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Plasma concentrations of secretory leukocyte protease inhibitor
(SLPI) differ depending on etiology and severity in community-onset
bloodstream infection
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Abstract
The severity of bloodstream infections (BSI) depends on pathogen, source, and host factors. Secretory leukocyte protease
inhibitor (SLPI) counteracts tissue damage, balances inflammation, and is increased in pneumonia and sepsis. We aimed to
evaluate whether SLPI production differs depending on etiology, disease severity, and sex in BSI and to correlate SLPI with
markers of inflammation and immunosuppression. Of the adult patients with BSI, 109 were included and sampled repeatedly,
from hospital admission through day 28. Controls (blood donors) were sampled twice. SLPI in plasma was measured with
enzyme-linked immunosorbent assay (ELISA) technique. Streptococcus pneumoniae and Staphylococcus aureus etiology were
associated with higher SLPI than Escherichia coli on days 1–2 and 3. On day 1–2, subjects with sepsis had higher SLPI
concentrations than those with non-septic BSI. Pneumonia was associated with higher SLPI than a non-pulmonary source of
infection. SLPI co-varied with inflammatory markers. SLPI concentrations did not differ with regard to sex in the full cohort, but
men with pneumonia had higher SLPI than women on day 1–2. S. pneumoniae and S. aureus BSI were associated with higher
SLPI, when compared to E. coli. Severity and pneumonia, as well as male sex in the pneumonia sub-cohort, were factors
independently associated with higher SLPI.
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Introduction

The clinical course of a bacterial infection is determined by the
interaction of host factors, the infected organ, and the patho-
gen. [1]. Sepsis is defined as a life-threatening organ dysfunc-
tion caused by a dysregulated host response to infection, but
there are currently no criteria for measuring the dysregulated
immune response, which can manifest as disproportionate
pro-inflammation and/or a state of immunosuppression [2].
The risk of death and morbidity in sepsis is still considerable
[3, 4]. The causative microorganism is identified in 50–60%,
and in 20–30% there is an associated bloodstream infection
(BSI), defined as growth of one or more bacterial or fungal
pathogens in one ormore blood cultures [1, 5–7]. The reported
incidence of BSI is in average 140–160/100,000/year in high-
income countries, and the three most common etiologies are
Escherichia coli, Staphylococcus aureus, and Streptococcus
pneumoniae [8].

Secretory leukocyte protease inhibitor (SLPI) is a protein
that has come to be seen as an important regulator of

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10096-019-03567-2) contains supplementary
material, which is available to authorized users.

* Anna Lange
anna.lange@regionorebrolan.se

1 Department of Infectious Diseases, Faculty of Medicine and Health,
Örebro University, SE-70182 Örebro, Sweden

2 Clinical Epidemiology and Biostatistics, School ofMedical Sciences,
Örebro University, SE-70182 Örebro, Sweden

3 Department of Infectious Diseases, Karolinska University Hospital,
Stockholm, Sweden

4 Department of Medicine Huddinge, Karolinska Institutet,
Stockholm, Sweden

5 Department of Clinical Immunology and Transfusion Medicine,
Faculty of Medicine and Health, Örebro University,
SE-70182 Örebro, Sweden

European Journal of Clinical Microbiology & Infectious Diseases (2019) 38:1425–1434
https://doi.org/10.1007/s10096-019-03567-2

# The Author(s) 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10096-019-03567-2&domain=pdf
http://orcid.org/0000-0001-7679-7253
https://doi.org/10.1007/s10096-019-03567-2
mailto:anna.lange@regionorebrolan.se


inflammation [9]. SLPI was first isolated in pulmonary secre-
tions, and has been recognized as being not only a tissue
protector that inhibits neutrophil-derived proteases but also
for having other immunological tasks [10]. Similarly to anti-
microbial peptides, SLPI exhibits antibacterial, antifungal,
and antiviral properties, and it is known to balance pro-
inflammation by downregulating the NFκB pathway
[11–16]. In addition, recent research suggests that SLPI may
further modulate immunity by regulating neutrophil matura-
tion, and through inhibition of lymphocyte proliferation and
the formation of neutrophil extracellular traps [17–19].

SLPI is primarily of epithelial cell origin, but is also formed
by dendritic cells, macrophages, and neutrophils [11, 20–22].
The production and secretion of SLPI is regulated by pro-
inflammatory stimuli [21, 23, 24].

The biological role of SLPI expression in sepsis remains
only partially understood, but experimental evidence suggests
that SLPI protects from detrimental inflammation. In humans,
plasma SLPI has been found to be increased in sepsis, and to
be associated with the degree of organ dysfunction [24].

Studies investigating SLPI in the context of sepsis are lim-
ited, and SLPI production over the course of BSI, or in relation
to clinical characteristics and etiology has not been studied.
We hypothesized that SLPI expression might differ depending
on bacterial etiology and the source of infection. Thus, we
aimed to study SLPI in a cohort of well-characterized patients
with BSI followed 4 weeks. With previous findings of higher
plasma SLPI concentrations in community-acquired pneumo-
nia (CAP) in males, we also intended to study SLPI in relation
to sex [25]. Finally, we wanted to see if SLPI correlates to
markers of inflammation/immunosuppression.

Methods

Setting and study population

A prospective study of patients with BSI was conducted at
Örebro University Hospital, Örebro, Sweden, between 2011
and 2014. Patients > 18 years, admitted to the Departments of
Infectious Diseases and Internal Medicine, with a suspected
infection, and in whom a blood culture drawn on hospital
admission (day 0) showed growth of clinically significant
bacteria within 3 days, were eligible for inclusion. Exclusion
criteria were infection with HIV, hepatitis B and C, or previous
inclusion in the study.

Blood samples were drawn from study subjects on day(s)
0, 1–2, 3, 7 ± 1, 14 ± 2, and 28 ± 4. HLA-DR expression on
monocytes was measured from day 1–2. HLA-DR data is
elsewhere described in detail [26]. CRP, neutrophil count,
and lymphocyte count were analyzed with accredited routine
laboratory methods. Patient data was obtained from medical
records. Blood and plasma donors (n = 31, not sex- and age-

matched) served as controls, and were sampled twice, 4 weeks
apart. EDTA plasma was kept at − 80 °C pending analysis.

Blood and other cultures

Two blood cultures, each consisting of 20 mL blood distrib-
uted equally between one aerobic and one anaerobic bottle,
were incubated in a Bactec blood culturing system (Becton
Dickinson, Franklin Lakes, NJ, USA). The bacterial species
were determined by routine laboratory diagnostic procedures.
Other cultures were taken depending on clinical suspicion of
diagnosis according to clinical routine, and before administra-
tion of antibiotics when possible.

Definitions

Sepsis was defined as an increase of the Sequential Organ
Failure Assessment (SOFA) score by ≥ 2 points from baseline,
according to Sepsis-3 definitions [2].

The diagnosis of pneumonia required a radiographic pul-
monary infiltrate. Urinary tract infection (UTI) diagnosis re-
quired a urine culture testing positive for the same bacteria as
the one detected in blood, and infective endocarditis was di-
agnosed based on the revised Duke criteria.

ELISA analyses

SLPI in EDTA plasma was analyzed in duplicate at 1:100
dilution with Human SLPI ELISA Kit, Hycult Biotech, the
Netherlands, detection range 78–5000 pg/mL, according to
the manufacturer’s instructions.

Statistics

IBM SPSS Statistics for Windows, version 24.0 (IBM Corp.,
Armonk, NY, USA) and STATA release 14 (StataCorp LP,
College Station, TX, USA) were used. Due to non-normal
distribution of SLPI, analyses were performed on log10 scale,
or with non-parametric methods.

Patients were classified according to bacterial etiology
(E. coli/S. aureus/S. pneumonia/other), source (pneumonia/
other), and severity (sepsis/non-septic BSI). Age, sex, dura-
tion of illness, Charlson score, and severity were compared
between etiology groups with chi-square, Fisher, unpaired t,
or Mann-Whitney test, according to variable distribution.

Differences in SLPI on day 1–2 were evaluated with linear
regression. The strategy was (1) unadjusted analyses of (a)
bacterial etiology, (b) pneumonia/other sources, and (c)
sepsis/no sepsis, in the full BSI cohort, and (d) sex in the
pneumonia sub-cohort and (2) adjusted models: (a) and (b)
were adjusted for age, sex, and SOFA score increase on ad-
mission, (c) for age and sex, and (d) for age and SOFA score
increase.
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The above analyses were performed on complete cases
(n = 97), and, to reduce potential bias due to missing data,
on all patients (n = 109) after multiple imputation (MI), based
on Rubin’s concept [27]. Age, sex, duration of illness, SOFA
score increase, bacterial etiology, immunosuppression, and
Charlson score 0, 1, 2, or more were used as predictors for
the SLPI imputation.

Linear mixed model with random intercept was used to
evaluate mean differences of SLPI over days 1–2 to 28, for
E. coli, S. aureus, and S. pneumoniae. Fixed factors were day,
etiology, and their interaction term. The mean differences of
SLPI between etiology groups on each time point were com-
pared, and p values were Bonferroni-corrected. Since mixed
model assumes that missing data are missing at random, de-
mographic and clinical characteristics were compared with
basic statistical methods as described above, between subjects
with full and incomplete SLPI series.

Unadjusted and age- and sex-adjusted linear regressionwas
performed to compare SLPI in BSI and controls, day 0 and 28.

Spearman correlation (rs) was used to correlate SLPI and
inflammatory markers on day 1–2 and 7.

A p value < 0.05 was considered statistically significant.

Results

Characteristics of the study population

One-hundred-sixteen patients were enrolled. Seven were ex-
cluded due to growth of non-pathogenic bacteria (n = 5), or no
available plasma samples (n = 2), leaving 109 valid subjects.
Plasma was available from 46 subjects on admission, 97 (day
1–2), 68 (day 3), 86 (day 7), 78 (day 14), and 72 (day 28).
Subjects with incomplete plasma series were older than those
with full series (p = 0.02), but not otherwise significantly dif-
fering in baseline characteristics (data not shown).

Baseline and clinical characteristics and etiology are de-
tailed in Table 1. The main sources of infection were pneumo-
nia, UTI, skin/soft tissue, and joint infection. Fifty-four sub-
jects had sepsis. Subjects with S. pneumonia BSI had higher
SOFA score increases and frequency of sepsis when compared
to E. coli. Ninety-day mortality was 10%. Eighty-nine percent
of the study subjects received correct antibiotic treatment
within 6 h. One subject had growth of ESBL-producing
E. coli, and none had MRSA. Two had neutropenic sepsis
(< 1000 neutrophils/mm3), one with polymicrobial etiology,
one with beta-hemolytic streptococcal BSI.

SLPI and etiology: bacteria groups and source
of infection

SLPI concentrations for bacterial subgroups on day 1–2
are shown in Fig. 1a. Linear regression showed a

statistically significantly higher unadjusted mean SLPI
concentration in S. pneumoniae and S. aureus etiology,
when compared to E. coli in the unadjusted and adjusted
(age, sex, and initial SOFA score increase) models
(Table 2). Analysis with MI gave the same statistically
significant findings for S. pneumoniae. For S. aureus it
showed B = 0.12, 95% CI 0.02–0.23, p = 0.02 in the
unadjusted, and B = 0.08, 95% CI − 0.02–0.18, p = 0.1 in
the adjusted model.

Subjects with pneumonia had higher mean SLPI concen-
trations on day 1–2 than other sources of infection: unadjusted
(B = 0.13, 95% CI 0.05–0.21, p < 0.01) and adjusted (B =
0.10, 95% CI 0.02–0.17, p = 0.01) (Fig. 1b). The same con-
clusion was made with MI.

SLPI and disease severity

The initial SOFA score increase was positively associated
with SLPI concentrations, as shown in Table 2. Subjects with
sepsis had higher mean SLPI on day 1–2 when compared to
non-septic BSI: unadjusted (B = 0.17, 95% CI 0.10–0.23,
p < 0.01) and adjusted (age and sex) (B = 0.16, 95% CI
0.10–0.23, p < 0.01) (Fig. 2). Analysis using MI produced
similar results.

SLPI and sex

The male sex was not associated with higher SLPI in controls
(B = − 0.001, 95% CI − 0.12–0.12, p = 0.98) or on day 1–2 in
the full BSI cohort (B = − 0.05, 95% CI − 0.14–0.03, p = 0.2).
In the pneumonia sub-cohort (men n = 9, women n = 17) how-
ever, the male sex showed statistically significantly higher
mean SLPI, unadjusted (B = 0.11, 95% CI 0.01–0.20, p =
0.03), and adjusted (age and SOFA score increase) (B = 0.11,
95% CI 0.03–0.19, p = 0.01) (Fig. 3).

SLPI dynamics

SLPI concentrations for bacterial etiology groups on days 0–28
are shown in Fig. 1. The linear mixed model interaction test
between bacterial etiology and time was not significant (p =
0.29), showing no statistically significant different overall mean
response over time. However, S. pneumonia etiology had higher
mean SLPI concentration on day 3 (p = 0.01) when compared to
E. coli, but not on day 7 (p = 0.06) and thereafter. S. aureus
etiology had higher mean SLPI compared to E. coli, on day 3
(p= 0.02), day 14 (p = 0.03), and day 28 (p = 0.04), but not on
day 7 (p= 0.36).

SLPI in BSI and controls

Subjects with BSI had significantly higher SLPI concen-
trations on day 1–2 when compared to controls on day 0:
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unadjusted (B = 0.36, 95% CI 0.29–0.43, p < 0.01) and
adjusted (age and sex) (B = 0.33, 95% CI 0.25–0.42,
p < 0.01). BSI was associated with higher SLPI on day
28 in both unadjusted (B = 0.14, 95% CI 0.08–0.20, p <
0.01) and adjusted analysis (B = 0.10, 95% CI 0.03–0.17,
p < 0.01) (Fig. 2).

SLPI and other biomarkers

SLPI did not correlate to lactate on hospital admission (rs= 0.27,
p = 0.3). SLPI was significantly positively correlated to CRP and
neutrophil count, on days 1–2 and 7. It did not correlate to lym-
phocyte count on day 1–2 but a negative significant correlation

Table 1 Demographic and clinical patient characteristics

Bloodstream infection etiology

Characteristics HC (n = 31) E. coli (n = 25) S. aureus (n = 27) S. pneumoniae (n = 29) Othera (n = 28)

Age mean (SD) 52 (8) 71 (18) 72 (17) 68 (11) 68 (12)

Sex maled 24 (77.4) 11 (44.0) 23 (85.2) 9 (31.0) 16 (57.1)*

Number of days of diseased 2 (1–3) 3.5 (2–4) 2 (2–4) 1.5 (0–4)*

SOFA increase 0d 11 (44.0) 8 (29.6) 1 (3.4) 6 (21.4)*

SOFA increase 1d 8 (32.0) 6 (22.2) 7 (24.1) 8 (28.6)*

SOFA increase 2d 3 (12) 6 (22.2) 9 (31.0) 4 (14.3)*

SOFA increase ≥ 3d 3 (12) 7 (25.9) 12 41.4) 10 (35.7)*

Intensive care admission 2 (8.0) 3 (11.1) 6 (20.7) 3 (10.7)

Sepsis 6 (24.0) 13 (48) 21 (72.4) 14 (50)

Comorbid conditions

Immunosuppressionb 4 (16.0) 1 (3.7) 3 (10.3) 3 (10.7)

Congestive heart failure 4 (16.0) 5 (18.5) 3 (10.3) 4 (14.3)

Peripheral vascular disease 1 (4.0) 1 (3.7) 1 (3.4) 2 (7.1)

Moderate or severe kidney disease 3 (12.0) 3 (11.1) 0 2 (7.1)

Chronic liver disease 0 0 0 0

Dementia 2 (8.0) 1 (3.7) 0 2 (7.1)

Connective tissue disease 3 (12.0) 1 (3.7) 4 (13.8) 1 (3.6)

Any tumor within the last 5 years 2 (8.0) 1 (3.7) 0 2 (7.1)

Ischemic heart disease 8 (32.0) 7 (25.9) 4 (13.8) 3 (10.7)

Chronic lung disease 0 1 (3.7) 5 (17.2) 2 (7.1)

Diabetes with complications 7 (28.0) 0 0 7 (25.0)

Charlson comorbidity score 2 (0–7) 1 (0–8) 1 (0–8) 1 (0–5)

Primary focus of infection

Lung 1 (3.7) 23 (79.3) 3 (10.7)

Airways 2 (6.9)

Urinary tract 20 (80.0) 7 (25.0)

Skin/soft tissue 5 (18.5) 5 (17.9)

Arthritis/osteomyelitis 10 (37.0) 1 (3.4)

Abdominal 1 (4.0) 6 (21.4)

Endocarditis 5 (18.5) 3 (10.7)

Meningitis 3 (10.3)

Otherc 1 (4.0) 2 (7.4) 1 (3.6)

Unknown 3 (12.0) 4 (14.8) 3 (10.7)

aBetahemolytic streptocci, n = 7; Klebsiella pneumoniae, n = 5,; Polymicrobial, n = 5; Enterococci, n = 4; Pseudomonas, n = 2; Salmonella, n = 2;
Streptococcus anginosus, n = 1; Haemophilus influenzae, n = 1; Actinobacillum schalii, n = 1
b Prednisolone > 20-mg daily dose, chemotherapy, or neutropenia prior to sepsis
c Stent graft infection, n = 2; primary bloodstream infection, n = 2. Data is presented as n (%) unless otherwise stated. # median (range)
d Significant etiology group differences. Sex: E. coli-S. aureus, p = 0.02; S. aureus-S. pneumoniae < 0.01. Number of days of disease: E. coli-S. aureus,
p < 0.01. SOFA score increase on admission: E. coli-S. pneumoniae, p < 0.01
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Fig. 1 SLPI concentrations according to bacterial etiology and source of
infection. a Bacterial etiology. The number of patients in each etiology
group at specified time points is shown below the graph. We here present
Bonferroni-corrected unadjusted statistically significant findings between
the main bacterial etiologies: day 1–2: E. coli-S. aureus and E. coli-S.
pneumoniae both p < 0.01. Day 3: E. coli-S. aureus, p = 0.02. E. coli-S.
pneumoniae, p < 0.01. Day 14: E. coli-S. aureus, p = 0.03. Day 28:

E. coli-S. aureus, p = 0.04. Day 1–2 statistics are also shown in Table 2.
b SLPI concentrations on day 1–2 in pneumonia and other sources.
Patients with pneumonia (n = 26) (median 143 ng/mL, IQR 107–170)
and other sources of infection (n = 71) (median 100 mg/mL, IQR 75–
138). The p value in figure is adjusted for age, sex, and SOFA score
increase on hospital admission (unadjusted p < 0.01)

Table 2 Linear regression with log10SLPI on day 1–2 (n = 97) as outcome variable

n (%) Unadjusted Adjusted for age, sex, and SOFA on admission

B 95% CI p B 95% CI p

Age, per year 0.002 − 0.001 to 0.005 0.12 0.0009 − 0.001 to 0.003 0.43

Female sex 44 (45) ref ref ref ref

Male sex 53 (55) 0.01 − 0.06 to 0.09 0.73 0.03 − 0.04 to 0.09 0.43

SOFA increase, per unit 0.046 0.029 to 0.062 < 0.01 0.039 0.022 to 0.056 < 0.01

E. coli 20 (21) ref ref ref ref

S. aureus 24 (25) 0.15 0.06 to 0.25 < 0.01 0.10 0.008 to 0.20 0.04

S. pneumoniae 27 (28) 0.20 0.10 to 0.30 < 0.01 0.14 0.05 to 0.23 < 0.01

Other etiologies 26 (27) 0.07 − 0.02 to 0.16 0.17 0.02 − 0.07 to 0.11 0.65

Eur J Clin Microbiol Infect Dis (2019) 38:1425–1434 1429



was present on day 7. SLPI correlated negatively to HLA-DR on
days 1–2 and 7 (Fig. 4a–h).

Discussion

This study reports independent associations between bacterial
etiology, disease severity, lung focus, and plasma concentration
of SLPI in community-onset BSI. This is, to our knowledge, the
first clinical study of SLPI as it relates to microbial etiology.

We found that, on days 1–2 and 3 after admission, subjects
with S. pneumoniae and S. aureus etiology had higher plasma
SLPI than E. coli. With account taken for the potential bias of
missing samples over time, we also saw higher SLPI in S. aureus
etiology compared to E. coli later in the studied period. Despite
known differences in bacterial virulence, tissue tropism, and

pathogen sensing by the immune system, sepsis studies rarely
account for the causative pathogen [28]. We recently published
another study based on this patient cohort, showing that mHLA-
DR expression varies according to bacterial etiology, with low
initial mHLA-DR in S. aureus and S. pneumoniae BSI [26]. A
few studies have compared inflammatory markers in gram-
positive and gram-negative BSI. Results are conflicting, perhaps
due to study group variations. A study of general ICU patients
found higher IL-6 and CRP in gram-negative sepsis [29].
Another group looked at abdominal sepsis, reporting higher
levels of most pro- (TNF-α, IFN-γ, and CXCL8) and
antiinflammatory (IL-1ra, IL-4, and IL-10) mediators measured,
in pure gram-negative etiology. Contrastingly, a study of patients
with Bgram-positive cocci^ (mainly S. aureus) and Bgram-nega-
tive bacilli^ (mainly E. coli) found no difference in IL-6 and
CXCL8 concentrations [30, 31].

SLPI concentrations were associated with initial SOFA
score increase, and were higher in early septic, compared to
uncomplicated BSI, supporting previous results from human
and animal studies. One study found an association between
SLPI levels in human sepsis and the degree of organ failure
[24]. Another reported increased LPS-induced immune cell
activation in SLPI−/− mice, more severe disease, and higher
mortality in sepsis-challenged knockout mice compared to
wild type (WT), and a third study correspondingly found in-
creased LPS-induced cytokine secretion in lymph nodes in
SLPI−/− mice when compared to WT [22, 32].

Pulmonary sepsis is associated with high mortality [33].
We found that pneumonia was associated with higher SOFA
score on admission (p < 0.01), than other etiologies, but ad-
justed analyses showed an independent association between
pneumonia and SLPI, which concurs with previous reports by
us and others [25, 34]. S. pneumoniae is the predominant
pathogen in CAP, and made out 85% of BSI in our pneumonia
sub-cohort. No patient had E. coli, and only one had S. aureus,

Fig. 2 SLPI concentrations in
initially septic and non-septic BSI
from hospital admission to day 28
and controls day 0 and 28. Day 0:
no sepsis (n = 26), sepsis (n = 20).
Day 1–2: no sepsis (n = 48), sep-
sis (n = 49). Day 3: no sepsis (n =
37), sepsis (n = 31). Day 7: no
sepsis (n = 43), sepsis (n = 43).
Day 14: no sepsis (n = 38), sepsis
(n = 40). Day 28: no sepsis (n =
39), sepsis (n = 33). Comparison
between patients with or without
sepsis is limited to day 1–2
measurements

p=0.01

Fig. 3 SLPI in men and women with pneumonia on day 1–2.Men (n = 9)
median 165 ng/mL, IQR 132–193, women (n = 17) median 115 ng/mL,
IQR 103–158. The p value shown in the figure is adjusted for age and
severity (unadjusted p = 0.03). Bars represent the median
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Fig. 4 a–hCorrelations between SLPI and other biomarkers on day 1–2 and day 7. SLPI-CRP on a day 1–2 and b day 7. SLPI-neutrophil count ×109 on
c day 1–2 and d day 7. SLPI-lymphocyte count ×109 on e day 1–2 and f day 7. SLPI-monocytic HLA-DR on g day 1–2 and h day 7
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which ruled out etiology-stratified analysis. SLPI is produced
by epithelial cells and macrophages in the lungs, and pulmo-
nary secretion concentrations of SLPI are increased in pneu-
monia [35, 36]. One study reported that, in pneumonia, SLPI
in plasma was proportional to the extent of lung tissue in-
volved, suggesting SLPI spill-over into the circulation [34].
SLPI release from specific granules upon neutrophil activation
might also contribute to increased plasma SLPI [37].
Additionally, SLPI is secreted by other epithelial cells, and
another source of plasma SLPI could be protein leakage from
other epithelial sites than the lungs [9]. A study of
acetaminophen-induced acute liver failure exemplified this,
showing that circulating SLPI derived from the liver [38]. It
is yet possible that epithelial affection is more significant in
pneumonia, explaining some of the observed differences.

Despite the low number of study subjects, and in line with
our previous findings with a larger cohort of CAP, we report
higher plasma SLPI, independently of severity, in men than in
women with pneumonia and BSI on day 1–2 [25]. Due to loss
of sampling over time, we could not assess the dynamics of
this sex-related difference. Through unknown mechanisms,
the sexes display differences in infection and immunity al-
ready in childhood. Females are predisposed to autoimmunity
and better vaccine responses, whereas males are more suscep-
tible to some infections [39, 40]. In terms of sepsis, a male
preponderance has been demonstrated in both adults and chil-
dren, and as to pneumonia, male sex is a risk factor for severity
[1, 7, 41, 42]. Experimental studies indicate that female sex
hormones are protective in sepsis [43]. Interestingly, sex hor-
mones, or sex hormone receptors, have been suggested to be
involved in the regulation of SLPI expression [44–46].

SLPI covaried with CRP and neutrophil count, and remained
elevated when compared to controls throughout this study. The
biological significance of circulating SLPI is unknown, but SLPI
was detected in the nucleus of peripheral blood monocytes in
sepsis patients, and it was shown in vitro that monocytes and B
cells internalize exogenous SLPI [16, 47]. SLPI does not influ-
ence mHLA-DR expression in vitro, but the observed inverse
correlation between these two markers might suggest that SLPI
in plasma does not only reflect a pro-inflammatory state or tissue
damage, but is possibly linked to sepsis-induced immunosup-
pression [38]. Future studies might identify whether circulating
SLPI penetrates immune cells to antagonize inflammatory re-
sponses, and if the correlation between SLPI and disease severity,
as demonstrated by us and others, relates to that.

This study has some limitations, including the limited num-
ber of subjects, half of them not sampled for plasma on ad-
mission, making the study underpowered for etiological com-
parison before antibiotic were given. Secondly, missing data
may affect the validity of the over-time analyses, and equiva-
lently, MI analysis showed lower association for S. aureus
etiology; hence, these results are interpreted with caution.
Furthermore, Sweden has a low degree of antibiotic resistance

compared to most countries, and the greater part of subjects
with E. coli BSI had a UTI, which is known to be associated
with milder disease than an abdominal focus [48]. Therefore,
in other settings, conclusions might have been different.

Strengths of this study include clear definitions of BSI and
etiology, and varying disease severity, reflecting the heteroge-
neity of BSI and sepsis. Development of treatments targeting
the dysregulated host response in sepsis will require deeper
knowledge in how host-related factors, e.g., sex, and specific
pathogens, influence the immune response.

In summary, this study shows differences in SLPI blood
concentrations related to bacterial etiology, disease severity,
and source in BSI, plus a sex-related divergence in SLPI con-
centrations in pneumonia. SLPI is noticed for versatile immu-
nological functions, and our results warrant further studies that
elucidate the role of SLPI in severe bacterial infections.
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