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Reflex responses generated by cutaneous mechanoreceptors of the plantar foot are
important for the maintenance of balance during postural tasks and gait. With aging,
reflex generation, particularly from fast adapting type I receptors, is reduced, which likely
contributes to impaired postural stability in this population. Therefore, improving reflex
generation from these receptors may serve as a tool to improve balance performance.
A mechanism to enhance reflexes may lie in the phenomenon of stochastic resonance,
whereby the addition of certain intensities and frequencies of noise stimuli improves
the performance of a system. This study was conducted to determine whether tactile
noise stimuli could improve cutaneous reflex generation. In 12 healthy young adults, we
evoked cutaneous reflex responses using a 0–50 Hz Gaussian noise vibration applied to
the plantar heel. Concurrently, we applied one of six subthreshold intensities of electrical
tactile noise to the plantar heel [0%, 20%, 40%, 60%, 80% or 100% (threshold)] and
were able to analyze data from 0%, 20% and 40% trials. Across participants, it was
found that the addition of a 20% perceptual threshold (PT) noise resulted in enhanced
reflex responses when analyzed in both the time and frequency domains. These data
provide evidence that cutaneous reflex generation can be enhanced via a stochastic
resonance effect and that 20% PT is the optimal intensity of noise to do so. Therefore,
the addition of noise stimuli may be a valuable clinical intervention to improve reflex
responses associated with postural balance in populations with impairments.

Keywords: stochastic resonance, cutaneous reflex, subthreshold noise, foot sole, lower limb

INTRODUCTION

Sensory information from the cutaneous mechanoreceptors of the foot sole is important for
the successful maintenance of standing balance (Magnusson et al., 1990; Day and Cole, 2002)
and gait (Yang and Stein, 1990; Zehr et al., 2014). While the specific nature of the information
provided remains unclear, during natural postural sway and the stance phases of gait, these
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mechanoreceptors become activated and modulate muscle
activity through cutaneous reflex loops (Nakajima et al., 2006;
Zehr et al., 2014). Cutaneous reflexes evoked using electrical
stimuli applied directly to the skin (Nakajima et al., 2006;
Sayenko et al., 2009) or peripheral nerves housing cutaneous
afferents (Aniss et al., 1992; Gibbs et al., 1995; Zehr et al.,
2001a, 2014) elicit reflexive modulation of muscle activity in
the lower limb with early (∼50–70 ms), middle (∼70–110 ms)
and long (>110 ms) latencies. The early and middle latency
responses are thought to represent spinal reflexes (Jenner and
Stephens, 1982; Burke et al., 1991). The long-latency reflex
may involve transcortical pathways (Jenner and Stephens, 1982;
Burke et al., 1991). The middle latency reflex is of particular
interest as it is thought to be most sensitive to modulation
(Duysens and Tax, 1994; Zehr et al., 2001b). For example, the
middle latency reflex exhibits a location dependence, such that
activation of mechanoreceptors in different foot regions results
in different patterns of muscle activity modulation (Sonnenborg
et al., 2000; Nakajima et al., 2006; Sayenko et al., 2009). In
particular, when an electrical cutaneous stimulation is applied
to the heel region, an excitatory response occurs in the soleus
(a foot plantar flexor muscle) and an inhibitory response occurs
in the soleus’ antagonist, the tibialis anterior (a foot dorsiflexor).
When the stimulation is moved anteriorly to the metatarsal
region, a reversal of these reflexes occurs such that the soleus
response becomes inhibitory and an excitatory reflex occurs in
the tibialis anterior (Sonnenborg et al., 2000; Nakajima et al.,
2006; Sayenko et al., 2009). This pattern of activation may
function to remove the foot from obstacles that may contact the
plantar foot during postural balance or gait (Nakajima et al.,
2006). In gait, the amplitude of cutaneous reflexes in a muscle
also depends on the phase of gait during which they are evoked
(Duysens et al., 1990; Yang and Stein, 1990; De Serres et al., 1995;
Zehr et al., 1997, 2014). Activation of cutaneous afferents through
stimulation of the posterior tibial nerve produces responses that
cause foot dorsiflexion during the late stance phase but foot
plantarflexion during the late swing phase (Zehr et al., 1997).
Similar patterns of activation occur following electrical stimuli
applied to the heel (Zehr et al., 2014). This phase-dependency
of cutaneous reflexes during gait is thought to be driven by
central pattern generator activity (Klarner and Zehr, 2018).
While all four types of cutaneous mechanoreceptors found in the
glabrous skin of the foot can generate cutaneous reflex responses
(Fallon et al., 2005; Bent and Lowrey, 2013), fast adapting type-I
(FAI) receptors are believed to be particularly important for
the maintenance of balance. Previous work has shown that
FAI mechanoreceptors are the most densely populated type of
mechanoreceptor across the foot sole (Kennedy and Inglis, 2002;
Strzalkowski et al., 2018), and are the most synaptically-coupled
mechanoreceptor to muscles of the lower (Fallon et al., 2005)
and upper limb (Bent and Lowrey, 2013). However, in healthy
adult aging, morphological and physiological changes occur
to cutaneous mechanoreceptors. For example, FAI receptors
are less densely populated (Bolton et al., 1966) and have
reduced cross-sectional areas (Iwasaki et al., 2003). Such changes
impair the sensory function of these receptors and agree with
age-related reductions in the sensitivity of foot sole receptors

that have previously been reported (Kenshalo, 1986; Wells et al.,
2003; Peters et al., 2016). Impaired sensory input may also
explain age-related reductions in FAI initiated cutaneous reflex
responses in the lower limb that have been recently reported
(Peters et al., 2016). By applying 30 Hz vibratory stimuli,
which have been shown to preferentially activate FAI receptors
in the foot (Strzalkowski et al., 2017), Peters et al. (2016)
showed that in older adults, the ability of FAI mechanoreceptors
to generate reflex responses was significantly impaired. This
impaired ability to generate responses may contribute to the
increased risk of falls that has been described in the older
adult population (Peters et al., 2016). Therefore, enhancing the
ability of these cutaneous mechanoreceptors to generate reflex
responses may be a viable method of reducing the risk of falls
in older adults.

Stochastic resonance is a phenomenon whereby the addition
of subthreshold noise to a system improves its performance
(Collins et al., 1995, 1996; Richardson et al., 1998; Wells
et al., 2005). Only certain intensities of noise aid the system’s
performance; in theory there exists an optimal intensity of
noise that results in the greatest performance enhancements.
Intensities below or above the optimal level either provide
enhancement to a lesser degree, no enhancement at all, or
may even make the signal degrade. Further, the frequency
content of the noise stimulus has been shown to influence the
strength of noise-related performance enhancements (Trenado
et al., 2014b). Therefore, the stochastic resonance phenomenon
is noise-intensity and frequency-content dependent. In the
cutaneous somatosensory system, imperceptible tactile vibration
and electrical noise stimuli applied to the skin of the
hand (Collins et al., 1996, 1997; Richardson et al., 1998)
and feet (Dhruv et al., 2002; Wells et al., 2005) increases
the sensitivity of mechanoreceptors to tactile stimuli. Such
improvements in perceptual threshold have been observed in
young adults (Collins et al., 1996, 1997; Richardson et al.,
1998; Wells et al., 2005), healthy older adults (Dhruv et al.,
2002; Liu et al., 2002; Wells et al., 2005), and populations
suffering from stroke or diabetes-related sensory deficits (Liu
et al., 2002). Tactile noise has also been shown to improve
functional outcomes such as postural sway in similar populations
(Priplata et al., 2002, 2003, 2006; Galica et al., 2009; Lipsitz
et al., 2015). Currently, however, it is unknown whether
functional enhancements are due to improved cutaneous reflex
generation. Thus, this study aimed to determine whether
subthreshold tactile stimuli could be used to enhance cutaneous
reflex responses in muscles of the lower limb. Additionally,
we aimed to determine whether an ideal noise intensity
exists to optimally enhance cutaneous reflex responses. We
hypothesized that tactile noise would enhance the ability
of plantar surface cutaneous mechanoreceptors to generate
reflex responses. This would be observed as a facilitation
of soleus reflex responses and reductions in tibialis anterior
responses, based on location dependency (Nakajima et al.,
2006). Additionally, we hypothesized that there would be
a specific intensity of noise that would optimally enhance
cutaneous reflex generation. At this intensity, reflex magnitudes
were expected to be at their highest in the soleus while
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being at their lowest in the tibialis anterior. Preliminary
findings from this work have been published in abstract form
(Sharma et al., 2019).

MATERIALS AND METHODS

Participants
Twelve young adults (nine females; mean age ± SD:
22.5 ± 2.0 years) participated in this study. Participants were
screened to ensure the absence of any neuromuscular disorders
before participation. All participants provided informed, written
consent, and all procedures were approved by the University of
Guelph Research Ethics Board.

Experimental Setup
During experimentation, participants stood on a custom-made
platform that supported them over a vibration motor (type
4808 Magnetic Vibration Exciter and power amplifier type 2719,
Brüel and Kjær Sound and VibrationMeasurement A/S, Nærum,
Denmark). Attached to this motor was an accelerometer (type
4507, Brüel and Kjær Sound and Vibration Measurement A/S,
Nærum, Denmark) and a metal probe (∼5 mm diameter) that
passed through a hole in the platform to contact the participant’s
heel and vibrate perpendicular to the foot (Figure 1). Probe
acceleration was sampled at 5,000 Hz. To ensure the probe
activated a similar population of mechanoreceptors between
trials an outline of a box (2 cm × 2 cm) was made on the foot.
Before every trial, an experimenter ensured that the probe was in
contact with the skin within this outline.

Surface electromyography (EMG; AMT-8 system, Bortec
Biomedical Limited, Calgary, AB, Canada) was measured from
the soleus (SOL) and tibialis anterior (TA) by affixing two
Ag/AgCl electrodes over each muscle belly (Figure 1C). EMG
data were bandpass filtered (10–1,000 Hz) and sampled at
5,000 Hz.

Stimulation and Threshold Testing
Cutaneous reflexes were evoked by applying a continuous
Gaussian vibration stimulus consisting of random frequencies
between 0 and 50 Hz to the heel (Figure 1B; Type 4808 Magnetic
Vibration Exciter, Brüel and Kjær Sound and Vibration
Measurement A/S, Nærum, Denmark). An aperiodic vibration
was chosen as it better represents the nature of stimuli cutaneous
mechanoreceptors respond to during activities of daily living
(Collins et al., 1997). This frequency band was chosen to
preferentially activate FAI mechanoreceptors (Strzalkowski et al.,
2017). To determine the perceptual threshold (PT), we employed
a modified method of limits; briefly, the intensity of a 0–50 Hz
Gaussian vibration was increased until the participant could
faintly feel the stimulus on the region of interest (heel). We
then lowered the intensity until the stimulus was no longer
detectable by the participant. This was repeated three to four
times and the lowest intensity that consistently caused a percept
was defined as PT [mean ± SD; represented as acceleration
relative to gravity (G)] = 0.36 ± 0.34 G. For testing we
used a vibration amplitude that was 10× PT to ensure a
high level of cutaneous activation. It should be noted that at

10× PT, our motor produced a faint sound that could be
heard by the participant. However, a vibration intensity of 10×
PT was used in every trial. Therefore, the intensity of this
sound was the same in every trial and likely did not influence
reflex amplitudes.

To enhance the generated cutaneous reflexes, we concurrently
applied electrical band-pass filtered (0.01–50 Hz) white noise
stimuli to the heel (Figure 1B; A395 Linear Stimulus Isolator,
World Precision Instruments, Sarasota, FL, USA). Electrical PTs
for all participants were found to be within a stimulus peak-to-
peak (PTP) amplitude of 20 mA. The intensity of the electrical
noise stimulus varied between trials and was set to 0% (no
noise, control), 20%, 40%, 60%, 80%, or 100% of PT. PT for this
electrical stimulus was measured separately from the vibration
but followed the same procedures. PT was established when the
electrical stimulation was felt to just perceptibly radiate over the
plantar heel area.

Experimental Procedures
During each trial, participants stood and were asked to maintain
a slight anterior lean, to introduce a level of background
activity corresponding to 20% of soleus root mean squared
maximal EMG, which was determined by performing a maximal
voluntary plantarflexion contraction at the onset of the trial.
During standing, the previously described Gaussian noise
vibration was applied to the heel by the vibrating probe at
10 times the perceptual threshold (10× PT). Concurrently,
the continuous, electrical noise stimulus was applied to the
plantar skin of the heel through electrodes placed on either
side of the probe. The intensity of the electrical noise
stimulus varied between trials and was set randomly to one
of 0% (no noise), 20%, 40%, 60%, 80% or 100% of PT.
Participants were not informed of the intensity of noise applied
in any trials. Two–120-s trials were performed with each
electrical noise intensity in a randomized order for a total of
12 trials (two trials × six noise intensities). Seated breaks were
taken between each trial (every 2 min) to prevent muscular
fatigue between trials. All trials were conducted in a single
testing session.

Data Analysis
All analyses were performed in MATLAB software (MathWorks,
Natick, MA, USA). Data were initially visually inspected to
ensure there were no stimulus artifacts that contaminated
any recorded signals. If stimulus artifacts were present in a
participant’s EMG data, EMG data from all noise conditions
were removed from the contaminated muscle’s analysis. When
generating cumulant density and coherence functions for
conditions with contaminated EMG signals, the presence of
stimulus artifact was pronounced. Since the electrical noise and
the vibration stimuli are applied concurrently, a large spike
in the cumulant density is observed at 0 ms. Additionally,
since both stimuli contain frequencies between 0–50 Hz,
strong coherence is observed across the whole 0–50 Hz
band. Of the 12 participants, tibialis anterior data from two
participants were excluded due to excessive noise in the
signal which prevented analysis. Additionally, during the higher
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FIGURE 1 | Experimental setup. Participants stood on a custom-built platform with a slight anterior lean (C). Two-second data excerpts of input stimuli from a
120-s trial. Gaussian vibration stimuli [B, intensity:10× perceptual threshold (PT); E, spectral power] were applied to the plantar heel of the right foot (indicated by *)
to evoke cutaneous reflexes (A). Electrical noise stimuli were concurrently applied at intensities between 0% and 100% PT (A, location; B, two-second waveform
excerpt; E, spectral power). (D) Two-second data excerpts of recorded electromyography (EMG) signals from a 120-s trial. EMG was recorded from the soleus (SOL)
and tibialis anterior (TA).

electrical noise intensity conditions (60–100% PT) stimulus
artifact contaminated both SOL and TA EMG data for all
participants. For this reason, only 0%, 20%, and 40% PT trials
were compared.

For analysis, we concatenated probe acceleration, SOL EMG,
and TA EMG from both trials at each noise intensity for
each participant. Concatenated probe acceleration data were
low-pass, zero-lag filtered at 50 Hz (4th order Butterworth).
Concatenated SOL EMG and TA EMG data were full-wave
rectified. A modified version (based on Dakin et al., 2010)
of NeuroSpec code (version 2.0; www.neurospec.org) was used
to assess the spectral characteristics of the evoked cutaneous
reflex responses in the frequency and time domain for each
participant (292 disjointed segments, segment length = 0.8192 s,
frequency resolution = 1.2207 Hz). The specific mathematical
processes involved in these analyses are outlined in Halliday
et al. (1995), but are briefly described here. In the frequency
domain, coherence functions were generated. The coherence
function provides a measure of linear association between
an input (i.e., vibratory probe acceleration) and an output

(i.e., EMG) signal at each frequency assessed. As a measure of
association, coherence values are bounded between 0–1. For each
coherence estimate, 95% confidence limits were generated by the
Neurospec2.0 code (described in Halliday et al., 1995). Values
exceeding this limit were considered significantly different from
0 (0 represents no coherence), suggesting significant coherence
at that specific frequency (Halliday et al., 1995). From each
coherence function, we measured the peak coherence between
28–32 Hz which encompasses frequencies that preferentially
target FAI receptors (Strzalkowski et al., 2017). Further,
these were frequencies with statistically significant coherence
estimates based on the pooled analyses (described further in
this section). In the time domain, cumulant density functions
were generated. Cumulant density functions provide a measure
of linear dependence between an input and output signal in
the time domain. Responses were considered significant if
the cumulant density function exceeded the 95% confidence
interval calculated by the Neurospec2.0 code based on the
inherent variability of the cumulant density function (Halliday
et al., 1995). From individual cumulant density functions, PTP
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amplitudes of responses occurring between 70–110 ms were
identified as the cutaneous reflex response (the time frame
of a cutaneous reflex response in the lower limb). If a clear
response was not generated in a condition, latencies of PTP
amplitudes from the participant’s other conditions were used
to determine the time frame over which to include data for
the analysis. Measured PTP amplitudes in the 20% and 40%
noise conditions were normalized to PTP amplitudes obtained
in the control (0%) condition. To statistically compare mean PTP
amplitudes and peak coherences across noise intensities, one-way
repeated measures ANOVAs were performed in IBM SPSS (v26,
IBM, Armonk, NY, USA). If the assumption of equal sphericity
between conditions was violated (as assessed by Mauchly’s Test
of Sphericity), a Greenhouse–Geisser correction was applied. If
statistical significance was observed from the ANOVA, post hoc
tests with a Bonferroni correction were performed.

We also performed a pooled analysis where probe
acceleration, SOL EMG, and TA EMG data from all
participants were concatenated at each noise intensity.
Therefore, a total of 24 trials were concatenated for SOL
analysis (12 participants × 2 trials; 3,515 disjointed segments,
0.8192-s segment length) and 20 trials for TA analysis
(10 participants × 2 trials; 2,929 disjointed segments, 0.8192-s
segment length) at each noise intensity. Pooled coherence at
each frequency (0–50 Hz, 1.2207 Hz resolution) was statistically
compared between noise intensity conditions in a pairwise
manner by performing a difference of coherence (DoC) test. The
DoC test is a statistical tool that assesses differences between
coherence estimates at each frequency based on the Chi-squared
distribution (Amjad et al., 1997). We were particularly interested
in differences occurring within the 25–35 Hz bandwidth.
Any differences exceeding 95% confidence limits at any
frequencies were interpreted as being significantly different
coherence estimates (Amjad et al., 1997). Pooled cumulant
density functions were also generated and the PTP amplitude
of the function was calculated between 70–110 ms (the time
frame of a middle-latency cutaneous reflex response in the
lower limb).

RESULTS

Cumulant Density
To assess reflex gain, we measured PTP amplitude of the pooled
cumulant density function within 70–110 ms and compared
it across each noise intensity (Figure 2). With pooled data,
significant reflex responses were generated in all three noise
conditions in each muscle within this time window (p< 0.05). In
soleus, PTP amplitude was 0.0146 at 0% (latency = 84 ms). When
20% PT noise was added, PTP amplitude increased to 0.0157
(7.67% increase from 0% PT, latency = 79.4 ms). At 40% PT, PTP
amplitude decreased to 0.01319 (9.47% decrease from 0% PT,
latency = 79.8 ms). In tibialis anterior, at 0% PT, PTP amplitude
was 0.0120 (latency = 77.4 ms). The application of 20% PT noise
resulted in a decrease in PTP to 0.00407 (66.0% decrease from 0%
PT, latency = 81.4 ms). At 40% PT, PTP amplitude decreased to
0.0101 (15.9% decrease from 0% PT, latency = 77.8 ms).

Finally, to get a sense of individual data, we also measured
PTP of responses in individual participants at each noise
intensity in the 70–110 ms window (Figure 4). Mean soleus
PTP amplitude was 13.7% larger in the 20% noise condition
and 16.1% smaller in the 40% PT noise condition compared
to 0% PT (Figure 4A). Mean tibialis anterior PTP amplitude
was 1.0% and 18.9% greater in the 20% and 40% conditions
respectively (Figure 4C). However, these differences were not
statistically significant (SOL: F(1.324,14.559) = 3.334, p = 0.08; TA:
F(2,18) = 0.273, p = 0.76).

Coherence
We also generated pooled coherence functions at each noise
intensity and compared coherence across the 25–35Hz frequency
range (Figure 3). Significant coherence was observed within this
frequency range in all conditions (0%, 20%, 40%). In SOL, peak
pooled coherences were 0.00269 (observed at 34.18 Hz) at 0% PT,
0.00656 (31.74 Hz) at 20% PT and 0.00174 (31.74 Hz) at 40% PT.
At 28.08 Hz, coherence in the 20% PT condition was significantly
greater than at 0% PT (Figure 3A; χ2

(1) = 4.045, p = 0.0443). At
31.74 Hz, pooled coherence at 20% PT was significantly greater
than both the 0% PT (Figure 3A; χ2

(1) = 3.911, p = 0.0480) and
40% PT conditions (Figure 3C; χ2

(1) = 5.469, p = 0.0194). In
TA, peak pooled coherences were 0.00333 (31.74 Hz) at 0% PT,
0.000595 (34.18 Hz) at 20% PT and 0.00102 (31.74 Hz) at 40%
PT. At 29.30 Hz, pooled coherence in the 20% PT condition
were significantly lower than in 0% PT (Figure 3D; χ2

(1) = 4.160,
p = 0.0414). Twenty percentage PT pooled coherence was less
than 40% PT coherence at 30.52 Hz (Figure 3F; χ2

(1) = 5.190,
p = 0.0227). Pooled coherence in the 40% PT condition was
significantly lower at 31.74 Hz than in the 0% PT condition
(Figure 3E; χ2

(1) = 4.898, p = 0.0269).
Means of individual peak coherences between 28–32 Hz were

also measured (Figure 4). This frequency band was chosen as the
DoC revealed statistically significant pooled coherence estimates
between 28–32 Hz. In soleus, the mean of peak coherences
was 36.3% and 4.4% greater in the 20% and 40% conditions
respectively, when compared to no noise (Figure 4B). In tibialis
anterior, the means of peak coherences were 6.5% and 73.8%
greater than that at 0%, for the 20% and 40% noise conditions
respectively. Contrary to the pooled analysis, differences in the
individual coherence data were not statistically different (SOL:
F(1.173,12.907) = 1.941, p = 0.17; TA: F(1.125,10.125) = 2.008, p = 0.19).

DISCUSSION

This study was conducted to determine whether the addition
of subthreshold electrical tactile noise could enhance cutaneous
reflex generation in the lower limb. We saw that the addition of
electrical tactile noise at an intensity of 20% PT increased the
magnitude of pooled cutaneous reflex responses and significantly
increased pooled coherence at ∼30 Hz in SOL. In contrast,
TA saw a reduction in pooled cutaneous reflex magnitudes and
significant reductions in pooled coherence at ∼30 Hz. While
significant reductions in pooled TA coherence continued to be
observed in the 40% PT condition, a corresponding increase
in pooled SOL coherence and pooled cumulant density PTP
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FIGURE 2 | Cumulant density functions generated between probe acceleration and soleus EMG (A–C) or tibialis anterior EMG (D–F). Horizontal lines represent
95% confidence interval bounds for the 0% PT condition. In figures (D–F), solid horizontal lines represent confidence intervals for the cumulant density function in the
20% noise condition (D,F) or 40% noise condition (E). Dotted horizontal lines represent confidence intervals for the cumulant density function in the 0% noise
condition (D) or 40% noise condition (E,F). For all cumulant densities, peak-to-peak (PTP) amplitudes for each function were calculated between 70–110 ms
(indicated by the vertical broken lines). The number of segments: SOL, 3,515 disjointed segments; TA, 2,929 disjointed segments. Segment length = 0.8192 ms,
time resolution: 0.02 ms.

amplitude were not observed. Overall, these results may suggest
that tactile electrical noise on the plantar surface of the foot can
enhance naturally occurring cutaneous reflex responses in the
plantar and dorsiflexor muscles and that the optimal intensity is
20% PT.

Afferent Contribution to the Reflex
Response
The vibration input applied to the skin to evoke cutaneous
reflexes was a Gaussian noise stimulus with a bandwidth of

0–50 Hz. As such, the power across this frequency band is
normally distributed with peak power occurring around 30 Hz.
Of the four cutaneous mechanoreceptor types in the foot,
vibration stimuli around this frequency preferentially target
FAI receptors (Kennedy and Inglis, 2002; Strzalkowski et al.,
2017). In our data, peak coherences between signals were
observed around 30 Hz in all conditions. This likely suggests
that the observed responses were generated primarily by FAI
receptors. However, the 0–50 Hz bandwidth also contains
frequencies shown to target slow-adapting type I (SAI) and
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FIGURE 3 | Coherence functions generated between probe acceleration and soleus EMG (A–C) or tibialis anterior EMG (D–F). Horizontal lines represent the 95%
confidence limit bounds. Frequency resolution: 1.2207 Hz. *Indicates significant differences between the two plotted coherence functions at the frequency indicated.
The difference in coherence frequency resolution: 1.2207 Hz.

type II (SAII) mechanoreceptors which preferentially respond
to frequencies <20 Hz (Strzalkowski et al., 2017). Despite this,
minimal coherence was observed between 0–20 Hz, suggesting
minimal contributions from SA receptors to the observed
reflex responses. This is likely a result of weaker power below
20 Hz in the vibration input. Some care must be taken when
interpreting cutaneous contributions simply by frequency alone,
as we have shown in our past work (Strzalkowski et al.,
2017) that amplitude can also affect the ability of individual
afferents to fire, particularly at the high amplitudes used here.

However, even at high amplitudes (>2 mm), we showed that
SA afferents do not contribute appreciably to frequencies above
10 Hz (Strzalkowski et al., 2017). Additionally, of the foot
sole mechanoreceptor types, SAI and SAII receptors show
the weakest ability to modulate the activity of lower limb
motor units (Fallon et al., 2005). Finally, while fast-adapting
type II receptors do respond to frequencies between 0–50 Hz,
they likely did not contribute appreciably to the observed
reflex responses due to relatively lower total receptor number
(Strzalkowski et al., 2018) and weaker reflex coupling with
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FIGURE 4 | Normalized soleus cumulant density PTP amplitude (A) and
peak soleus coherence between 28–32 Hz (B) and normalized tibialis anterior
cumulant density PTP amplitude (C) and peak coherence between 28–32 Hz
(D) at each noise intensity. Dots represent individual participant data at each
noise (soleus: n = 12, tibialis anterior: n = 10) and the horizontal line
represents the overall mean.

lower limb muscles (Fallon et al., 2005). Therefore, we believe
that the responses we observed were generated primarily by
FAI receptors.

Optimal Noise Intensity Is 20% PT
Based on the limited intensities of noise analyzed, we observed
that electrical noise intensities around 20% PT are ideal to
enhance cutaneous reflex generation. Due to stimulus artifact
from the electrical noise stimulus contaminating much of the
recorded EMG signals in the higher noise intensity conditions,
only the 0%, 20% and 40% PT noise conditions were analyzed
and compared. The cumulant density plot for these conditions
did not contain a large spike at 0 ms and strong coherence
was not present across the whole 0–50 Hz band. Therefore, we
can be confident that the responses observed at 0%, 20%, and
40% are not due to artifact contamination and are a result of
physiological processes.

While we cannot analyze the data at these higher intensities,
we do not believe that a more ideal intensity exists above
40% PT. The typical stochastic resonance phenomenon involves
the gradual enhancement of a system while increasing noise
intensity up to an optimal intensity (McDonnell and Abbott,
2009). Increases in noise intensity beyond this intensity would
cause a detrimental effect on system performance (McDonnell
and Abbott, 2009). In our study, increasing noise intensity from
20% to 40% resulted in the reduction of the reflex response
in SOL, closer to the no noise control condition. Therefore,
increasing noise intensity beyond 40% would likely not facilitate
reflex generation. Clearly, it is not possible to confirm a lack of

enhancement in these higher noise conditions without including
these intensities in our data analysis. However, we suggest that
20% of PT is optimal to enhance cutaneous reflex generation
based on our current, potentially limited, data.

In previous studies that have explored the stochastic
resonance effect in cutaneous mechanoreceptors, the optimal
intensity of tactile noise is variable. In the foot, Dhruv et al.
(2002) applied electrical noise to the metatarsal region of the
plantar foot at intensities of 0%, 20%, 40%, 60%, and 80% of PT
in healthy, older adults. When data from these noise trials were
pooled and collectively compared to no noise, monofilament
thresholds were lower in most participants. In their study, while
enhancements were reported, no statistical comparisons were
performed between these intensities and therefore no optimal
intensity was established. Interestingly, the increased sensitivity
is likely related to the improved sensory function of FAI receptors
as these receptors have a strong correlation in their afferent
firing in response to monofilament indentations of the skin
(Strzalkowski et al., 2015).

Using vibrational noise, Wells et al. (2005) showed that in a
healthy, young population, 33% PT noise is the optimal intensity
of vibrational noise to enhance the detection of a subthreshold
(0.9× PT) sinusoidal 25 Hz vibration (targeting FAI). However,
33% PT noise was the lowest non-zero intensity of noise that
was tested. Interestingly, when the intensity of the sinusoid to be
detected was decreased to 0.8× PT, the optimal noise intensity
required to enhance the detection of the sinusoid increased to
50% PT. In this study by Wells, a subthreshold sinusoid signal
was shown to be made detectable and the degree to which this
signal is subthreshold affects the optimal intensity of noise. In
our study, reflex responses are generated without the addition
of noise, and therefore would likely require a lower intensity of
noise to enhance such reflexes and may explain why the optimal
noise intensity was a relatively lower intensity of noise.

Tactile noise has also been shown to improve measures of
postural sway. However, these studies tend to apply relatively
higher intensities of noise. For example, Priplata et al., 2002,
2003, 2006 showed improved postural balance with the addition
of noise at an intensity of 90% PT. This intensity has also been
shown to improve gait measures (Galica et al., 2009; Miranda
et al., 2016). Lipsitz et al. (2015) applied tactile noise to the foot
at intensities of 0%, 70%, and 85% PT and found that both 70%
and 85% PT enhanced gait measures similarly. As these studies
do not apply other intensities of noise, it is unknown whether a
more optimal intensity exists below 70% PT.

Functional Response
The pattern of activation that was observed following vibration
at the heel, soleus excitation, and tibialis anterior inhibition,
is consistent with other studies that have evoked cutaneous
reflexes at the heel (Sonnenborg et al., 2000; Nakajima et al.,
2006; Sayenko et al., 2009). This provides further support that
cutaneous mechanoreceptors have excitatory and inhibitory
input onto motorneuron pools innervating muscles of the lower
limb. This pattern of activation is thought to be functionally
significant for the initiation of stance during the step cycle.
During heel contact, soleus excitation and tibialis anterior
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inhibition may allow the stance limb to appropriately maintain
balance during the stance phase (Zehr et al., 1997, 2014). Soleus
excitation and tibialis anterior inhibition may also allow for
recovery following disturbances during gait. For example, if the
heel comes in contact with an obstacle, activation of the soleus
and inhibition of the tibialis anterior would together act to cause
plantarflexion of the foot in an attempt to lift the foot away from
the obstacle and allowing for the maintenance of balance during
gait. Gait was not examined in the current experiment and so it
is important to acknowledge that the true functional application
of SR to gait characteristics requires further study.

In our study, the participants were young and healthy, and we
were able to evoke reflex responses without the addition of noise.
However, when tactile noise was added, the reflex generation was
enhanced. The underlying mechanism is proposed to relate to
the number of FAI mechanoreceptors involved in the generation
of the response. During daily activities, mechanical input to the
foot will activate mechanically-sensitive gates that will release
neurotransmitters which open channels that will generate an
electrical signal in the sensory nerve ending of the afferent
nerve (Hao et al., 2015). Since electrical cutaneous stimuli do
not include a mechanical component, such stimuli may directly
target downstream voltage-gated channels (KCNQ, Nav1.9)
within the sensory nerve ending that will facilitate the generation
of action potentials (Hao et al., 2015). Since our electrical
stimuli were applied below the perceptual threshold, these stimuli
are proposed to elevate the resting membrane potential via
these voltage-gated channels that are known to alter the gain
of the afferent bringing these afferents closer to the voltage
threshold required for action potential generation. Therefore,
mechanoreceptors that would normally not be activated in
response to the vibration input now can be activated due to
this elevated and synchronized potential. Therefore, with the
same vibration input and the addition of stochastic resonance,
a greater number of mechanoreceptors can be activated, in
a similar temporal pattern, resulting in a greater amount of
sensory information being transmitted to spinal interneurons.
These interneurons may release GABA or glycine (inhibitory
neurotransmitters) onto the alpha motor neurons of tibialis
anterior, and glutamate (an excitatory neurotransmitter) onto
soleus alpha motor neurons (Li et al., 2003; Nishimaru and
Kakizaki, 2009; Abraira and Ginty, 2013; Bui et al., 2013). With
an increased contribution from FAI afferents, there would be
a recruitment of more and larger motor units in the soleus
due to increased excitatory input onto this motorneuron pool.
For tibialis anterior, there would be an increase in inhibitory
input, resulting in fewer activated motor units, and therefore a
smaller response. While it has not been supported, there is some
suggestion that the middle-latency response may be transcortical
(Gill, 2016). If this were the case, it is feasible that tactile noise
may have enhanced corticomuscular coherence, as has been
shown previously (Trenado et al., 2014a).

Early and Late Responses
In addition to responses observed within cutaneous reflex
latencies, significant responses were also observed at earlier
(∼30 ms) and later (>110 ms) latencies. The observed earlier

latency response may arise from muscle Ia afferents embedded
within the SOL and TA muscles. The vibration intensity applied
to generate cutaneous responses was set to 10× the perceptual
threshold. While not painful, this stimulus is quite intense
and may have resulted in the vibration of tendons of these
muscles causing the activation of Ia afferents. Interestingly,
this early response appears to be modulated by tactile noise
similar to the 70–110 ms response. This may be occurring due
to enhanced cutaneous modulation of the fusimotor system.
Previous work has shown that the activation of cutaneous
afferents can modulate the firing of spindles (Aniss et al.,
1990; Gandevia et al., 1994), likely through reflexive changes
in gamma motor neuron excitability (Hunt, 1951; Hunt and
Paintal, 1958; Gandevia et al., 1994). Therefore, it may be possible
that when 20% PT noise was applied, enhanced cutaneous
afferent information may have increased SOL spindle sensitivity
and reduced TA spindle sensitivity. Alternatively, cutaneous
activation does evoke early latency responses (Burke et al., 1991;
Brooke et al., 1999; Zehr et al., 2001a), and thus, there is a
possibility that the observed early latency responses may be
of cutaneous origin. However, these responses typically occur
with latencies of ∼50 ms. Therefore, we do not believe that the
responses occurring at 30 ms in our data are of cutaneous origin.
While the origin of the responses observed at the later latencies is
unknown, they may arise from transcortical cutaneous pathways
which have been shown in our previous work (Gill, 2016).

Implications for Interventions
Healthy aging involves morphological and physiological changes
to cutaneous mechanoreceptors that impair their ability to
perform sensory functions and to reflexively modulate muscle
activity in the lower limb (Peters et al., 2016). These impairments
may contribute to increased fall risks in this population. Our
work suggests that the addition of tactile noise, particularly at
an intensity around 20% PT is a viable method to enhance
cutaneous reflex responses in the lower limb, particularly in the
musculature that facilities control at the ankle. These findings
may inform the design of clinical interventions such as shoe
insoles that incorporate tactile noise components to enhance the
cutaneous reflex generation and consequently improve balance
performance. Further work exploring the effect of subthreshold
tactile noise on cutaneous reflex generation in such populations
is required. Additionally, future work should aim to quantify
SR-related enhancements across other mechanoreceptor classes
using more specific noise stimuli and whether there is any
evidence that enhancements are sustained after the noise
stimulus is removed.

CONCLUSIONS

Our work provides evidence that the addition of tactile electrical
noise can enhance the generation of cutaneous reflex responses,
specifically when targeting FAI receptors. When applied to the
heel, the optimal intensity of noise is approximately 20% PT. This
suggests that subthreshold tactile noise stimuli can be used to
improve the generation of reflex responses from the cutaneous
mechanoreceptors of the plantar foot. With further research, it
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is possible to incorporate such noise components into devices
such as insoles to improve reflex generation, with the hope of
improving postural balance and gait.
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