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Abstract

Objectives: To develop and validate a radiomics model for evaluating treatment response to immune-checkpoint
inhibitor plus chemotherapy (ICI + CT) in patients with advanced esophageal squamous cell carcinoma (ESCC).

Methods: A total of 64 patients with advance ESCC receiving first-line ICI + CT at two centers between January
2019 and June 2020 were enrolled in this study. Both 2D ROIs and 3D ROIs were segmented. ComBat correction
was applied to minimize the potential bias on the results due to different scan protocols. A total of 788 features
were extracted and radiomics models were built on corrected/uncorrected 2D and 3D features by using 5-fold
cross-validation. The performance of the radiomics models was assessed by its discrimination, calibration and
clinical usefulness with independent validation.

Results: Five features and support vector machine algorithm were selected to build the 2D uncorrected, 2D
corrected, 3D uncorrected and 3D corrected radiomics models. The 2D radiomics models significantly
outperformed the 3D radiomics models in both primary and validation cohorts. When ComBat correction was used,
the performance of 2D models was better (p = 0.0059) in the training cohort, and significantly better (p < 0.0001) in
the validation cohort. The 2D corrected radiomics model yielded the optimal performance and was used to build
the nomogram. The calibration curve of the radiomics model demonstrated good agreement between prediction
and observation and the decision curve analysis confirmed the clinical utility.

Conclusions: The easy-to-use 2D corrected radiomics model could facilitate noninvasive preselection of ESCC
patients who would benefit from ICI + CT.
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Background
Esophageal cancer (EC) is the seventh most common
cancer cause of death in male population worldwide [1].
China accounts for more than half of the world’s new
cases and EC-related deaths, with more than 90% diag-
nosed EC being esophageal squamous cell carcinoma
(ESCC) [2]. Surgery, chemotherapy and radiotherapy are
the cornerstone treatments of EC [3, 4]. However, out-
comes are still poor with a 5-year survival rate of 10–
15% [5]. The emerging targeted drugs used to treat EC
are only targeting HER2 or vascular endothelial growth
factor [6–8], and the therapeutic effect of improved trad-
itional treatments with added targeted drugs is still un-
satisfactory with a 5-year survival rate of 30–40% for
ESCC [9]. Therefore, there is a high clinical need for
novel and more effective treatment options for EC
patients.
In recent years, the study of KEYNOTE-028 and

KEYNOTE-180 first confirmed the efficacy and safety of
pablizumab in the treatment of advanced EC [10, 11].
Whereafter, in a larger sample size, KEYNOTE-181
established the position of pablizumab in the treatment
of advanced EC [12]. At present, a number of studies
have been performed to explore the efficacy and safety
of immunotherapy combined with chemotherapy as
first-line and post-line treatment of advanced ESCC
[13–16]. The comprehensive positive score (CPS), tumor
proportion score (TPS) are immunohistochemical
markers for evaluating the expression of programmed
death receptor ligand 1 (PD-L1) in tumors. However, the
precision of these biomarkers was unsatisfying. There-
fore, more reliable biomarkers for predicting the efficacy
of immunotherapy for EC is in urgent need.
With the rapid development of artificial intelligence

(AI) in the field of medical imaging, radiographic
characteristics of tumors referred to as ‘radiomics’
have shown success in immunotherapeutic response
prediction for different tumor types [17–19]. To the
best of our knowledge, there is no evidence yet in
EC. In this study, we aimed to evaluate the potential
predictive value of CT-derived radiomics in advanced
ESCC patients receiving immune-checkpoint inhibitor
plus chemotherapy (ICI + CT).

Methods
Study design
A total of 64 patients with advance inoperable ESCC re-
ceiving 200mg every 3 weeks of Sintilimab plus Doce-
taxel (60 mg/m2) and Carboplatin (AUC = 5) at two
centers between January 2019 and June 2020 were in-
cluded in this study approved by the two institutional re-
view boards. All patients in two centers had undergone
MDT study before starting treatment. Informed consent
was waived. In this study patients were confirmed by

biopsy and immunohistochemistry of the original tumor
tissue. All the enrolled patients were first-visit and prior
to treatment. Patients who had never received cancer re-
lated treatments including radiotherapy, chemotherapy,
comprehensive treatment and surgery and those who
lacked CT imaging data and necessary clinical informa-
tion before the initial treatment (immunotherapy plus
chemotherapy) were excluded from this study. Exclusion
criteria also included patients with non-squamous cell
carcinoma including adenocarcinoma and signet ring
cell carcinoma and those who discontinued treatment
due to adverse events. Flow chart of patient enrollment
is shown in Fig. 1. For patients’ clinical characteristics,
information of age, gender, Body Mass Index (BMI),
clinical TNM stage, hemoglobin, blood albumin, leuco-
cyte, C-reactive protein and underlying diseases was ac-
quired from electronic medical record system. BMI was
calculated based on height and weight. Clinical TNM
stage was confirmed by pre-treatment gastroscopy, CT
examination, etc.

Response kinetics and scan protocol
Contrast enhanced computed tomography (CE-CT)
scans were acquired before (baseline) and around six
weeks (two cycles) after start of treatment (follow-up).
Treatment response was evaluated by assessing the rela-
tive change in diameter between baseline and follow-up,
using RECIST 1.1 criteria [20]. Patients were divided
into responders [complete/partial response disease] and
non-responders [stable and progressive disease] accord-
ing to RECIST. For progressive disease, pseudoprogres-
sion was confirmed by follow-up observation.
All preoperative enhanced CT images were obtained

with multidetector CT scanners during inspiration. De-
tailed information of the CT scanners including manu-
facturer, country of origin, tube voltage, slice thickness
and spacing was shown in Supplementary Table 1.
Iopromide (300 mg I/m1, Schering Pharmaceutical Ltd)
was used as the contrast agent for enhanced scanning
protocol, and 80–100 ml was injected at 3–4 ml/s flow
rate.

Lesion segmentation and Radiomics features extraction
All enhanced CT images were manually segmented with
an open-source software ITK-SNAP (http://www.
itksnap.org/pmwiki/pmwiki.php) for feature extraction.
2D ROI was selected as the slice with maximum axial
diameter of the tumor, and 3D ROI was segmented slice
by slice on the whole volume of the lesions.
To correct variability from spatial information in three

axes (x, y, z) and different CT protocols, all enrolled CT
images were resampled to a same isotropic voxel spa-
cing. Considering the distribution of our data, we
resampled the 2D ROIs to 1 × 1mm2, and the 3D ROIs
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to 1 × 1 × 1mm3 to balance between the loss of in-plane
information and the interpolation of out-of-plane infor-
mation. Afterwards, the CT radiomics features, from 2D
and 3D ROIs respectively, were extracted with an open-
source python platform Pyradiomics (version 2.1.2,
https://pyradiomics.readthedocs.io/en/latest/#). Features
used in this study included 14 shape-based features, 18
first order statistics features and 68 texture features con-
taining the gray-level co-occurrence matrix (GLCM, 22
features), gray level run length matrix (GLRLM, 16 fea-
tures), gray level size zone matrix (GLSZM, 16 features)
and gray level dependence matrix (GLDM, 14 features).
Besides the original images, eight filters were also gener-
ated for feature extraction, including wavelet transform
filter. All the categories of features other than shape
originated from the original and filtered images were cal-
culated. Therefore, in this study, a total of (18 + 68 +
14) + (18 + 68) *8 = 788 features were statistically
analyzed.
To control the potential bias caused by various im-

aging acquisition protocols on the prediction efficacy of
the model, ComBat correction method (https://github.
com/Jfortin1/ComBatHarmonization) was applied to 2D
and 3D ROIs, resulting in four different groups of fea-
tures for comparison: (1) 2D uncorrected radiomics fea-
tures; (2) 2D corrected radiomics features; (3) 3D

uncorrected radiomics features; (4) 3D corrected radio-
mics features.

Feature selection
Feature selection was performed separately for each
group of features. Three steps were applied to reduce di-
mensionality: (1) features with variance larger than 0.8
were included for further analysis; (2) univariate feature
selection was done by ANOVA (continuous variable) or
chi-square test (discrete variable) to explore the associa-
tions between features and treatment response. The fea-
tures with p value>0.05 would be excluded from further
analysis; (3) the most significant features were selected
by the least absolute shrinkage and selection operator
(LASSO) method. Since the total patient number was
limited, the nonzero feature coefficients ranking the first
five were selected for each group to avoid overfitting.

Prediction models and workflow
After feature selection, traditional machine learning al-
gorithms, including support vector machine (SVM), k
nearest neighbors, random forest, decision tree (DT), lo-
gistic regression (LR), were applied to build prediction
radiomics models for each feature group. The perform-
ance of the models was compared by using 5-fold cross-
validation in the validation cohort, with the best model

Fig. 1 Flowchart of Patient enrollment
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being selected. All the patients were randomly split into
80% for training and the remaining 20% for validation,
with 100 iterations. All feature selection and radiomics
algorithm selection were based on the data in the train-
ing dataset to ensure independence from validation
dataset.
Radiomic nomogram was built based on the multivari-

able logistic analysis of the selected radiomics features in

the training group. Calibration curves accompanied by
the Hosmer–Lemeshow test were plotted to evaluate the
effectiveness of the radiomics nomogram. Decision curve
analysis was conducted to determine the clinical useful-
ness of the radiomics nomogram by quantifying the net
benefits at different threshold probabilities in the valid-
ation dataset. Flow chart of radiomics nomogram build-
ing was illustrated in Fig. 2.

Fig. 2 Flowchart of feature selection and radiomics nomogram building. (A) Lesion segmentation and 2D ROI and 3D ROI segmentation; (B) A
total of 788 selected features for 2D and 3D ROI respectively; (C) ComBat correction was applied to minimize the potential bias on the results due
to different scan protocols of the 5 different CT scanners; (D) Dimension reduction for features selection; (E) Select the optimal algorithm for
radiomics model building. The best one was selected by using 5-fold cross-validation in the validation cohort. All the patients were randomly
split into 80% for training and the remaining 20% for validation, with 100 iterations; (F) Radiomic nomogram was built on the optimal algorithm.
Calibration curves and decision curves were used to evaluate the effectiveness of the radiomics nomogram
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Statistical analysis
Statistical analyses were performed by using SPSS 22.0
(IBM, USA). Variables were described as frequency (n%).
The chi-square test was used to compare patients’ basic
information between groups (responders versus non-
responders) and P < 0.05 was considered statistically sig-
nificant. All machine learning analyses were performed
by using the Python package scikit-learn (0.19.0), and
statistical plots were generated by R software (3.6.1,
http://www.R-project.org). Area under the Receiver-
Operating Characteristic Curves (AUCs) were calculated
to evaluate the performance of the algorithms for each
model, and the Youden Index was used to generate the
optimal threshold to convert probabilities into binarized
labels. Statistical metrics, including accuracy, sensitivity,
specificity, NPV (Negative Predictive Value), PPV (Posi-
tive Predictive Value) and AUC were also calculated to
evaluate the performance of the ultimate selected algo-
rithm in the training cohort and the validation cohort

for the different radiomics models. Wilcoxon rank test
with Bonferroni correction was applied for multiple
comparisons, and p < 0.0125 was considered statistically
significant.

Results
Basic Clinicopathological characteristics
A total of 64 patients were included in our study, includ-
ing 32 (50%) responders and 32 (50%) non-responders.
Patients’ clinicopathological characteristics were given in
Table 1. No significant difference was observed in
underlying diseases between non-responders and re-
sponders both in the training and validation cohorts,
with P value>0.05 respectively.

Features and optimal Radiomics algorithm selection
For the four different radiomics models including 2D
uncorrected, 2D corrected, 3D uncorrected and 3D cor-
rected models, feature selections were performed

Table 1 Clinicopathological characteristics of advanced ESCC patients treated with ICI + CT

Characteristics Total Non-Responders Responders P

(n = 64) (n = 32) (n = 32)

Age, year 0.206 †

<60 37 (57.8%) 16 (50%) 21 (65.6%)

≥ 60 27 (42.2%) 16 (50%) 11 (34.4%)

Gender, n (%) 1.000 †

Female 10 (15.6%) 5 (15.6%) 5 (15.6%)

Male 54 (84.4%) 27 (84.4%) 27 (84.4%)

BMI, n (%) 1.000 †

<18.5 4 (6.3%) 2 (6.3%) 2 (6.3%)

≥ 18.5 and <24 46 (71.9%) 23 (71.9%) 23 (71.9%)

≥ 24 14 (21.9%) 7 (21.9%) 7 (21.9%)

T stage, n (%) 0.633 §

T1 3 (4.7%) 1 (3.1%) 2 (6.3%)

T2 11 (17.2%) 5 (15.6%) 6 (18.8%)

T3 31 (48.4%) 18 (56.3%) 13 (40.6%)

T4 19 (29.7%) 8 (25%) 11 (34.4%)

N stage, n (%) 0.585 †

N1 18 (28.1%) 10 (31.3%) 8 (25%)

N2 24 (37.5%) 10 (31.3%) 14 (43.8%)

N3 22 (34.4%) 12 (37.5%) 10 (31.3%)

Metastasis, n (%) 19 (29.7%) 13 (40.6%) 6 (18.8%) 0.055 †

Decreased hemoglobin, n (%) 6 (9.4%) 4 (12.5%) 2 (6.3%) 0.668 §

Normal albumin, n (%) 64 (100%) 32 (100%) 32 (100%) NA

Increased leucocyte, n (%) 10 (15.6%) 5 (15.6%) 5 (15.6%) 1.000 †

C-reactive protein≥10mg/L, n (%) 31 (48.4%) 13 (40.6%) 18 (56.3%) 0.211 †

Underlying diseases, n (%) 21 (32.8%) 10 (31.3%) 11 (34.4%) 0.790 †

Abbreviations: ICI + CT-Immune-Checkpoint Inhibitor plus Chemotherapy, BMI-Body Mass Index, NA-Not Applicable. † − Pearson chi-square test, §-Fisher’s
Exact Test
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respectively, and the selected features and their descrip-
tions were shown in Table 2. Algorithms of SVM, KN,
RF, and LR were applied to build radiomics models for
2D and 3D ROIs by using selected features from the
training cohort, and their performances were compared.
The results showed that relatively higher AUC (0.804,
95% CI: 0.800–0.822) could be obtained by using SVM
algorithm for the training dataset (Supplementary Table
2). Finally, SVM with the best performance was selected
for further evaluation of the performance of radiomics
models.

Radiomics models performance based on SVM algorithm
To evaluate the performance of our models in classifying
patients according to their treatment response, we used
the SVM algorithm. Good performance of the four dif-
ferent radiomics models using SVM algorithm was ob-
served for the probability of responders (Table 3). The
results showed that the 2D corrected radiomics model
yielded the optimal performance with an AUC of 0.818
[95% CI, 0.797–0.829], an accuracy of 80.4% (95% CI,
79.3–81.5%), a sensitivity of 72.7% (95% CI, 70.6–74.2%),
a specificity of 88.6% (95% CI, 85.5–90.0%), a NPV of
79.5% (95% CI, 78.4–80.3%), a PPV of 91.7% (95% CI,
89.6–92.5%) in the training cohort, and an AUC of 0.787
[95% CI, 0.752–0.806], an accuracy of 79.6% (95% CI,

77.0–80.6%), a sensitivity of 71.4% (95% CI, 67.3–76.7%),
a specificity of 87.2% (95% CI, 84.1–90.1%), a NPV of
75.3% (95% CI, 72.1–78.6%), a PPV of 84.8% (95% CI,
81.3–87.5%) in the validation cohort.
The performance of the four different radiomics

models was compared by AUCs as shown in Fig.3. The
2D models outperformed the 3D models (2D uncor-
rected vs. 3D uncorrected, p < 0.0001; 2D corrected vs.
3D corrected, p < 0.0001) in the training cohort, which
was confirmed in the validation cohort (2D uncorrected
vs. 3D uncorrected, p < 0.0001; 2D corrected vs. 3D cor-
rected, p < 0.0001). When the ComBat correction was
used, the performance of 2D models was better (p =
0.0059) in the training cohort, and significantly better
(p < 0.0001) in the validation cohort. There was no im-
provement for 3D models when integrated with the
ComBat correction (training cohort, p = 0.17; validation
cohort, p = 0.018).

Development, performance and validation of
individualized Radiomics nomogram
Quantitative nomograms for predicting the probability
of responders were constructed separately for the four
groups of features, of which the one based on the 2D
corrected model is shown in Fig.4 (A).

Table 2 Selected features of the four different models

Models Selected radiomic features Description

3D
uncorrected

Wavelet_HHL_glcm_ClusterShade Skewness and uniformity measurement

Wavelet_LLH_glszm_SizeZoneNonUniformity Variability of size zone volumes

Wavelet_LHH_firstorder_Maximum Maximum gray level intensity of the ROI

Wavelet_HHL_firstorder_Skewness Asymmetry of the mean value

Wavelet_LLL_gldm_GrayLevelNonUniformity Variability of gray-level intensity values

3D corrected Wavelet_LHH_firstorder_Maximum Maximum gray level intensity of the ROI

Wavelet_HHL_glcm_ClusterShade Skewness and uniformity measurement

Wavelet_LLH_gldm_GrayLevelNonUniformity Variability of gray-level intensity values

Wavelet_LLH_glszm_SizeZoneNonUniformity Variability of size zone volumes

Wavelet_HLH_glszm_
SizeZoneNonUniformity

Variability of size zone volumes

2D
uncorrected

Wavelet_HLL_glszm_
LargeAreaGrayLevelEmphasis

Proportion in the image of the joint distribution of larger size zones with lower gray-
level values

Wavelet_LHH_firstorder_Skewness Asymmetry of the mean value

Original_glszm_SizeZoneNonUniformity Variability of size zone volumes

Wavelet_LHL_gldm_DependenceVariance Variance in dependence size in the image

Wavelet_LHL_firstorder_Skewness Asymmetry of the mean value

2D corrected Wavelet_HLL_firstorder_Skewness Asymmetry of the mean value

Wavelet_LHL_firstorder_Maximum Maximum gray level intensity of the ROI

Wavelet_LLH_glcm_ClusterProminence skewness and asymmetry of the GLCM

Wavelet_LHL_gldm_DependenceVariance Variance in dependence size in the image

Original_glszm_SizeZoneNonUniformity Variability of size zone volumes
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The calibration curves of the four different radiomics
models [Fig. 4 (B) & (C)] estimating the probability of
responders demonstrated good agreement between pre-
diction and observation in the training cohort and valid-
ation cohort. For the 2D corrected radiomics model, the
Hosmer–Lemeshow test yielded a nonsignificant P value
of 0.160 in the training cohort and 0.478 in the valid-
ation cohort, suggesting the perfect match between the
actual (Y-axis) and nomogram-predicted (X-axis) re-
sponders. The 2D corrected model also achieved good
discrimination performance with AUC of 0.843 (95% CI,
0.736–0.950) within the training cohort and 0.914 (95%
CI, 0.775–1.000) in the validation cohort (Table 4). For
2D uncorrected model, 3D corrected model and 3D

uncorrected model, AUCs were 0.794 (95% CI, 0.666–
0.921), 0.658 (95% CI, 0.502–0.813) and 0.662 (95% CI,
0.509–0.816) within the training cohort and 0.898 (95%
CI, 0.721–1.000), 0.670 (95% CI, 0.511–0.849) and 0.677
(95% CI, 0.499–0.850) in the validation cohort,
respectively.

Clinical use
The decision curve was used to compare the benefit of
the four different radiomics nomogram, treat-all and
treat-none scheme, as shown in Fig. 4 (D). The results
showed relatively good performance for the models in
terms of clinical application and indicated that all the
models added more benefit than either the treat-all or

Fig. 3 Comparison of AUCs between the four different radiomics models based on SVM algorithm in the training and validation cohort

Table 3 Performance evaluation of the radiomic models using SVM algorithm in the training and validation cohort

Models Accuracy Sensitivity Specificity NPV PPV AUC

Training cohort 3D uncorrected 0.701 0.590 0.814 0.720 0.734 0.626

(0.690–0.718) (0.570–0.622) (0.796–0.831) (0.700–0.735) (0.702–0.754) (0.602–0.637)

3D corrected 0.690 0.581 0.814 0.705 0.752 0.628

(0.680–0.702) (0.556–0.607) (0.792–0.834) (0.694–0.721) (0.720–0.776) (0.583–0.611)

2D uncorrected 0.801 0.693 0.900 0.779 0.915 0.776

(0.800–0.821) (0.681–0.715) (0.886–0.932) (0.771–0.799) (0.910–0.932) (0.772–0.791)

2D corrected 0.804 0.727 0.886 0.795 0.917 0.818

(0.793–0.815) (0.706–0.742) (0.855–0.900) (0.784–0.803) (0.896–0.925) (0.797–0.829)

Validation cohort 3D uncorrected 0.640 0.431 0.864 0.602 0.750 0.531

(0.632–0.666) (0.36–0.49) (0.813–0.900) (0.575–0.631) (0.694–0.811) (0.502–0.560)

3D corrected 0.640 0.432 0.861 0.601 0.750 0.514

(0.631–0.660) (0.363–0.491) (0.800–0.911) (0.570–0.632) (0.691–0.811) (0.480–0.544)

2D uncorrected 0.790 0.709 0.860 0.710 0.852 0.729

(0.770–0.801) (0.681–0.756) (0.830–0.891) (0.564–1.000) (0.830–0.881) (0.711–0.760)

2D corrected 0.796 0.714 0.872 0.753 0.848 0.787

(0.770–0.806) (0.673–0.767) (0.841–0.901) (0.721–0.786) (0.813–0.875) (0.752–0.806)

Abbreviations: SVM-Support Vector Machine, AUC-Area under the Receiver-Operating Characteristic Curve, NPV-Negative Predictive Value, PPV-Positive
Predictive Value
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treat-none scheme within the threshold between 30 and
60%. Moreover, the 2D corrected model achieved the
highest benefit if the threshold probability of a patient
was between 50 and 70%.

Discussion
This study aimed to evaluate the prediction efficacy of
pre-therapeutic CT imaging based radiomics models in
treatment response of patients with advanced ESCC re-
ceiving anti-PD-1 antibodies plus chemotherapy. In the
new era of artificial intelligence (AI), radiographic

characteristics automatically calculated by computer is
more objective and makes more accurate quantitative
analysis possible [21–24]. Our study is the first attempt
to predict treatment efficacy of ICI + CT in advanced
ESCC prior to treatment using CT radiomics model.
The quantitative approach has the potential to identify
the responders before treatment.
Due to the long-time debate on whether to use one-

slice 2D annotation or whole-volume 3D annotation es-
pecially for advanced cancer [25–27], in our study, the
comparison between 2D and 3D radiomic features was

Fig. 4 Development and performance of the radiomics nomogram. (A) Nomogram based on the 2D corrected radiomics features. (B) Calibration
curves of the nomograms built on 3D uncorrected, 3D corrected, 2D uncorrected 2D corrected radiomics features in the training cohort. (C)
Calibration curves of the nomograms built on 3D uncorrected, 3D corrected, 2D uncorrected 2D corrected radiomics features in the validation
cohort. The calibration curves suggesting the perfect match between the actual (Y-axis) and nomogram-predicted (X-axis) responders. (D)
Decision curves showed relatively good performance for the models in terms of clinical application and indicated that all the models added
more benefit than either the treat-all or treat-none scheme within the threshold between 30 and 60%. Moreover, the 2D corrected model
achieved the highest benefit if the threshold probability of a patient was between 50 and 70%
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also performed. We found that 2D radiomic features sig-
nificantly outperformed 3D features, which was similar
to the reported [26–27]. In a multicenter study of ad-
vanced gastric cancer [27], the performances of 2D and
3D CT radiomic features were compared in discriminat-
ing lymph node metastasis, lymphovascular invasion as
well as pT stages’ classification. They found that 2D
model outperformed 3D model with higher AUCs re-
garding the above three tasks despite different resam-
pling spacings. Similar findings were also reported by
another study [26] in which the prognostic prediction
performances were compared between 2D and 3D CT
radiomics features in patients with non-small cell lung
cancer (NSCLC). They found that 2D Cox model had a
higher C-index compared with 3D Cox model. The re-
sults of our study showed that 2D models performed sig-
nificantly better than 3D ones, which might be
attributed to more noise of 3D ROIs originated from
multi-slice manual annotations and inconsistent resolu-
tions of the transverse plane and z-plane [26–27]. There-
fore, in this scenario, 2D models are recommended in
ESCC radiomics researches for the better performance
and time-saving annotations.
The ComBat function compensation method is a data-

driven method correcting for differences in features
caused by the various imaging protocols [28–29]. Com-
Bat correction was applied in our study to control po-
tential bias on the results caused by different CT
scanning schemes such as tube voltage, reconstruction
kernel, slice thickness, and in-plane resolution. This
method showed efficiency in 2D models by standardizing
the CT images obtained from different CT scanners, and
achieved the highest AUCs in both training and valid-
ation cohort. In addition, higher net benefits could be
obtained with ComBat correction in decision curve ana-
lysis, thus patients could benefit from treatment
optimization and avoid unnecessary risks.
In this study, the proposed radiomics model provided

potential clinical utility from the following perspectives.
For patients with advanced unresectable esophageal can-
cer, the established radiomics model could screen out the

potential responders to ICI + CT prior to treatment which
would improve effeacy. On the other hand, due to the
high cost of immunotherapy, preselecting the potential re-
sponders prior to treatment could reduce the economic
burden to patients and maximize their benefits, which was
particularly important in developing countries. In
addition, as a non-invasive biomarker, CT imaging could
overcome the problem of tumor heterogeneity. Some
other indicators, such as PD-L1 expression, obtained by
fine needle aspiration biopsy could not represent its real
status in the whole tumor tissue, so the detection results
might be biased due to tumor heterogeneity. Finally, in
our study, we recommended 2D radiomics features be-
cause one-slice 2D annotation was a much more time-
saving data processing with significantly higher prediction
efficacy than that of whole-volume 3D annotation.
This study has several limitations. First, our findings de-

serve further extra external validation with larger sample
size and inclusion of other medical centers. A large-scale
study enrolling more patients is deserved and may definitely
help validate and improve its applicability as an effective
prediction tool for assisting treatment decision making.
Second, due to the limited patient number of other histo-
logic types of EC in our center, adenocarcinoma and signet
ring cell carcinoma, therefore, were not included in the
present study. This limits the application of the built model
to some extent. Third, due to the limited spatial resolution
of CT, there may be bias in the determination of the
boundary between the lesion and the normal esophageal
tissue when conducting ROIs segmentation.

Conclusions
In conclusion, the proposed CT-based radiomics model
performs well and thereby is expected to serve as an alter-
native tool to select the potential best responders to ICI +
CT prior to treatment for patients with ESCC, thus can
assist treatment decision making in the clinical setting.
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