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ABSTRACT

Transcriptome profiling is essential for gene regu-
lation studies in development and disease. Current
web-based tools enable functional characterization
of transcriptome data, but most are restricted to ap-
plying gene-list-based methods to single datasets,
inefficient in leveraging up-to-date and species-
specific information, and limited in their visualiza-
tion options. Additionally, there is no systematic
way to explore data stored in the largest transcrip-
tome repository, NCBI GEO. To fill these gaps, we
have developed eVITTA (easy Visualization and In-
ference Toolbox for Transcriptome Analysis; https:
//tau.cmmt.ubc.ca/eVITTA/). eVITTA provides mod-
ules for analysis and exploration of studies pub-
lished in NCBI GEO (easyGEO), detailed molecular-
and systems-level functional profiling (easyGSEA),
and customizable comparisons among experimental
groups (easyVizR). We tested eVITTA on transcrip-
tomes of SARS-CoV-2 infected human nasopharyn-
geal swab samples, and identified a downregulation
of olfactory signal transducers, in line with the clini-
cal presentation of anosmia in COVID-19 patients. We
also analyzed transcriptomes of Caenorhabditis el-
egans worms with disrupted S-adenosylmethionine
metabolism, confirming activation of innate immune
responses and feedback induction of one-carbon cy-
cle genes. Collectively, eVITTA streamlines complex
computational workflows into an accessible inter-
face, thus filling the gap of an end-to-end platform ca-
pable of capturing both broad and granular changes
in human and model organism transcriptomes.

GRAPHICAL ABSTRACT

INTRODUCTION

Transcriptome profiling is an essential technique to study
gene regulation in development and disease (1). The emer-
gence of affordable high-throughput microarray and se-
quencing technologies has resulted in the rapid expansion of
transcriptome experiments, which in turn greatly increased
the demand for robust analytical tools for data inter-
pretation. Effective transcriptome interpretation involves
three key aspects: drawing inference from published studies,
translating the data into meaningful biological knowledge,
and comparing multiple conditions to each other to discern
underlying regulatory changes.

First, knowledge from past studies is essential for hy-
pothesis generation and data interpretation. The Gene Ex-
pression Omnibus (GEO) database, funded by the Na-
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tional Center for Biotechnology Information (NCBI), is the
largest public repository for transcriptome datasets (144
751 data series, 4.2 million samples on 23 February 2021)
(2,3). Despite the treasure trove of data in GEO, no tool yet
exists that can systematically extract and process such data
for inferential use. Most web-based GEO data analysis tools
are limited in functionality: some only provide access to mi-
croarray data without differential expression (DE) analy-
sis (4), while others analyzing RNA-sequencing (RNA-seq)
data rely on their own processed data repositories, which
tend to update slowly and often exclude datasets due to un-
supported species or experiment type (5).

Second, uncovering mechanistic insights from gene ex-
pression data is central to all types of transcriptomic stud-
ies. Functional enrichment analysis (aka functional profil-
ing) is the primary technique for this purpose, and is com-
monly used to interpret gene lists derived from many omics
platforms (6). To date, a variety of web-based enrichment
analysis tools have been developed (7–14), but these are
sometimes suboptimal for interpreting transcriptome data.
Surveys have shown that most tools are outdated in their
gene annotation (gene set, GS) databases, sometimes by
several years, which can severely impact functional inter-
pretation and follow-up experiments (15). When multiple
GS databases are analyzed together, most tools list results
separately in tables or simple graphs, which is ineffective
in integrating the information (8–12). Some tools rely on
literature-curated resources such as Gene Ontology (GO),
which are sometimes not precise enough to capture the
functions of genes in the biological system of interest (8–12).
Approach-wise, gene-list-based overrepresentation analysis
(ORA) remains predominant (7–13); alternative methods
for transcriptomic studies, such as pre-ranked Gene Set En-
richment Analysis (GSEA) based on gene-set scoring (16),
are not supported by most tools. The only tool support-
ing GSEA to our knowledge (14) requires users to supply
a separately generated rank file, setting a hurdle for non-
bioinformaticians. Furthermore, most existing tools pro-
vide limited options for visualizing transcriptome patterns.

Third, multiple dataset comparisons play a crucial role
in interpreting multi-group experiments and in comparing
new results to published data. Despite the growth in de-
mand, no web-based tool exists yet to our knowledge that
provides a complete pipeline for identifying and visualizing
intersections and disjoints among multiple transcriptome
profiles. Tools exist for filtering gene lists (17) or plotting
certain types of visualizations such as Venn diagrams (18–
20), UpSet plots (19,21), and heatmaps (22), but stringing
these modules into an inference workflow remains tedious.
The one tool that does provide a graphical workflow for
intersection analysis, to our knowledge, is only tailored to
pairwise comparisons, and does not provide interactive or
customizable visualizations (23).

To address these challenges in transcriptome analysis and
interpretation, we have developed eVITTA (easy Visual-
ization and Inference Toolbox for Transcriptome Analy-
sis; https://tau.cmmt.ubc.ca/eVITTA/). It consists of three
modules that can work together or as standalones: easy-
GEO accesses, analyzes, and visualizes transcriptome data
in NCBI GEO; easyGSEA visually delineates gene expres-
sion patterns by functional profiling; and easyVizR com-

pares and contrasts multiple datasets via an integrated in-
tersection analysis workflow. Above all, eVITTA’s interac-
tive and user-friendly interface makes transcriptome analy-
sis accessible for wet and dry lab biologists alike. The multi-
ple entry and exit points in the workflow also allow users to
adapt one or more individual tool(s) into their own custom
analysis pipeline (Figure 1, Table 1).

To test eVITTA and demonstrate its capabilities, we per-
formed two independent evaluation studies on published
gene expression datasets: (i) transcriptomes of SARS-CoV-
2 infected human nasopharyngeal (NP) swab samples and
(ii) transcriptomes of Caenorhabditis elegans worms defi-
cient in sams-1/MAT1A or sbp-1/SREBP. We were able to
recapitulate original findings and also discovered additional
biological insights that were experimentally confirmed in
studies following the original profiling experiments, demon-
strating eVITTA’s effectiveness in transcriptome interpreta-
tion.

MATERIALS AND METHODS

Implementation

The eVITTA web server runs on Ubuntu Linux (18.04.5
LTS) with 32 GB memory, 16-core CPUs and a 10TB
hard drive with Apache (version 2.4.29, https://httpd.
apache.org), R (version 4.0.2, https://www.r-project.org/),
and R Shiny Server (version 1.5.14.948, https://rstudio.com/
products/shiny/download-server/). eVITTA utilizes several
third-party tools, including GEOquery (24), edgeR (25),
limma (26), plotly (https://plotly.com/r/), Tidyverse (27),
fgsea (28), gprofiler2 (29), pathview (30), visNetwork
(https://datastorm-open.github.io/visNetwork/), VennDia-
gram (31), UpsetR (32), RRHO (33) and others (Supple-
mentary Table S1). eVITTA has been tested successfully
on several browsers, including Safari v13.1.2, Firefox v65.0,
and Chrome v86.0.4240.111. Detailed methods in Supple-
mentary Data Section 1.

easyGEO: An interface to access, analyze and visualize tran-
scriptome data from NCBI GEO

Inputs: The unique GEO identifier of an NCBI GEO series,
which begins with ‘GSE’.

Data processing: Gene expression data matrix and de-
sign matrix are retrieved automatically. If the count table
in an RNA-seq study is specified as raw, genes expressed
at a level less than 1 count per million (CPM) reads in at
least five of the samples, or the minimum number of bi-
ological repeats in each condition, whichever less, are ex-
cluded from further analysis; if the count table in an RNA-
seq experiment is normalized, or if the dataset is based on
microarrays, a threshold of 1 is applied likewise to exclude
barely expressed genes. Next, for RNA-seq datasets, raw
read counts are normalized using the trimmed mean of M-
values (TMM) in edgeR (25) to adjust samples for differ-
ences in library size and Limma-voom (26) transformed us-
ing the default parameters; for microarray and normalized
RNA-seq counts, Limma-voom (26) transformation is ap-
plied with the normalize = ‘quantile’ option. Then, a linear
model using weighted least squares for each gene is fitted
with Limma-lmFit (26); batch effect, if any, is processed as
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Figure 1. A transcriptome interpretation workflow using the eVITTA toolbox. DE: differential expression; GEO: Gene Expression Omnibus; GSE: Gene
Series Expression; GSEA: Gene Set Enrichment Analysis; RNK: ranked gene list; ORA: overrepresentation analysis.

Table 1. Overview of eVITTA tools

Tool Input Data processing Output data Output visualizations

easyGEO GEO accession number DE analysis with edgeR
and limma

Gene expression, study
design, DE tables,
comma-separated

Volcano, heatmap, box, violin

easyGSEA RNK file, DE table, or
gene list

ORA or GSEA Enrichment table,
comma-separated

Bar, bubble, keyword,
Manhattan, volcano; GSEA plot,
density, box, violin; pathway
maps; enrichment network,
dendrogram, cluster
bar/bubble/table

easyVizR GSEA or DE results Intersection analysis
based on user-filtered
lists

Intersection table,
comma-separated

Venn, UpSet plot; heatmap, 2-D
& 3-D scatter; RRHO plot,
rank-rank scatter; volcano, bar;
leading-edge network; word cloud
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a factor in the design matrix to exclude sequencing artifacts.
Lastly, eBayes (26) empirical Bayes smoothing of standard
errors is applied to assess for DE.

Outputs: (a) Gene expression and study design tables (im-
portable into DE analyzers); (b) DE table (importable into
easyGSEA and easyVizR); and (c) visualizations (volcano,
heatmap, box and violin) that highlight most significantly
altered genes and display expression changes of a single
gene.

easyGSEA: functional profiling with integrative gene annota-
tion databases

Inputs: GSEA module: a ranked gene list (RNK) file or a
DE table, comma- or tab-delimited. ORA module: list of
genes or proteins, delimited by newline, tab or whitespace.

Data processing: To start, users select species of inter-
est and adjust choices of databases if needed (Supplemen-
tary Table S2); or, users upload GS libraries supplied in
Gene Matrix Transposed format (*.gmt) for custom anal-
ysis. Gene identifiers, if specified as Other/Mixed, are au-
tomatically converted into HUGO symbols. In the GSEA
module, rank tables are automatically calculated if input
is a DE table. Next, ORA or GSEA is performed (by de-
fault, min GS size = 15, max GS size = 200, permutation =
1000) and visualizations are automatically generated, each
customizable with its own plotting parameters.

Outputs: (a) converted rank and DE tables (GSEA mod-
ule); (b) enrichment table (importable into easyVizR); (c) re-
sults summary with interactive bar, bubble, keyword, Man-
hattan and volcano plots; (d) individual GS’s statistics, and
its distribution in the genome background (GSEA mod-
ule) delineated with enrichment, density, box and violin
plots; (e) pathway maps (KEGG (34), Reactome (35) and
Wikipathways (36)); and (f) enrichment network with clus-
tering dendrogram.

easyVizR: a systematic workflow for comparing regulatory
patterns in multiple datasets

Inputs: Comma-delimited data table(s) containing identi-
fiers, differential expression metric (e.g. log2-transformed
fold change, enrichment score), P-value (pval), and FDR
or adjusted P-value (padj).

Data processing: For each selected dataset, filtered lists
of genes or GSs are generated from user-selected filters (de-
fault: pval < 0.05). From filtered lists, users may select an
intersection of interest by defining set relationships (Supple-
mentary Figure S1). The selected intersection is highlighted
in Venn and Upset plots, and terms in the intersection are
used to generate interactive visualizations.

Outputs: (a) filtered gene lists (importable into
easyGSEA or other ORA tools) and corresponding
expression tables; (b) Venn and UpSet plots; (c) heatmap
for terms in chosen intersection; (d) 2D and 3D scatter
plots, rank-rank hypergeometric overlap (RRHO) plot and
rank-rank scatter for correlation analysis (33); (e) volcano
and bar plot for single datasets; (f) leading-edge network
(for GSEA outputs); and (g) text enrichment word cloud
for identifiers.

EVALUATION

SARS-CoV-2 infected human nasopharyngeal transcrip-
tomes show deregulation of olfactory signal transducers

Since early 2020, the global spread of SARS-CoV-2 has
led to concerted efforts to characterize its etiology in hu-
man patients. To test the analytical pipeline of eVITTA,
we reanalyzed a published RNA-seq dataset (GSE152075
(37)) of nasopharyngeal (NP) swabs from 430 SARS-CoV-
2-infected individuals and 54 uninfected controls (for de-
tailed steps, see Supplementary Data Section 2.1). First, us-
ing easyGEO, we retrieved the count data and design ma-
trix submitted by the authors, and performed DE analy-
sis. In line with the original findings (37), we found that
SARS-CoV-2 infection induced an interferon-driven antivi-
ral response in the nasopharynx, upregulating genes en-
coding antiviral factors (e.g. IFIT1/2/3/6, RSAD2) and
chemokines (e.g. CXCL9/10/11) (Figure 2A). Next, to test
if eVITTA’s analytical capacity using combinatorial GS
databases improves the sensitivity of finding molecular pat-
terns, we performed GSEA using the default selection of
biological process and pathway databases in easyGSEA.
We found that olfactory transduction GSs were downregu-
lated (Figure 2B, Supplementary Figure S2A, Supplemen-
tary Table S3). At the gene level, key olfactory transduc-
ers, including G protein subunit alpha L (GNAL) (38) and
cyclic nucleotide-gated channel subunit alpha 4 (CNGA4)
(39), showed reduced expression (Figure 2C, D, Supplemen-
tary Figure S2B). The observation of deregulated olfactory
signaling during SARS-CoV-2 infection agrees well with the
clinical presentation of anosmia in COVID-19 cases (40)
and with a recent report of transient olfactory dysfunc-
tion in mice infected with SARS-CoV-2 (41). Together, this
demonstrates eVITTA’s capacity to capture both broad and
granular patterns in gene expression, which facilitates the
identification of biological insights.

S-adenosylmethionine (SAM) mediates innate immune re-
sponse and lipogenesis in C. elegans

To test eVITTA’s functional profiling capacity and com-
putational reproducibility, we analyzed published C.
elegans transcriptomes characterizing the response to S-
adenosylmethionine (SAM) deficiency. The universal
methyl donor SAM is produced by SAM synthase (SAMS
in C. elegans; MAT in mammals) in the one-carbon cycle
(1CC). We reanalyzed published microarray and RNA-seq
data characterizing responses to sams-1 RNA interference
(RNAi), which were previously analyzed by ORA (42) and
used to validate the C. elegans functional database and
annotation tool WormCat (43). We first compared three in-
dependent transcriptome analyses of sams-1 RNAi-treated
worms, including two microarray datasets and one RNA-
seq dataset (42,44) (Supplementary Table S4; detailed steps
in Supplementary Data Section 2.2). Despite the difference
of the RNA-seq study compared to the two microarrays in
terms of experimental platform and upstream processing,
enrichment analysis with eVITTA showed a substantial
overlap (Figure 3A) and strong correlation in terms of
significantly regulated GSs (R2 = 0.95 and 0.87; Figure
3B, C), and also in terms of overall enrichment profiles
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Figure 2. Evaluation study on SARS-CoV-2 infected human nasopharyngeal transcriptomes (GEO repository: GSE152075). (A) The volcano plot high-
lights the 15 most upregulated (red) and 15 most downregulated (blue) genes by logFC in SARS-CoV-2 infected NP samples relative to uninfected indi-
viduals. (B) The graph shows the enrichment network of GSs deregulated by SARS-CoV-2 infection, including significantly (pval < 0.001, padj < 0.3)
downregulated olfactory transduction processes. Node denotes GS; node size reflects the number of leading-edge genes in each GS; blue, downregulation.
Edge reflects significant overlap of leading-edge genes as defined by a Jaccard Coefficient larger than or equal to 0.25. Detailed statistics are provided in
Supplementary Table S3. (C) The pathway map depicts gene expression changes of the KEGG olfactory transduction pathway in SARS-CoV-2 infected
NP samples. Blue, downregulation. Notable genes highlighted in red. (D) Violin plots show reduced expression of two key olfactory transducers, CNGA4
(logFC = -0.84, pval = 1.69E-01, padj = 4.88E-01) and GNAL (logFC = -1.65, pval = 1.30E−02, padj = 3.2E−01), in SARS-CoV-2 infected NP samples.
CPM, counts per million; ES, enrichment score; GEO, Gene Expression Omnibus; GS, gene set; KEGG, Kyoto Encyclopaedia of Genes and Genomes;
logFC, log2-transformed fold change; NP, nasopharyngeal; padj, adjusted P-value; pval, P-value.

(rho = 0.77 and 0.72; Figure 3D, E). This suggests that the
eVITTA pipeline is robust enough to handle comparisons
of studies with differences in upstream platforms and
processing.

In C. elegans, SAM deficiency induces immune responses
in the absence of pathogen infection, and a similar response
occurs upon depletion of the SAM-regulated lipid synthesis
regulator sbp-1/SREBP (42). We thus tested eVITTA’s effi-
cacy to capture convergent and divergent regulations fol-
lowing sams-1 or sbp-1 RNAi. Consistent with previous
findings (42,43), we confirmed a strong immune signature
in both sams-1 and sbp-1 deficiency (Figure 4A-B). Interest-
ingly, eVITTA’s comprehensive GS databases allowed us to
discover specific changes in one branch of innate immunity,
Toll-like receptor (TLR) signaling (Figure 4B). Prior stud-
ies have shown that, in C. elegans, TLR signaling is required

for the innate immune response against Gram-negative bac-
teria (45,46); this may explain why the original study (44)
found sams-1 RNAi worms to be exquisitely susceptible to
infection by P. aeruginosa, a Gram-negative bacterium.

Although sams-1 and sbp-1 RNAi affected the transcrip-
tome in similar ways, a small set of GSs were upregulated
in sams-1 RNAi but downregulated in sbp-1 RNAi (Figure
4C-E; Supplementary Table S5). Most of these GSs pertain
to lipid metabolism, recapitulating published findings that
lipogenesis is elevated by sams-1 deficiency but suppressed
by sbp-1 deficiency (42,47). Interestingly, the 1CC also fol-
lows this pattern, not only confirming a known negative
feedback loop from sbp-1 to the 1CC (42,47), but also in-
dicating that SAM deficiency alone causes compensatory
induction of the 1CC, in line with a recent study (48). Over-
all, this exemplifies the utility of eVITTA in revealing both
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Figure 3. Comparison of three different transcriptome profiles of C. elegans worms with perturbations in S-adenosylmethionine synthesis (sams-1/MAT1A
RNAi). The figure compares GSEA profiles of three independent experiments of sams-1 RNAi treated worms: dataset A – microarray from GEO accession
GSE70692; dataset B – microarray from GSE70693; and dataset C – RNA-seq from GSE121508. (A) The Venn diagram shows (in yellow) GSs that
are significantly changed (pval < 0.05, padj < 0.25) in all three sams-1 RNAi datasets. Each circle represents GSs that are significantly changed in the
corresponding dataset. easyVizR parameters: for datasets A−C, pval< 0.05, padj < 0.25, intersection = true. (B) The 2D scatter plot shows GSs that are
significantly regulated (pval< 0.05, padj < 0.25) in both datasets A and B. n = 320; correlation R2 = 0.95. X-axis: ES in dataset A; Y-axis: ES in dataset
B. (C) The 2D scatter plot shows GSs that are significantly regulated (pval< 0.05, padj < 0.25) in both datasets A and C. n = 359; correlation R2 = 0.87.
X-axis: ES in dataset A; Y-axis: ES in dataset C. (D) The rank scatter plot shows the Spearman correlation between unfiltered datasets A and B. X and Y
axes: ranks of −log10-transformed P-values signed by ES (−log10(pval)*sign(ES)) in datasets A and B, respectively. n = 912; rho = 0.77; pval< 2.2e−16.
(E) The rank scatter plot shows the Spearman correlation between unfiltered datasets A and C. X and Y axes: ranks of −log10-transformed P-values signed
by ES (−log10(pval)*sign(ES)) in datasets A and C, respectively. n = 961; rho = 0.72; pval< 2.2e−16. ES, enrichment score, also displayed as ‘Value’; GEO,
Gene Expression Omnibus; GS, gene set; GSEA, pre-ranked gene set enrichment analysis; intersection, selected parameters in easyVizR ‘3.2 Intersection
of Interest’; padj, adjusted P-value, also displayed as ‘FDR’; pval, P-value, also displayed as ‘PValue’; RA, Reactome Pathways; rho, Spearman’s rank
coefficient; RNA-seq, RNA sequencing.

convergent and differential patterns in multiple datasets at
high resolution.

DISCUSSION

Assembling a dedicated analytical pipeline to interpret tran-
scriptomes is a complex task with many challenges. eVITTA
addresses these challenges by automating the query and
analysis of NCBI GEO transcriptome data with a stan-
dardized pipeline (easyGEO), performing functional pro-
filing with 100+ monthly-updated, species-specific GS li-
braries (easyGSEA), and providing a workflow for sys-
tematic comparison of expression patterns in multiple
datasets (easyVizR). As illustrated in the evaluation stud-
ies, eVITTA’s workflow and interactive visualizations en-
able efficient discovery of both broad and subtle changes

in expression, which other tools were unable to fully
capture.

Although we developed eVITTA for transcriptome anal-
ysis and interpretation, its tools can also be applied to
other omics studies. For instance, easyGSEA can function-
ally characterize lists of genes or proteins generated from
any omics platform, and easyVizR can handle any differ-
ential expression data with statistical significance (https:
//tau.cmmt.ubc.ca/eVITTA/#userguide).

Like all similar web servers, eVITTA has some limita-
tions. easyGEO cannot handle datasets where count data
are missing; it also relies on user-supplied count data, which
may be processed using different methods and thus can-
not be used for between-study comparisons. In addition,
it does not yet support datasets deposited in ArrayExpress
or the European Nucleotide Archive (ENA). Future iter-
ations of eVITTA may include access to these resources

https://tau.cmmt.ubc.ca/eVITTA/#userguide
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Figure 4. Evaluation study on C. elegans worms with perturbations in S-adenosylmethionine synthesis (sams-1/MAT1A RNAi) and lipogenesis (sbp-
1/SREBP RNAi). The figure compares GSEA profiles of sams-1 RNAi treated worms (datasets A−C in Figure 3) versus dataset D, microarray profile of
sbp-1 RNAi treated worms (GSE70692). (A) The Venn diagram shows (in yellow) GSs that are significantly upregulated (pval< 0.05, padj < 0.25, ES >

0) in all four datasets. Each circle represents GSs that are significantly upregulated in the corresponding dataset. easyVizR parameters: for datasets A−D,
pval< 0.05, padj < 0.25, sign = +, intersection = true. (B) The graph shows the enrichment network of 50 shared significantly upregulated GSs (from A).
Node denotes GS; node size reflects the number of leading-edge genes in each GS. Edge reflects significant overlap of leading-edge genes in dataset A, as
defined by a Jaccard coefficient larger than or equal to 0.25. (C) The 2-dimensional scatter plot shows the ESs of GSs that are significantly regulated (pval<
0.05, padj < 0.25) in both datasets A and D. n = 235; correlation R2 = 0.74. A set of GSs that are regulated in opposite directions is found in quadrant
four (bottom right); these mostly pertain to fatty acid biosynthesis. (D) The heatmap shows the 11 categories that are positively regulated in sams-1 RNAi
(pval< 0.05, padj < 0.25, ES > 0 in datasets A, B and C) and negatively regulated in sbp-1 RNAi (pval< 0.05, padj < 0.25, ES < 0 in dataset D). Cell colors
represent ES value, ordered by dataset A. Detailed statistics are provided in Supplementary Table S5. (E) The graph shows the enrichment network of 11
GSs from Figure 4D. Edges reflect significant overlap of leading-edge genes in dataset A; other parameters are as in B. 1CC, one-carbon cycle; GO, gene
ontology; BP, biological process; C2, WormCat Category 2; ES, enrichment score, also displayed as ‘Value’; GEO, Gene Expression Omnibus; GS, gene set;
GSEA, pre-ranked gene set enrichment analysis; Intersection, selected parameters in easyVizR ‘3.2 Intersection of Interest’; KEGG, Kyoto Encyclopaedia
of Genes and Genomes; padj, adjusted P-value, also displayed as ‘FDR’; pval, P-value, also displayed as ‘PValue’;RA, Reactome Pathways; RNA-seq,
RNA sequencing; TLR, Toll-like receptor.

and offer customizable DE analysis with limma (26), edgeR
(25) and DESeq2 (49). The GSEA method in easyGSEA
assumes genes in a GS change in one direction (either pre-
dominantly up- or down-regulated); methods to evaluate
GSs regardless of the direction are to be incorporated (50).
Future iterations of eVITTA may also adopt more effec-
tive weighing techniques in prioritizing GSs with high phe-
notype relevance, especially in the context of other omics
data such as ChIP-seq and genomic mutation data (51). In
easyVizR, most modules rely on comparisons between fil-
tered gene lists; more options for unbiased comparisons,
such as Spearman’s correlation heatmap, may be included
in the future. Future iterations of eVITTA may also ad-
dress challenges in comparing transcriptomes across species
(51,52). Lastly, future releases of eVITTA may provide a
more seamless user experience by providing direct links be-

tween its three modules. Overall, eVITTA aims to both im-
prove existing pipelines for omics data analysis and to make
transcriptome interpretation more accessible to the wider
research community.

DATA AVAILABILITY

eVITTA is free and open to all users and there is no login
requirement (https://tau.cmmt.ubc.ca/eVITTA/). Its source
code is available in the GitHub repository (https://github.
com/easygsea/eVITTA.git).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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