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Abstract: Ultrasonic guided wave (UGW) detection with fiber Bragg grating (FBG)-based sensors
has received increasing attention in the last decades due to the ability to perform non-destructive
inspection (NDI) of large plate-like surfaces with a network of lightweight and multiplexed sensors.
For accurate UGW measurements, several studies concluded that the ratio between the wavelength of
the UGW and the length of the FBG should be above 7. However, shorter FBGs suffer from a lower FBG
reflectivity and less steep slopes in the reflection spectrum. In this work we experimentally verified
the effect of a passing UGW on the Bragg peak of FBG sensors of different lengths. By performing
edge-filtering interrogation throughout the FBG’s reflection spectrum, we were able to reconstruct
the FBG’s spectral response to a UGW in function of time. Our experimental findings are partially
in line with those in the literature considering the UGW wavelength to FBG length ratio and the
corresponding Bragg peak changes. We experimentally show for the first time that for shorter FBG
sensors, the strain modulation is translated mostly into Bragg peak shifting, while for longer FBG
sensors, Bragg peak deformation takes over as main mechanism. Despite the different mechanism for
the latter, the UGW can still be detected by edge-filtering on the steepest slope, and with a much
higher sensitivity.

Keywords: fiber Bragg grating (FBG); ultrasonic guided wave (UGW); Lamb wave; spectral verification

1. Introduction

Ultrasonic guided wave (UGW) detection with optical fiber sensors has received interest in the
last decennia due to the ability to investigate larger plate-like surfaces for damage with a lightweight,
embeddable, EMI-immune and multiplexed network of sensors [1–8]. In a plate-like structure, actuated
UGWs degenerate into Lamb waves with a typical wavelength of a few cm, depending on the actuation
frequency [9]. Although fiber Bragg grating (FBG) sensors are often considered as point sensors, they
have a physical length in the order of mm up to more than a cm. The ideal length of the grating versus
the wavelength of the UGW has been investigated by several studies.

Coppola et al. [10] and Minardo et al. [11] identified three main working regions: when the
wavelength of the UGW (λUGW) is much smaller than the length of the grating (L), when λUGW is of
the same order as L, and when the guided wave’s wavelength is much larger than the grating length.
They showed by simulation that in the first region (λUGW/L� 1), a periodic positive and negative
strain is acting along the length of the grating, yielding no net Bragg peak shift (∆λB) and no change
in the shape of the Bragg peaks. The second region (λUGW/L ≈ 1) is a transition zone where partial
Bragg wavelength shifts and peak chirp are generated by the UGW. Minardo et al. [11] additionally
showed that in the transition region (λUGW/L ≈ 1) the wavelength sensitivity of the Bragg peak (Sλ) is
proportional to the factor λUGW/L. In the third region (λUGW/L� 1), the strain applied over the length
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of the FBG by the UGW is uniform, and thus, the complete Bragg peak shifts proportionally to the
amplitude of the UGW: ∆λB ~ AUGW without deformation of the shape of the peak.

These regions were confirmed by Takeda et al. [4], Betz et al. [12], Culshaw et al. [1] and Thursby
et al. [13]. It was generally stated that in order to yield a Bragg peak shift (∆λB) modulation fully
proportional to the strain generated by the passing UGW, a measurement should be performed in
the region where λUGW/L� 1, as a uniform strain is then acting on the entire length of the FBG. In
order to consider the strain sufficiently uniform, Takeda et al. [4] and Culshaw et al. [13] numerically
determined that the respective conditions of λUGW/L > 7 and λUGW/L > 6 needed to be satisfied. These
thresholds have been accepted as an important requirement for accurate UGW detection [2,5,14–16].
Since the wavelengths of UGWs around the resonance frequency of a plate-like structure are typically of
the order of a few cm, this implies that the FBG sensor should be no longer than a few mm, depending
on the exact application. Shorter FBG sensors, however, yield lower reflection levels compared to
longer gratings manufactured by the same inscription technique [17]. Moreover, because most UGW
interrogation of FBG sensors occurs by edge-filtering techniques, the sensitivity of the measurement
depends of the slope of the linear part of the rising or falling edge of the Bragg peak. In edge-filtering,
the wavelength of a narrow bandwidth laser is set at the location of the steepest slope of the reflection
spectrum of an FBG as shown in Figure 1. When the Bragg peak is shifted (or deformed) due to a strain
signal, the reflected optical power will change accordingly. Shorter FBG sensors, thus, inherently imply
lower sensitivities for edge detection, which in its turn implies a lower signal-to-noise ratio, therefore
requiring improved filtering and averaging to retrieve the UGW signal. Research has continued to
investigate ways to increase the sensitivity of FBG sensors for UGW detection [16,18–23].

Figure 1. Edge-filtering fiber Bragg grating (FBG) interrogation: a narrow linewidth laser is set at the
steepest slope of a Bragg peak. When a strain signal shifts (or deforms) the Bragg peak, the reflected
optical power will change accordingly.

In this work, we attempted to experimentally validate the effect of different grating lengths on the
acquired UGWs by performing an experimental spectral reconstruction of the Bragg peak during the
passage of the UGW. This is the first analysis of its kind and gives experimental insights in the effect a
UGW has on the FBG’s Bragg peak. From the reconstructed Bragg peak, the Bragg wavelength shift and
peak broadening are obtained in function of time for different FBG lengths. From this information, the
regions of λUGW/L could be experimentally verified. Although we show that two different mechanisms
contribute to the measurement signals acquired through edge-filtering for different λUGW/L ratios, the
mechanism itself does not seem that important for the validity of the measurement.

This manuscript is structured as follows: in Section 2, the experimental setup, including actuators
and sensors, is explained, together with the methods used to actuate and acquire the UGWs. In Section 3,
the resulting Bragg peak reconstruction during a UGW and the corresponding analysis are presented.
In Section 4, the main observations from the experimental verification are discussed, followed by the
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conclusions. A link to the raw and processed data to reconstruct these results can be found in the
Supplementary Materials section.

2. Materials and Methods

We used an aluminum plate with dimensions of 1000 × 600 × 1 mm as our plate-like structure.
These dimensions are large enough to avoid reflections of the UGWs from the sides during the
acquisition of the first wave packet. The plate rested on four Styrofoam supports at every corner to
approximate free-free boundary conditions by having a similar impedance as the air surrounding the
rest of the plate. A schematic representation of the setup can be seen in Figure 2. The FBG under
investigation was mounted in the center of the aluminum panel, and a PI Ceramics PRYY+0227 piezo
transducer (PZT) [24] was mounted 15 cm from the FBG’s center. Both PZT and FBG were bonded with
phenethyl salicylate soft glue, which allowed easy placement and removal by liquifying the substance
with a heat gun. The FBG was prestrained by Kapton tape before the soft glue was solidified.

Figure 2. Experimental setup. Black lines represent electric BNC connections, red lines optical
fiber connections.

Five FBG sensors with different length were surface mounted one by one for the measurements.
The FBG sensors used in this work were standard uniform draw-tower-gratings (DTGs) in 125 µm
diameter fiber with a GeO2-doped photosensitive core coated with Ormocer [25]. These FBG are of the
type I, and can be considered weak FBGs [17]. Their properties are summarized in Table 1, and their
(normalized) reflection spectrum can be seen in Figure 3. Note that increasing FBG lengths indeed yield
higher reflection levels. In Figure 3, the effect of the FBG length on the slope of the reflection spectrum
can be seen. Longer FBG sensors yield steeper slopes, and thus higher edge-filtering sensitivity.

Figure 3. Normalized reflection spectrum of the five FBG sensors with increasing grating lengths.



Sensors 2020, 20, 6571 4 of 14

Table 1. Overview of FBG sensors and their properties. FWHM: full width at half maximum.

FBG #1 FBG #2 FBG #3 FBG #4 FBG #5

L [mm] 2 3 5 8 10
FWHM [pm] 355 247 147 98 81

λB [nm] 1550 1555 1540 1570 1565
R [%] 3.6 5.5 15.3 33.4 36.9

λUGW/L (50 kHz) 9.3 6.2 3.7 2.3 1.9
λUGW/L (250 kHz) 15.9 10.6 6.4 4.0 3.2

The spectrum of the FBG sensor under investigation was acquired prior to every UGW
measurement by the setup in Figure 2. While a wavelength range of 1 nm around the FBG was
scanned by the Santec TSL-710 tunable laser source [26], the reflection was recorded by a Thorlabs
PDA20CS InGaAs photodiode [27], which was sampled by the first channel of a TiePie HS5 digital
oscilloscope [28]. Simultaneously, the trigger signal of the laser, which generated a 2 V peak every
100 pm, was acquired by the second channel of the oscilloscope. Together with the knowledge of the
start wavelength, stop wavelength, laser scanning speed and recorded trigger signal, the reflection
spectrum was reconstructed with a resolution of 0.4 pm. The Bragg wavelength was derived with a
Gaussian fit.

The UGWs were generated by actuating the PZT with the TiePie HS5’s arbitrary waveguide
generator (AWG) with a five-cycle Hamming-windowed sinusoid with a maximum amplitude of 12 V.
The actuation signal was simultaneously recorded by the second channel of the digital oscilloscope
and was used as a time trigger for the generated UGWs. At each spectral point, two UGW signals were
generated: one at 50 kHz and one at 250 kHz, around the resonance frequencies of the antisymmetric
and symmetric Lamb wave modes, respectively. The associated wavelengths of the UGWs in the
aluminum plate were experimentally determined to be 18.6 mm for the 250 kHz and 31.9 mm for the
50 kHz signals.

For the FBG lengths used in this work, this resulted in λUGW/L ratios between 2 and 16, as shown
in Table 1. The buffer memory of the digital oscilloscope allowed for acquiring two five-cycle bursts
separated 20 ms in time. The voltage output of the transimpedance amplifier of the photodiode
was sampled at 10 MHz for 40 ms with a pretrigger of 10%. The two identical bursts were used to
average two recorded signals, and the separation of 20 ms was required for the attenuation of all
reflecting UGWs of the first burst. The UGW signals were recorded AC-coupled for higher amplitude
resolution, but the DC offset of the spectrum at the corresponding wavelength was recorded prior to
the UGW measurement.

The recorded UGW signals were filtered with a bandpass filter to remove the high frequency laser
noise and a 1 kHz oscillation on the laser power. The pass frequencies for the 50 kHz signal were 30
and 70 kHz, and for the 250 kHz signal they were 230 and 270 kHz. An example of the filter applied to
a 250 kHz UGW acquired by the 10-mm FBG is shown in Figure 4. After filtering, the UGW signals
were averaged over the two bursts.

A Hilbert transform was performed on the directly measured actuation signal to obtain the
Hamming window shape from the five-cycle burst, which was then fit by half a period of a square
sinusoid. From this fit, the start of the burst was calculated and used for synchronizing and averaging
both bursts. An actuation signal and UGW signal acquired by the digital oscilloscope can be seen in
Figure 5, together with the resulting filtered and averaged signal that was used for further processing.
From the maxima of the Hamming fit, we determined the time delay between the actuation and
the arrival of the first wave packet to be 95.3 ± 0.3 µs for the 50 kHz signals and 32.7 ± 0.1 µs for
the 250 kHz signals. This corresponds to group velocities of 1595 m/s and 4654 m/s for the main
wave packets obtained at 50 kHz and 250 kHz, respectively. These velocities correspond to the group
velocities of the fundamental antisymmetric and symmetric mode, respectively, for aluminum.
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Figure 4. Bandpass filtering of a 250 kHz UGW acquired by the 10-mm FBG: (a) the unfiltered
and filtered (unaveraged) 2 burst signal, and (b) the power spectral density of the unfiltered and
filtered signals.

The acquired signal in Figure 5 shows more than five cycles of a sinusoid. This can be explained
by the generation of additional modes that travel at different velocities. These additional modes are,
however, typically ignored in further analysis by focusing only on the predominant wave packet of
the resonant mode [29]. We will, therefore, similarly focus our analysis only on the (amplitude of the)
predominant wave packet.

Figure 5. Actuation signal as measured by the oscilloscope, UGW signal as measured by the photodiode
and filtered and average UGW signal of a 250 kHz UGW acquired by the 10-mm FBG.

3. Results

In order to reconstruct the dynamics of the Bragg peak during the passage of a UGW, the UGW
signal was obtained by edge-filtering not only at the steepest slope locations of the Bragg peak, as is
typically done, shown in Figure 1, but at a multitude of wavelengths along the Bragg peak’s reflection
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spectrum. To do so, we followed the steps in the block diagram shown in Figure 6. Prior to every
UGW measurement, the spectrum of the FBG was acquired and the Bragg wavelength of the spectrum
was calculated. Then, the lasing wavelength was set at a specific location on the spectrum relative
to λB. Once the laser was positioned at that wavelength, the static DC component of the reflected
optical power was recorded. Figure 7 shows the high-resolution spectrum of the 8 mm DTG obtained
prior to the first UGW, together with the individually determined DC values obtained prior to every
UGW measurement. By defining the lasing wavelength for each UGW measurement relative to λB,
we considered possible temperature effects that could shift the Bragg peak over time. After the DC
component is recorded, the laser remains at the same position for acquiring the AC signals of the
UGWs actuated at 50 and sequentially at 250 kHz by the setup shown in Figure 2. This whole process
is then repeated for the next laser wavelength as illustrated in Figure 6. The range of the parameter
i depends on the bandwidth of the FBG under investigation. For the example of the 8-mm FBG in
Figure 7, i ranged from −50 to +50, spanning a bandwidth of 200 pm around λB with measurements
every 2 pm.

Figure 6. Block diagram showing the steps of the spectral reconstruction of the Bragg peak during
UGW passage.

Figure 7. Initially measured reflection spectrum compared to the stepwise reconstructed spectrum at
t = 0 obtained from the UGW offset signals.

By adding the DC component obtained prior to the UGW measurement, back to the AC coupled
UGW measurement and with the knowledge of the spectral position relative to the Bragg wavelength,
the dynamics of the Bragg peak can be reconstructed as shown in Figure 8. In this figure the amplitude
of the UGWs is artificially increased by a factor 10 for visualization. Figure 8 shows a 250 kHz UGW
obtained by the 8-mm FBG in the first 100 µs of acquisition. The first wave packet can be identified as
the Bragg peak deforms in function of time.

Figure 9 shows the AC coupled UGW signals for all FBG lengths. In Figure 9a, it can be observed
that during the first wave packet the signals on either slope of the Bragg peak are out of phase,
implying that mostly Bragg peak shifting is occurring for the 2-mm FBG. This contrasts with the other
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FBGs shown in Figure 9b–e, where the signals are more in phase, implying Bragg peak broadening is
occurring. This is a first indication that different mechanisms occur in FBGs of different length, which
we will investigate in greater detail below.

Figure 8. Full spectral reconstruction of 250 kHz UGW passing through an 8-mm FBGs. AC amplitude
of the UGWs is artificially increased by a factor 10 for visualization.

Figure 9. Cont.
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Figure 9. First wave packet of AC coupled 250 kHz UGW signals measured along the spectrum of
(a) the 2-mm, (b) the 3-mm, (c) the 5-mm, (d) the 8-mm and (e) the 10-mm FBG.

In order to obtain the Bragg wavelength change (∆λB) and Bragg peak broadening due to the
change in full width at half maximum (∆FWHM), we performed a Gaussian fit of the reconstructed
spectrum at every time step (0.1 µs). This is shown in Figure 10 for the first reconstructed spectrum
of the 8-mm FBG of Figure 8. The Gaussian fit was performed with the peak’s amplitude values as
weights, to obtain a higher fit correlation of the top half of the Bragg peak. From the Gaussian fit
parameters, the Bragg wavelength and FWHM can be straightforwardly calculated.

Figure 10. Locations on the spectrum of the 8-mm FBG where the laser was locked for performing UGW
measurements at t = 0, together with the Gaussian fit used to extract the Bragg peak’s characteristics.

Figure 11 shows the Bragg wavelength change and FWHM/2 change obtained by the Gaussian fit
for the 8-mm FBG during passage of a 250 kHz UGW, together with their Hilbert transform. The two
signals are compared to the UGW obtained on the steepest slope of the Bragg peak. For the latter
signal, the acquired voltage signal was divided by the slope of the Bragg peak at that location to obtain
a signal in pm. The slope was obtained by performing a linear fit in an 8 pm region centering the
spectral position of the measurement. Figure 12 shows the same signals for the 2-mm FBG.
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Figure 11. Bragg wavelength shift and FWHM/2 change of the 8-mm FBG during the passage of a
250 kHz UGW obtained by the Gaussian fit compared to the UGW measured at the steepest slope. The
Hilbert transform of all signals is shown by a dashed line, and the maximum amplitude of the latter is
shown by a full dot in the same color.

Figure 12. Bragg wavelength shift and FWHM/2 change of the 2-mm FBG during the passage of a
250 kHz UGW obtained by the Gaussian fit compared to the UGW measured at the steepest slope.
The Hilbert transform of all signals is shown by a dashed line, and the maximum amplitude of the
latter is shown by a full dot in the same color.

4. Discussion

Figures 11 and 12 show that there are two mechanisms contributing to the UGW that is acquired
on the steepest slope of a Bragg peak: the peak shift and Bragg peak broadening. The former can be
quantified directly by ∆λB, and the latter can be partially quantified by ∆FWHM/2. Any non-symmetric
peak deformation is not captured by this method. For an FBG of a longer length, the more pronounced
mechanism is the peak broadening, as shown by the amplitude of the yellow signal that approaches
that of the purple signal in Figure 11. However, for a shorter FBG length, the predominant mechanism
is a shift of the entire Bragg peak, as shown by the amplitude of the blue signal approaching that of the
purple signal in Figure 12. In order to relate the amplitudes of the signal to each other, we obtained the
Hilbert transform of each signal as shown in the examples of Figures 11 and 12. We used the maximum
of each Hilbert transform at the first wave packet as quantification for the comparison of each signal’s
amplitude, as denoted by the full dots in Figures 11 and 12. This quantification allowed us to obtain
the ratio of the amplitudes of ∆λB and ∆FWHM/2 to the UGW signal acquired at the steepest slope.

These ratios for the 50 kHz and the 250 kHz signals are shown in Figure 13 in function of the factor
λUGW/L. From Figure 13 we can observe that there are indeed two main mechanisms contributing
to the UGW that was measured at the steepest slope of the Bragg peak: in the region where λUGW/L
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approaches 1, Bragg peak broadening is responsible for ~100% of the movement at the steepest slope.
This region is followed by a transition region as λUGW/L increases: the contribution of (symmetric)
peak broadening is no longer 100% and decreases with increasing λUGW/L. The contribution of the
peak shift ∆λB, however, remains low, implying antisymmetric peak deformation is occurring. At a
certain λUGW/L, the main contributing mechanism is no longer peak deformation, as the peak shift
∆λB becomes the dominant mechanism. For the 50 kHz signal, this is around λUGW/L ≈ 8, and for the
250 kHz signal this is around λUGW/L ≈ 13. We, thus, notice a difference between the two frequencies.
This can be attributed to the antisymmetric mode being the wave packet under investigation at 50 kHz,
and the symmetric mode being the wave packet under investigation at 250 kHz. Either mode has
different strain shapes at the surface of the plate, which interact differently with the FBG sensor.

Figure 13. Ratio of the maximum amplitude of the Hilbert transform of the Bragg peak shift and Bragg
peak broadening to that of the UGW measured at the steepest slope.

For a factor λUGW/L above these particular values of 8 and 13, the acquired signal at the steepest
slope will thus be attributed to a predominant wavelength shift ∆λB. For a high enough λUGW/L� 1
the UGW amplitude is completely transcoded into a Bragg peak shift, and no Bragg peak deformation
is present, implying that the UGW is applying only uniform strain over the length of the FBG sensor.

The transition region is centered around the ratios λUGW/L = 6 or 7 as reported in literature;
however, for a complete uniform strain over the FBG, the factor λUGW/L from these experimental
results for inducing only a Bragg peak shift is at λUGW/L > 13 for the symmetric mode and λUGW/L > 8
for the antisymmetric UGW mode, which is slightly larger than what was reported in literature [1,4].
For the FBG sensors used in this work, the only FBG sensor satisfying that condition was the FBG of
L = 2 mm. As was shown in Table 1 and Figure 3, this sensor had a reflectivity about 10 times lower
than that of the 10-mm FBG, with much less steep slopes, implying that the sensitivity for edge-filtering
measurements is also much less.

This is confirmed by the absolute signal amplitudes measured by the different FBGs that are
shown in Figure 14. The difference in amplitude between the 2-mm FBG and the 10-mm FBG is up to
a factor 100 for the 250 kHz signal. This implies that using the shortest available FBG length could
implicitly decrease the sensitivity of the measurement drastically. It is, however, often argued in the
literature that only a UGW signal corresponding completely to a Bragg peak shift can be interpreted
correctly as strain signal, and the requirement of λUGW/L ≥ 1 must, thus, be fulfilled in order to obtain
the full information of the UGW.
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Figure 14. Absolute maximum amplitude of the UGWs measured by different FBG length.

Figures 15 and 16 show the normalized UGW signals acquired at the steepest slope location for
the 50 kHz UGWs and the 250 kHz UGWs, respectively. Although we have shown that different
mechanisms are responsible for the signals acquired at the steepest slope of the Bragg peak, the
normalized signals of the first wave packet are identical for all grating lengths. This implies that even
when the condition λUGW/L ≥ 1 is not fulfilled, the UGW signals remain measurable at the steepest
slope, even if they are generated by Bragg peak deformation instead of shifting. Opting for higher
grating sensitivity might, thus, be preferred over opting for short FBG length. This applies in particular
to weak FBGs, where longer gratings typically show a higher reflectivity and, thus, a higher sensitivity
when considering edge detection [17], resulting in a higher SNR, thus requiring less signal filtering
and averaging. In some studies the averaging of 100 up to 10,000 UGW signals is reported for noise
reduction [8,12,30], which could significantly be decreased in the case of weak FBGs by using the
higher sensitivity of a longer FBG sensor. Moreover, many applications of UGWs, such as damage
detection, make use of the difference between UGW signals, where the mechanism generating the
UGW signals is of no importance.

Figure 15. Normalized UGW signals obtained for all FBG lengths for the 50 kHz signals.
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Figure 16. Normalized UGW signals obtained for all FBG lengths for the 250 kHz signals.

5. Conclusions

In this work we demonstrated for the first time a full spectral reconstruction of the Bragg peaks of
different grating lengths during the passage of a UGW. We experimentally confirmed the effect of the
ratio of the UGW’s wavelength (λUGW) to the grating length (L) on the Bragg peak, as reported by
simulations in the literature. For λUGW/L ≥ 1, the strain acting on the FBG can be considered uniform
and the amplitude of the UGW is transcoded completely in a Bragg peak shift, ∆λB. When λUGW/L
approaches unity, the strain over the FBG is no longer uniform, and peak broadening starts to occur
(∆FWHM). The condition for pure ∆λB was found to be between λUGW/L ≥ 13 and λUGW/L ≥ 8 for the
symmetric Lamb wave mode and anti-symmetric mode, respectively, which is slightly larger than
what was previously reported in literature.

We showed however that, even when Bragg peak broadening becomes the dominant mechanism
as λUGW/L approaches unity, the shape of the first wave packet of the UGW signal acquired on the
steepest slope of the Bragg peak remains identical to that of smaller FBG lengths. Moreover, increased
FBG length implicitly implies higher Bragg peak reflectivity and slopes, which in its turn implies
increased sensitivity when performing edge-filtering interrogation. Higher sensitivity implies that less
filtering and averaging is required, increasing the quality of the measurement.

It is, therefore, not strictly required to fulfill the requirement of λUGW/L� 1, as is often assumed.
Although Bragg peak broadening will be the dominant mechanism at increased FBG length, the UGW
signal can still be acquired through edge-filtering. Moreover, the signal amplitude will be significantly
larger for a longer FBG sensor and might, therefore, even be preferred.

Supplementary Materials: The filtered and averaged UGW data and resulting Gaussian fit data are available at
http://dx.doi.org/10.17632/wz59sf6ck8.1.
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