under the experimental conditions of an oxygen
pulse [25]. The H'/O ratio for the reference strain, G. oxy-
dans ZJU3, was measured as 1.21 + 0.11. In the literature,
H"/O ratios reported for E. coli vary between 3.4 and 4.5
[36, 37], which was more than 2-fold higher than that of
the G. oxydans ZJU3 strain. A major difference of the re-
spiratory chain between the two species is the lack of the
multisubunit proton-pumping NADH dehydrogenase I
(NDH-I) in the G. oxydans [10, 25]. However, NDH-I is
preferentially synthesized during anaerobic growth in
the presence of alternate electron acceptors [38].
Therefore, what extent NDH-I contributes to the H
*/O ratio is unclear. As the bd oxidase was not rele-
vant for proton translocation, an H*/O ration of 4
might be assumed for G. oxydans [39]. However, our
results were much lower than a value of 4. Richhardt
explained that cytochrome bo; oxidase might not
function as a primary proton pump but as a Na'
pump and the respiratory chain could involve a
reverse electron transfer coupled to an influx of
protons [25].

Interestingly, an increased 15.48 % cell yield was ob-
served when the bo; oxidase gene was overexpressed
(Fig. 4 g, h). The possibility of an increased bos oxidase
level in G. oxydans could cause a shift of the electron
flux from the non-proton pumping bd oxidase to the
proton pumping boz oxidase [25]. Another explanation
for the increased cell growth is the assumption that the

Table 3 H'/O ratio and ubiquinol oxidase activity of recombinant G. oxydans strains

Strains H*/O ratio” Ubiquinol oxidase activity 5-KGA
(No. of experiments) (Mmol/min - mg) production
(9/1)

G. oxydans 7JU3 121+£0.11 (8) 0.31+0.04 12248 +041
G. oxydans ZJU4 1.19+0.10 (8) 0.32+0.05 131.76 +1.89
G. oxydans ZJU5 120+0.11 (8) 0.30+0.11 13488+ 2.16
G. oxydans 7JU6 1.95+0.23 (8) 0.78 +£0.05 141.86 +2.89
G. oxydans ZJU7 201+0.16 (8) 0.80+0.06 144.52 + 294

“the H*/O measured by the oxygen pulse method
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activity of the bos oxidase is limited and can be in-
creased by its overproduction. This was confirmed in
the experiments that the ubiquinol oxidase activity in-
creased 2.5-fold (Table 3) and the OTR enhanced
9.12 mmol/L-h (Fig. 4) by overexpressed the ¢yoBACD
genes, indicating that cytochrome bo3 quinol oxidase
played the positive role in the cell growth and substrate
oxidation. Recently, a limitation of oxygen consumption
by the activity of the terminal oxidase was reported after
overexpressing the membrane-bound glucose dehydro-
genase (mMGDH, GOXO0265) [40]. This implied that the
activity of bos quinol oxidase might be high enough to
satisfy the increased capacity for oxygen reduction.
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Process optimization and fed-batch fermentation

The constructed G. oxydans ZJU7 showed good poten-
tial for 5-KGA production. To fulfill the requirement of
industrial production of 5-KGA, the fermentation
process was optimized, including the two-stage pH con-
trol, DO control and glucose feed. As shown in Fig. 5a,
the glucose was oxidized faster and exhausted at 14 h
when the pH was controlled at 5.5. This result was con-
sistent with the previous results where a pH of 5.5 was
suitable for the activity of membrane-bound glucose de-
hydrogenase [41]. However, a pH of 4.5 was more suit-
able for synthesis of 5-KGA by SLDH. In the early study,
the pH of the culture medium was an important factor
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for selective production of 5-KGA by G. suboxydans IFO
12528, in which an 87 % glucose conversion rate could
be achieved by controlling the medium pH in a range of
3.5-4.0 [20]. According to the experimental results, we
have established a two-stage pH control strategy,
whereas the pH is controlled as 5.5 in the first stage to
let the glucose oxidation and cell growth, then it is
shifted to 4.5, facilitating 5-KGA formation.

In its natural habitat, G. oxydans is likely subjected to
low-oxygen stress conditions because of the rapid oxy-
gen consumption as a result of its own metabolism. The
OTR and CTR were previously investigated during the
5-KGA production, in which the high OTR was ob-
served when the glucose was oxidized to GA in the peri-
plasm (Fig. 4a, b, ¢, d). It was reported that oxygen
limitation could cause expression changes of 486 genes,
representing 20 % of the chromosomal genes [42]. There-
fore, during this stage, it must ensure the adequate DOT
above 20 % by increasing the agitation speed. The onset of
5-KGA formation decreased the demand for DOT but in-
creased the CTR (Fig. 4a, b, ¢, d). Hence, to improve the
cost performance of the industrial production of 5-KGA,
DOT was continuously controlled by adjusting the agita-
tion speed according to OTR and CTR.

Additionally, to achieve the hyper-production of 5-KGA
by the recombinant G. oxydans ZJU7 strain, the glucose
fed-batch fermentation was carried out under the DOT and
pH control. A glucose feed of about 1400 g was started at
12 h when the glucose concentration was below 40 g/L and
was used to maintain the glucose at 40 ~ 50 g/L (Fig. 5b).
The GA quickly accumulated during this stage. When the
glucose concentration dropped to 14 g/L at 28 h, the 5-
KGA began to quickly be formed and the pH shifted from
5.5 to 4.5. Concurrently, the DOT was controlled above
20 %. Using glucose fed-batch fermentation, DOT control,
and a pH shift strategy, the 5-KGA titer was increased to
162 +2.12 g/L with the 2.53 g/(L - h) productivity by the re-
combinant G. oxydans ZJU7 strain, which was increased by
10-fold compared to the wild-type strain (Fig. 5¢). This in-
dicated that the PQQ overexpression and respiratory chain
modification could efficiently enhance 5-KGA accumula-
tion. Furthermore, the problem of residual GA was well
solved, and the final concentration of GA was reduced to
15.38 g/L, which should decrease the separation difficulty.
These results illustrated that the supplement of co-enzyme
to the membrane-bound dehydrogenases was increased by
overexpression of the PQQ cluster genes. The efficiency of
electron transfer to O, was enhanced by overexpression of
the genes for the bos oxidase, which increased the activity
of respiratory chain.

Conclusion
Bacteria of the genus Gluconobacter exhibit so-called
oxidative fermentation, or incomplete oxidation, a highly
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unusual metabolic feature that has been exploited indus-
trially for decades in the production of vitamin C, GA
and dihydroxyacetone [43]. In this study, the role of the
combinatorial metabolic engineering of the industrial G.
oxydans for the boosting of 5-KGA accumulation was
investigated. In summary, the sldAB was overexpressed
under the selected P69 promoter. In addition, the PQQ
gene cluster and terminal ubiquinol bo; oxidase were
fused overexpression to strengthen the glucose oxida-
tion. Under the optimized culture conditions of the fed-
batch process, the combinatorial approaches collectively
increased the 5-KGA titer 10-fold, reached 162 +2.12 g/
L. The results showed great potential for optimizing the
current producer strain of G. oxydans used in industrial
biotechnology, which presents the first report of 5-KGA
production by combinatorial metabolic engineering
approaches in G. oxydans. We envision that these
approaches could provide framework for devising engin-
eering strategies to improve the production of biochemi-
cals in G. oxydans. Nevertheless, some issues are still
worth further study, for example, how many copies of
pqq cluster and bos oxidase genes overexpression can be
matched the quinoproteins requirements, especially in
the quinoproteins overexpression strains. The genome
sequence has revealed that the TCA cycle is incomplete
as genes for succinate dehydrogenase and succinyl CoA
synthetase were absent [10]. To develop more robust
strains, the strategy involving direct repair of this defect-
ive metabolic pathway by genomic integration of heter-
ologous genes should be investigated, while considering
the G. oxydans as a broadly applicable host for oxidative
industrial bioconversions.

Methods

Bacterial strains, plasmids, and media

The bacterial strains, and plasmids used in this study are
listed in Table 4. Escherichia coli strains were cultivated
in Luria—Bertani (LB) medium at 37 °C. The 50 pug/mL
gentamicin or 100 pg/mL ampicillin were used whenever
required. Agar (1.5 %) was added to obtain solid media.
Gluconobacter oxydans DSM2343 strains were cultivated
on mannitol medium (MP) containing 5 g/L yeast ex-
tract, 3 g/L peptone, and 25 g/L mannitol at 30 °C. For
G. oxydans possesses a natural resistance against cefoxi-
tin, thus, as a precaution to prevent bacterial contamin-
ation, 50 pg/mL cefoxitin was added.

Construction of shuttle vector

A shuttle vector pUCpr, compatible to the broad-host-
plasmid pBBRIMCS5, was constructed. The 2446-bp
par-rep gene fragment of cryptic plasmid pGOX3 from
G. oxydans DSM2343 was amplified with primers
pr_Pstl_F / pr_Sall_R (Table 5). The sequenced PCR
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Table 4 Bacterial strains and plasmids used in this work
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Properties Source

Strains

E. coli DH5a F~, endAl, hsdR17 (rk-mk-),supE44, thil, recA1, gyrA, (Nalr), Invitrogen
relA1, D(lacZYAargF), U169, and F80lacZDM15

G. oxydans DSM2343 Wild-type, Cef® DSMZ?

G. oxydans ZJU2 Gluconate 2-dehydrogenase and pyruvate decarboxylase [21]
deletion strain derived from G. oxydans DSM2343, Cef®

G. oxydans ZJU3 G. oxydans ZJU2 harboring pBB5-Pg;69-s/dAB, Cef®, Gm?® This work

G. oxydans ZJU4 G. oxydans ZJU3 harboring pUCpr-T1, Cef’, Gm®, Amp® This work

G. oxydans ZJU5 G. oxydans ZJU3 harboring pUCpr-T2, Cef®, Gm®, Amp® This work

G. oxydans 7JU6 G. oxydans ZJU3 harboring pUCpr-T3, Cef®, Gm®, Amp® This work

G. oxydans ZJU7 G. oxydans ZJU3 harboring pUCpr-T4, Cef®, Gm", Amp® This work

Plasmids

pUC19 Cloning vector, ColE1 ori, Amp® Invitrogen

pET28 (a)-GFP gpf gene expressed vector, Km® Laboratory

preservation

pBBRTMCS-5 Broad-host-range (bhr) expression vector, Gm"® [45]

PBB5-Piuss Insert Py promoter vector derived from pBBR1MCS-5, Gm® This work

PBB5-Pp2es Insert Poss promoter vector derived from pBBRTMCS-5, Gm” This work

pBB5-Possn Insert Pyys, promoter vector derived from pBBRTMCS-5, Gm® This work

PBB5-Py160 Insert Po;se promoter vector derived from pBBR1MCS-5, Gm® This work

PBB5-Pg69-SIdAB sIdAB gene overexpression vector derived from pBBR1MCS-5, This work
inserted Pg1go promoter, Gm°

pUCpr Constructed expression vector derived from pUC19, This work
par-rep, Amp"

pUCpr-T1 PUCPI-Po169-PGqABCDE vector derived from pUCpr, Amp? This work

pUCpr-T2 pUCPr-Po169-PGgABCDE-tIAD vector derived from pUCpr, Amp® This work

pUCpr-T3 pUCpr-Po169-pqqABCDE-Pg169-cyoBACD vector derived from This work
pUCpr, Amp"

pUCpr-T4 pUCPr-Py166-pqqABCDE-tIdD-P g 9-cyoBACD vector derived This work

from pUCpr, Amp"

?DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

product was digested and inserted into the Pstl/Sall site
of the pUC19, resulting in pUCpr [44].

Promoter selection

Four different promoters from G. oxydans DSM2343 were
carefully selected. A putative promoter sequence, Py;g9
[22], the promoter of elongation factor Tu, Py [26], and
ribosomal proteins L35 and L13, P4 and Poys, [27], were
amplified by PCR with primers as listed in Table 5. The
resulting DNA fragments Py, Posesr Posasz and Poie9 were
digested with restriction enzymes Sacl and Xbal, then
were ligated into pBBRIMCS-5 [45], generated the vector
pBB5-Pyyp, pBB5-Pgoss, pBB5-Pgysy and pBB5-Pyig0, re-
spectively. The report gene gfp was amplified from the
cloning vector pET28 (a)-GFP. The resulting product was
digested with Xbal and Hindlll, and then cloned into the
Xbal and Hindlll site of pBB5-Pyp pBB5-Pyass pBB5-

Po4s> and pBB5-Pyi69 to generate the corresponding pro-
moter strength reporter plasmids.

The reporter plasmids were first transformed into E. coli
DHb5aq, analyzed for the correct insert by DNA sequencing
and then transformed into G. oxydans DSM2343 by elec-
troporation (2000 V, 200 Q and 25 pF) in a 2-mm cuvette
using a Gene Pulser II (Bio-Rad, Miinchen, Germany) as
described previously [46]. The transformants were se-
lected by cefoxitin and gentamicin. The whole cell fluor-
escence intensity (RFU/OD, the relative fluorescence
unit divided by the corresponding cell density) was
measured [22]. Cells were harvested and washed twice
with KPB buffer (pH 7.0), and then photographed by
using a confocal laser scanning microscope. The cell
density was measured by the absorbance at 600 nm
using the spectrophotometer (UVmini-1240, SHI-
MADZU'), which determined the strengths of the dif-
ferent promoters.
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Table 5 The oligonucleotides primers used in this work
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Primer Sequence (5" — 3) Usage

pr_Pstl_F AACTGCAGgtttatcggccgttgaatat Amplify the par-rep gene
pr_Sall_R ACGCGTCGACggtgtttaaacagtgttacggt

0169_Sacl_F ATAGAGCTCtgaaagcggctggegegt Amplify the 5-UTR of GOX0169
0169_Xbal_R GCTCTAGAgcggaaggcgttataccctga promoter

0264_Sacl_F ATAGAGCTCgttgcgectgaatgagagg Amplify the 5-UTR of GOX0264
0264_Xbal_R GCTCTAGAttcggtctecctcgecgtaa promoter

0452_Sacl_F ATAGAGCTCggcttcgtggtgaacgcc Amplify the 5-UTR of GOX0452
0452_Xbal_R GCTCTAGAtagtgacattccagcttggg promoter

tufB_ Sacl_F ATAGAGCTCcgatggtaagaaatccactgc Amplify the tufB promoter
tufB_ Xbal_R ATATCTAGAccaaaaccccgctecace

GFP_Xbal_F ATATCTAGAatggtgagcaagggc Amplify the gfp reported gene
GFP_HindIll_R CCCAAGCTTctacttgtacagcte

SLDH_Xbal_F GCTCTAGAggactttcagttctggaggctttcacca Amplify the sIdAB gene
SLDH_EcoRI_R CGGAATTCtcccacccgaaaaatggaaaaaacqy

ADD_0169_F acactgtttaaacaccgtgaaagcggctggege Amplify the fuse fragments

pQQ_Fuse0169_R

acatccgcgeggaaggegttatac

pQQ_Fuse0169_F ccttccgegeggatgttcagg

tldD_FusepQQ_R ccggctagaagatggcectcte

tldD_FusepQQ_F gccatcttctagecggtctgttc

0169_FusetldD_R ctttcaggatcttcttcatg

0169_FusetldD_F tcgcgactgaaageggctgge

ADD_0169_R cggtacccggggatcctgcggaaggcgttatac

cyoBACD_Xbal_F CGATTCTAGAactactgcaagccggaacgg Amplify the terminal cytochrome
cyoBACD_Sacl_R ACTGGAGCTCaagggctggcaggatttcte bos oxidase
RT16S_F gcggttgttacagtcagatg -

RT16S_R gcctcagegtcagtatcg -

RTsldh_F atcatgccgaccaagegtgge -

RTsldh_R cgtcggcgaacgceggatcg -

“The capital and underlined sequences indicate the restriction enzyme sites

Overexpression of sIdAB gene in G. oxydans ZJU2

Based on the bioinformatics analysis of G. oxydans
621H genome sequence [10], SLDH_Xbal_F / SLDH_E-
coRI_R primers were designed and the open reading
frames (ORFs) of SLDH (sldAB, GOX0854-0855) was
PCR-amplified with the primers. The genomic DNA of
G. oxydans DSM 2343 was used as a template. The se-
quenced amplicon was digested with the restriction en-
donucleases Xbal and EcoRI and cloned into pBB5-
Po169 vector restricted with the same enzymes, resulting
in plasmids pBB5-Py149-sldAB. This plasmid and as a
control pBB5-P;¢9 vector were transferred into the de-
sired G. oxydans ZJU2 strain by electroporation and
were selected for a gentamycin-resistant phenotype.
The correct strain G. oxydans ZJU2/pBB5-Pg169-sIdAB
was named G. oxydans ZJU3.

Co-expression of the PQQ biosynthesis genes and the
terminal ubiquinol cytochrome bos oxidase genes in G.
oxydans ZJU3

In the oxidation process by the membrane-bound SLDH,
the PQQ serves as prosthetic groups [10, 15, 16], which
transfer electrons to the respiratory chain [10]. To
enhance the 5-KGA production, the genes encoding the
cofactor PQQ and the terminal ubiquinol cytochrome bo3
oxidase of the respiratory chain were reinforced. To fulfill
the experiments, the PQQ gene cluster (GOX0983-0987)
and the related t/dD gene (GOX1104) were cloned and
the generated plasmids pUCpr-T1 and pUCpr-T2. The
constructed plasmids were transferred into G. oxydans
ZJU3, resulting the recombinant strains G. oxydans ZJU4
and G. oxydans ZJU5, respectively. The PQQ and terminal
ubiquinol cytochrome bo; oxidase fused expression
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plasmid was constructed by the pEASY-Uni seamless clon-
ing and assembly kit CU101 (TransGen, China). The
PCR-amplified promoter Py;69, pgqgABCDE, and tidD were
cloned into the Xbal site of the shuttle vector pUCpr,
which resulted in the plasmid pUCpr-T1-Py69 and
pUCpr-T2-Py169. Then the c¢yoBACD (GOX1911-1914)
was inserted the Xbal and Kpnl site of pUCpr-T1-Py;69
and pUCpr-T2-Pyie0 to generate the fusion expressed
plasmid pUCpr-T3 and pUCpr-T4, respectively. After
verification of the accuracy of the plasmid by the sequen-
cing, the fusion plasmid was transferred in the recombin-
ant strain G. oxydans ZJU3 by electroporation [46] and
selected for a gentamycin-kanamycin resistant phenotype,
generated G. oxydans ZJU6 and G. oxydans ZJU7.

Measurements of enzyme activity and protein
concentration
For the purpose of preparation of the cell crude extract
and membrane fraction, a single colony of the G. oxy-
dans strain was pre-incubated in MP medium. The G.
oxydans cells were harvested by centrifugation (10,000 x
g, 5 min, 4 °C) and resuspended in 20 mL 50 mM so-
dium phosphate buffer (pH 6.0). The cells were dis-
rupted with an ultrasonifier (JY92-2D, Xinzhi, NingBo)
for 50 cycles (2000 w, 3 s sonication, 5 s pause) on ice.
The cell debris were removed by centrifugation at
5500 x g for 20 min at 4 °C and the supernatant was
used as the crude extract. For the preparation of mem-
branes, the supernatant was centrifuged for 60 min at
180,000 x g at 4 °C. The resulting sediments were col-
lected and resuspended into 50 mM sodium phosphate
buffer (pH 6.0), and used as the membrane fraction.
Enzyme activities were determined using a spectropho-
tometer  (Uvmini-1240 ~ SHIMADZU).  Substrate-
dependent changes of redox states of artificial electron ac-
ceptors (2, 6-dichlorophenolindophenol, DCPIP, Sigma)
were determined at 600 nm and 30 °C. The basal reaction
mixture contained 50 mM PBS pH 6.0, 0.25 mM DCPIP,
and 0.325 mM phenazine methosulphate (PMS, Sigma),
which was prepared and pre-warmed to 30 °C before the
assay. Measurements were performed in a cuvette with a
1-cm light path containing a 0.8-mL basal reaction mix-
ture and 10 pL enzyme pre-incubated at 30 °C for 5 min.
The reaction was started by adding 20 pL of a 2.0 M glu-
conate solution. One unit of enzyme activity (U) was
defined as the amount of enzyme that can catalyze the
conversion of 1 uM DCPIP per min at 30 °C. The concen-
tration of proteins was determined with the Pierce™ BCA
assay kit.

Quantitative real-time PCR (RT-PCR)

Cells were harvested at an ODgy of 2.5 at room
temperature and immediately frozen in liquid nitrogen.
Cells were then stored at —80 °C until RNA extraction.
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Total RNA was extracted with RNAiso™ Plus from
Takara (Dalian, China) and treated with RNase-free
DNase. Following chloroform extraction step, RNA was
precipitated with isopropanol and the pellet washed
twice in 75 % ethanol. After air-drying, RNA was resus-
pended in RNase-free water. The quantity of total RNA
was verified using an Eppendorf Biophotometer (Eppen-
dorf, Hamburg, Germany). The ¢cDNA was synthesized
from the total RNA using a PrimeScript RT Reagent Kit
(Perfect Real Time) (Takara) according to the manufac-
turer’s protocol. The products were quantified via real-
time PCR with StepOnePlus™ Real-Time PCR System
(Applied Biosystems, USA) using primer RTsldh_F/
RTsldh_R. The 16S rRNA gene was used as internal
standard based on the primer RT16S_F/RT16S_R.

Characterization of respiration activity and H*/O
measurements

Cultivation of G. oxydans strains was performed and the
respiration activity was measured by the exhaust gas
analysis system, such as the oxygen transfer rate (OTR),
carbon dioxide transfer rate (CTR). The number of H"
moved upon respiration (H'/O ratio) is principally im-
portant for the efficiency of cellular ATP production.
Hence the H*/O ratio of bacterial cells have been mea-
sured to evaluate the efficiency of the respiratory chain.
The H'/O and terminal ubiquinol oxidase activity were
measured using a method previously reported in the
literature [36].

Batch fermentations

Batch and fed-batch fermentations were conducted in a
15 L stirred tank bioreactor (Fus-D; Guogiang Bioengin-
eering Equipment Co., Ltd, Shanghai, China) with 9 L of
the initial medium, which was composed of 0.41 g/L
(NH4),SO4, 0.1 g/L (NH,),HPO, 0.01 g/L MgSO,-
7H,0, 3.0 g/L corn steep liquor paste and 100-150 g/L
glucose (depending on the experiment) [19]. The CaCO3
(20 g/L) was sterilized separately and then added to the
medium. The seed culture was prepared by inoculation
of a single colony into a 5-mL MP medium tube, then
into 200 mL of fresh seed medium in 500-mL flasks and
cultivated on a rotary shaker at 220 rpm for 16 h. The
seed culture (5 %, v/v) was then inoculated into the fer-
mentation medium and the fermentation was carried
out at 30 °C and pH was controlled at 5.0 by automatic
addition of 5 M NaOH. In order to examine whether
PQQ could enhance the 5-KGA production in engi-
neered strains, different amount of PQQ (0 ng/L,
100 pg/L, 200 pg/L, 500 pg/L) was exogenously added
to the mixed cultures at the beginning of the fermen-
tation process, and the 5-KGA concentrations were
measured after 64 h.
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Fed-batch fermentation

In this study, optimization of the pH condition was ex-
amined in a medium containing 100 g/L glucose as the
initial substrate. The pH was controlled as 5.5, 5.0, 4.5,
and 4.0 and the glucose and 5-KGA were detected.
Hence, a two-stage pH control strategy was employed.
In the first stage of glucose oxidized to GA, then shifted
to 4.5 in the process of 5-KGA production. In further
experiment, fed-batch culture was performed. When the
fermentation was began, the initial volume was 6 L and
the glucose concentration was 100 g/L, then 2 L of the
feed medium containing 1400 g glucose was added when
the concentration of glucose turned to 30 g/L and main-
tained between 30 and 40 g/L.

Analysis

Samples were centrifuged at 12,000 g for 2 min, and the
supernatant was passed through a 0.22 pm filter. The re-
sidual glucose concentration was determined by a bio-
analyzer (SBA-40D, Shandong Academy of Sciences,
China) after dilution to an appropriate concentration.
The GA and 5-KGA in the fermentation broth were ana-
lyzed by high-performance liquid chromatography
(HP1100, Agilent 1100 series) using a RSpak DE-613
column (Shodex, Japan), with 2 mM HCIO, as the mo-
bile phase at a flow rate of 0.5 mL/min and a UV ab-
sorption of 210 nm. Acetic acid was detected by GC
(Agilent 6820 series). The biomass dry cell weight was
determined by applying membrane filtration. Before fil-
tration, the CaCOj3 was removed by reaction with HCL.
The concentration of PQQ in the culture supernatants
was measured according to the literature [24]. All exper-
iments were performed in triplicate and the Origin 8.0
software package was used for statistical analysis. Ana-
lysis of variance was performed. Each data point repre-
sents the mean + SD from triplicate experiments.
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