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Hepatocellular carcinoma (HCC) is a group of highly lethal malignant tumors that seriously
threaten human health. The main way to improve the survival quality and reduce the
mortality of HCC is early diagnosis and treatment. Therefore, it will be of great significance
to explore new quantitative detection methods for HCC markers. With the rapid
development of electrochemical biosensors and nanomaterials, electrochemical
sensors based on graphene can detect tumor markers, with the advantages of simple
operation, high detection sensitivity, and specificity. Combined with the published literature
in recent years, the article briefly reviews the application of graphene-based
electrochemical biosensors in the detection of HCC markers, including alpha-
fetoprotein (AFP), Golgi protein-73 (GP73), exosomes, and microRNA-122 (miR-122).
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INTRODUCTION

HCC is the sixth most commonly occurring cancer worldwide, and the mortality is second only to
lung and gastric cancers (Altekruse, et al., 2009) (Bolhuis, et al., 2020). According to survey statistics,
there are more than 700,000 new cases of HCC every year in the world (Qiao, et al., 2020). Because
the clinical symptoms of HCC in the early stage are not typical, most patients are already in the
middle or late stages when they are diagnosed (Al Bandar and Kim 2017). It is a need to explore new
HCC surveillance tools for better detection and prevention with HCC.

Tumor markers are a series of substances that are produced by tumor cells themselves or by the
surroundings, reflecting the existence and growth of tumors (Bohunicky and Mousa 2010) (Wu and
Qu 2015). Tumor markers include DNA (such as specific mutations, translocations, amplification,
and loss of heterozygosity) and different RNA or proteins (such as hormones, antibodies, oncogenes,
or tumor suppressors). They exist widely in blood, body fluids, and tissues, which have a great value
in tumor diagnosis and prognostic, evaluation of curative effect, and screening the high-risk
populations (Yang and Patel 2019). Currently, the clinical detection of HCC markers mainly
relies on enzyme-labeled immunoassay, chemiluminescence analysis, time-resolved fluorescence
immunoassay, and protein chip detection (Wei et al., 2011) (Shen, et al., 2020). However, these
methods are strict to reaction conditions and have low sensitivity. They also have the disadvantages
of complicated operation and high cost that limit their further clinical application (Wiedemann
2013) (Wang et al., 2016) (Yang et al., 2019). Electrochemical sensor devices have been gradually
applied to the quantitative analysis for tumor markers due to the high sensitivity and simplicity. With
the progress and development of nanotechnology, nanomaterials based on electrochemical sensors
have attracted a great deal of attention (Mohd Azmi et al., 2014). Among them, graphene is widely
used due to the unique advantages, such as high mechanical strength, huge surface area, excellent
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electrical and thermal conductivity, high thermal stability, and
good biocompatibility (Schedin et al., 2007). Graphene is
monatomic-thickness-sheet nanomaterial, which is composed
of Sp2 hybrid carbon atoms arranged in a honeycomb lattice
structure. The unique electronic structure gives graphene a larger
surface area and porous structure, which is suitable for
multifunctional modification (Yoo, et al., 2008; Lawal 2015).
In addition, graphene also has unique electrochemical
properties such as fast electron transfer rate and low charge
transfer resistance and excellent electrical and thermal
conductivity, which improve the response speed and detection
sensitivity of biosensors. Combining the advantages of both
graphene structural and electrochemical properties, the
graphene-based electrochemical biosensors have been applied
for a broad range, including the detection of glucose, heavy
metal ions, hydrogen peroxide, adenosine triphosphate,
cholesterol, ascorbic acid, uric acid, pathogenic
microorganisms, and cancer biomarkers (Shao, et al., 2010;
Wang B. et al., 2017; Krishnan, et al., 2019; Sakar, et al., 2019;
Taniselass, et al., 2019). This article briefly reviews the latest
findings and progresses reported in the literature on the
application of graphene-based electrochemical biosensors in
the detection of HCC markers, including alpha-fetoprotein
(AFP), Golgi protein-73 (GP73), exosomes, and microRNA-
122 (miR-122).

ALPHA-FETOPROTEIN DETECTION

AFP is a plasma protein produced by the yolk sac and liver during
the fetal period and is one of the most widely used clinical cancer
markers, especially for liver cancer (Okuyucu, et al., 2015; Zhu,
et al., 2015). AFP is produced in the fetal liver, with little or no
production in normal tissues. When liver cells become cancerous,
the gene expression of AFP is upregulated due to
hypomethylation, and the concentration of AFP can be
significantly increased in serum (Zhang, et al., 2018).
Therefore, AFP becomes a common serum marker for early
diagnosis of HCC (Zhao Y. et al., 2020). Many authoritative
experts and organizations have designated AFP as the only tumor
marker for primary liver cancer. The level of AFP in blood is
related to the size of HCC tumor (Zhao B. et al., 2020). AFP
detection has an important clinical value in the prognosis of
surgical treatment, radiotherapy, and chemotherapy.

Graphene/nanoparticle composite-based electrochemical
biosensors for the detection of AFP have been summarized in
Table 1. Among them, the graphene–AuNPs composite exhibited
outstanding electrocatalytic activity, which combines the
advantages of high electrical conductivity and electrocatalytic
activity of AuNPs. For example, Zhou et al. (2019) synthesized
and immobilized gold nanoparticles–dextran–reduced graphene
oxide (AuNPs–Dex–rGO) onto an electrode, with ferricyanide as
the electrochemical probe, and the simple electrochemical
immunosensor achieved ultrasensitive detection of AFP. A
significant advantage of this method is that the
AuNPs–Dex–rGO multifunctional nanocomposites were
prepared by a simple one-step process, which can greatly
simplify the steps and ensure synergistic effect. In addition,
due to the excellent conductivity and material compatibility of
rGO and AuNPs, the electron transfer efficiency of the sensor was
greatly improved, exhibiting high sensitivity and low detection
limit (0.05 pg/ml). Shan et al. (2016) prepared a kind of novel
redox-active species poly(MB)-Au using HAuCl4 as an oxidant,
and methylene blue as a monomer. Then, they immobilized the
antibody on the nanocomposites as a probe and modified
graphene–Au as the substrate of the electrode. They pioneered
the synthesis of uniform poly (methylene blue)–Au nanoparticles
in an approach of dye oxidative polymerized by noble metal salt.
Due to the uniform and conductive poly (methylene blue)–Au
nanomaterials with an innate signal used as immunosensing
probes, the sensor improved signal amplification and provided
a detection limit of AFP with 0.0196 pg/ml. Furthermore, because
this assay selected the sandwich method mode, which owns high
detection efficiency, the detection results of this method on
clinical serum were well consistent compared to those ofs
ELISA, showing good prospects for clinical application.

Graphene and metal oxide composites are the current focus.
The combination of Fe3O4 and reduced graphene oxide (rGO)
improves not only the surface area for the immobilized antibody
but also the electrocatalytic ability. Liu et al. (2017) reported a
sandwich electrochemical biosensor for AFP based on the signal
amplification of Pt NPs/Co3O4/graphene-modified secondary
antibodies. Under optimal conditions, the sensor allowed
linear detection of AFP in the range of 0.0001 ng/ml–60 ng/ml
with a detection limit of 0.029 pg/ml. The sensor could be also
stored for a long time at 4°C, showing outstanding stability. Wang
Y. et al. (2017) demonstrated a biosensor using highly conductive
graphene nanocomposites by immobilizing gold nanoparticles

TABLE 1 | Graphene nanocomposite-based electrochemical assay for AFP.

Graphene-based nanocomposite Linear range LOD Reference

AuNPs–Dex–rGO 0.01–20 pg/ml 0.05 pg/ml Zhou et al. (2019)
Graphene–Au 1 pg/ml–100 ng/ml 0.0196 pg/ml Shan et al. (2016)
PtNPs/Co3O4/graphene 0.1 pg/ml–60 ng/ml 0.029 pg/ml Liu et al. (2017)
TB–Au–Fe3O4–rGO 0.01 pg/ml–10 ng/ml 0.0027 pg/ml Wang Y. et al. (2017)
CdTe@SiO2/graphene 1.0 pg/ml–100 ng/ml 0.22 pg/ml Pan et al. (2019)
AuNPs/PGNR 5–60 ng/ml 1 ng/ml Jothi et al. (2020)
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and toluidine blue (TB) on Fe3O4–rGO nanocomposite,
especially the TB–Au–Fe3O4–rGO nanocomposite was
fabricated using Fe3O4–rGO as a single-layer and high-purity
platform to absorb gold nanoparticles (AuNPs) and TB. AuNPs
have good biocompatibility in capturing antibodies, and Fe3O4

NPs have good electrocatalytic performance toward TB, which
was detected as a redox probe. So, the usage of the
TB–Au–Fe3O4–rGO-modified electrode to fabricate the
electrochemical immunosensor can achieve the quantitative
detection of AFP. Due to the large specific surface area and
high electrical conductivity of graphene, the
TB–Au–Fe3O4–rGO-modified electrode has good adsorption
property and can load a large number of TB and Au, which
greatly achieve the effective and sensitive detection of AFP. Under
optimal conditions, the method exhibited a low detection limit of
0.0027 pg/ml for AFP. As a successful biosensor with outstanding
detection capability, the method makes full use of the advantages
of elements composited of the multifunctionalized
nanocomposites, including graphene, Fe3O4 NPs, AuNPs,
and TB.

In addition, some novel nanocomposites and skillful chemical
reduction methods were also explored in the application of AFP
detection. For example, Pan et al. (2019) constructed a
sandwiched immunosensor of AFP using CdTe@SiO2 as an
emitter, proving a low detection limit of 0.22 pg/ml. However,
the distinctive degrees of toxicity manifested by QDs still remain
to be addressed. Jothi et al. (2020) made AuNPs electrodeposited
on porous graphene nanoribbon by the chemical reduction
method to act as a platform to detect AFP, with a low
detection limit of 1 ng/ml, providing versatile detection strategies.

GOLGI PROTEIN-73 DETECTION

GP73 is a 400-amino acid protein with a predicted molecular
weight of 73 kDa (Duc, et al., 2020). As a kind of transmembrane
protein, GP73 mainly exists on the surface of the Golgi apparatus
(Kladney, et al., 2000). However, when hepatocytes become
cancerous, endoprotease cleaves, and GP73 is released into the
extracellular environment; therefore, serotype GP73 can be
detected in blood serum of liver cancer patients. GP73 in liver
cancer tissue is positively correlated with vascular endothelial
growth factor (Mao, et al., 2010). Related studies also show that
serum GP73 can be used to evaluate the prognosis of liver cancer
(Zhao S. et al., 2020).

Yu, et al. (2014) reported an electrochemical immunosensor
for detecting GP73 with the combination of graphene oxide and
CdSe QDs. rGO provides excellent conductivity, and the CdSe
QDs are detected with a prominent electrochemical signal. The
sensor showed a linear range from 20 to 5,000 pM and sensitivity
of 12 pM for GP73 detection. As short strands of DNA or RNA,
aptamers are often used as recognition elements for marker
detection due to the high affinity and specific for the target
(Keefe, et al., 2010). Compared with the traditional
biomolecular ligands such as antibodies, aptamers have other
merits of good stability, lower cost, and easy modification. An
example of the aptamer-based biosensor is discussed here. Zhou

et al. (2020) found that the hemin/graphene nanohybrids (HGNs)
can catalyze silver deposition to amplify the signal. They solidified
GP73 aptamer as the capture probe, and assembled
HGNs–aptamer (HGNs–Apt) as the signal probe. Then, the
silver (Ag) ions were reduced in solution due to the
peroxidase-like properties of HGNs. The electrochemical
aptamer nanobiosensor allows linear detection of GP73
between 10.0 and 100.0 μg/ml with a detection limit of
3.16 μg/ml.

EXOSOMES DETECTION

Exosomes are nanoscale bilayer lipid inclusion structures with a
diameter of 50–200 nm, carrying biological information of
maternal cell molecule characteristics, such as proteins, lipids,
deoxyribonucleic acid (DNA), messenger RNA (mRNA),
microRNA (miRNA), and noncoding RNA (Iero, et al., 2008).
Exosomes widely exist in body fluids, including blood, tears,
urine, saliva, and ascites. Studies have shown that tumor cells can
release more exosomes than normal cells, and the basic
information of cancer cells can be directly obtained by
analyzing exosomes (An, et al., 2015). Exosomes are involved
in various processes of tumor occurrence and development,
including promoting tumor growth, metastasis, and drug
resistance and causing the changes of the tumor
microenvironment (Webber, et al., 2015).

Exosomes contain a large number and variety of biologically active
contents, which can be detected as biomarkers and potential
therapeutic targets (Greening, et al., 2015). An et al. (2019)
reported a click chemistry and DNA hybridization chain reaction
(HCR)-based electrochemical sensor for detecting tumor exosomes.
They immobilized the CD63 aptamer on the graphene-modified
electrode to capture exosomes. Based on the click chemistry method,
the captured exosomes were labeled with a DNA probe, and DNA
HCR was triggered to bind numerous of horseradish peroxidase
(HRP) molecules. The concentration of exosomes was quantified by
monitoring the electrochemical current of HRP molecules catalyzing
the reaction of o-phenylenediamine (OPD) and H2O2. For the
ultrasensitive detection of tumor exosomes, they flexibly used
alkynyl-4-ONE for the conjugation of protein on the surface of
exosomes to detect other exosome subpopulations. Meanwhile, the
DNA HCR was also designed for signal amplification. This method
can linearly detect exosomes from 1.12 × 102 to 1.12 × 108 particles/μl
with detection limits up to 96 particles/μl. Giving its biocompatibility
associated with high stability, the method enabled sensitive and
accurate analysis of exosomes in human serum.

Hepatoma-derived exosomes can release vascular endothelial
growth factor (VEGF), which can promote tumor angiogenesis,
provide sufficient nutrition for HCC, and promote the occurrence
and development of liver cancer cells (Mosquera-Heredia and
Maria, 2021). Ni et al. (2020) synthesized methylene blue-loaded
graphene oxide (GO/MB) composite and modified ferrocene-
labeled aptamer onto glassy carbon (GC) to develop an
aptasensor for the detection of vascular endothelial growth
factor (VEGF). The GC–GO/MB–streptavidin aptamer acts as
a sensitive redox probe and is capable of amplifying
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electrochemical signals, with a linear detection range of
10–500 pg/ml for VEGF.

MICRORNA-122 DETECTION

MicroRNAs (miRNA) are a kind of small endogenous single-
stranded noncoding RNAs, which can regulate the expression
level of target genes at the posttranscriptional level (Hu, et al.,
2012). MiR-122 is the most abundant miRNAmolecule expressed
in liver tissue, accounting for about 70% of the total miRNA in the
liver level (Li, et al., 2019). Studies have shown that the expression
of miR-122 decreased significantly in patients with liver cancer
(Lewis and Jopling 2010). MiR-122 can inhibit the growth of liver
cancer cells and prevent the formation of new blood vessels, by
inhibiting the formation of vascular endothelial cells in the
microenvironment of HCC (Bandiera, et al., 2015). These
mechanisms reduce the nutrients required by liver cancer cells,
which is not enough to maintain the normal demand and prevent
the growth of liver cancer cells (Nassirpour, et al., 2013).

Kasturi et al. (2021) developed a biosensor using gold
nanoparticles–dotted reduced graphene oxide (rGO/Au)
nanocomposite for the detection of miR-122. A linear
concentration with a range from 10 μM to 10 pM and a
detection limit of 1.73 pM were obtained. Surprisingly, they
synthesized rGO by a “green” approach with natural soapsuds
instead of toxic chemicals such as NaBH4 and hydrazine like
most researchers often do, providing us the precious
environmental conscientiousness. Kilic et al. (2016)
designed an electrochemical biosensor by first immobilizing
the complementary anti-miR-122 and then capturing and
solidifying the target miR-122. The advantage of this
method is that it is less complicated and label-free. The
proposed biosensor can detect the limit of 1 pM in real
samples such as total RNAs isolated from cell lysates.

OUTLOOK

With the development of gene-sequencing technology in recent
years, more and more tumor markers of HCC have been discovered
and studied. Electrochemical technology is an interdisciplinary
comprehensive technology and has been widely used in clinical
laboratory and tumor detection. Compared with traditional

detection methods in clinical HCC marker diagnosis,
electrochemical immunosensors based on graphene have a series
of advantages such as short detection time, good selectivity, low
detection limit, and wide detection range. The future research from
functional perspective needs more attention in following aspects
including 1) new graphene nanocomposites with more stability in a
high ionic strength environment and stronger ability of binding with
biomolecules; 2) how to use one graphene sensor to realize the
combined detection of multiple tumor markers simultaneously; 3)
the novel tumor markers of liver cancer such as circRNA based on
the graphene-assisted electrochemical sensor should be studied.
From the perspective of real biological application, there are still
several challenges related to practical production including 1) the
method of mass production of single-layer sheet graphene has not
been widely used; 2) in the process of modification and
functionalization of large amounts of graphene, the stacking and
agglomeration of the nanocomposite is hard to alleviate; 3) there is a
great demand for the POCT system in clinical detection at present,
and the electrochemical sensor based on graphenemust develop and
transfer to the miniaturization and intelligence of electronic devices;
4) there is a possibility that the graphene-based electrochemical
sensor can be reasonably combined with some new assay
technologies, such as chromatography and sequencing, which
may make the whole detection process develop toward
intelligence and automation. These advances in the research of
the graphene-based electrochemical sensor provide new
promising platforms for sensitive detection of HCC markers,
which provide potential solutions not only in biomedical assay
but also in other fields such as food, agriculture, environmental
monitoring, and control.
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