

OPEN d ACCESS

Crystal structure of {(*E*)-4-[(1-allyl-1*H*-1,2,3-triazol-4-yl)methoxy]benzylidene}-[2-(morpholin-4-yl)ethyl]amine

Sevim Türktekin Çelikesir,^a Mehmet Akkurt,^a* Aliasghar Jarrahpour,^b Mehdi Mohammadi Chermahini,^b Pezhman Shiri^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey. *Correspondence e-mail: akkurt@erciyes.edu.tr

Received 9 July 2014; accepted 19 July 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{19}H_{25}N_5O_2$, the morpholine ring has a chair conformation. The plane of the central benzene ring makes dihedral angles of 88.75 (12) and 60.02 (7)°, respectively, with the mean plane formed by the four planar C atoms of the morpholine ring and with the plane of the triazole ring. In the crystal, molecules are linked *via* $C-H\cdots\pi$ interactions, forming slabs lying parallel to (101). The C atoms of the bridging ethylene group, between the morpholine and benzene rings, and the terminal ethene group of the prop-1-ene substituent attached to the triazole ring, are disordered over two sets of sites, with an occupancy ratio of 0.634 (13):0.366 (13).

Keywords: crystal structure; Schiff base; morpholine; 1,2,3-triazole; disorder.

CCDC reference: 1014976

1. Related literature

For information on Schiff bases, see: Vladimirova *et al.* (2001). For 1,2,3-triazole derivatives and the 'click' chemistry concept, see: Kolb *et al.* (2001); Wang *et al.* (2005). For the biological activity of 1,2,3-triazole derivatives, including their potential applications as antitumor, antibacterial, antifungal and antiviral agents, see: Yu *et al.* (2006). For the biological utility of molecules containing the morpholine moiety, see: Nelson *et al.* (2004).

2. Experimental

2.1. Crystal data C₁₉H₂₅N₅O₂

 $M_r = 355.44$ Monoclinic, $P2_1/c$ a = 22.3034 (10) Å b = 5.2531 (3) Å c = 16.5878 (8) Å $\beta = 93.051$ (4)°

2.2. Data collection

Stoe IPDS 2 diffractometer

Absorption correction: integration

(X-RED32; Stoe & Cie, 2002)

 $T_{\rm min}=0.961,\;T_{\rm max}=0.993$

 $V = 1940.71 (17) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.61 \times 0.43 \times 0.10 \text{ mm}$

25155 measured reflections 3610 independent reflections 1769 reflections with $I > 2\sigma(I)$ $R_{int} = 0.191$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	7 restraints
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
3610 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
272 parameters	

Table 1Hydrogen-bond geometry (Å, °).

Cg is the centroid of the 1,2,3-triazole ring N3–N5/C15/C16.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6A - H6A1 \cdots Cg^{i}$	0.97	2.90	3.617 (8)	132
Symmetry code: (i) $-x$	$+1, y - \frac{1}{2}, -z$	+ 1.		

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ, MMC and PS thank the Shiraz University Council for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2753).

References

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.
- Nelson, T. D., Rosen, J. D., Brands, K. M. J., Craig, B., Huffman, M. A. & McNamara, J. M. (2004). *Tetrahedron Lett.* 45, 8917–8920.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Vladimirova, M. P., Simova, S. D., Stanoeva, E. R. & Mitewa, M. I. (2001). Dyes Pigm. 50, 157–162.
- Wang, Q., Chittaboina, S. & Barnhill, H. N. (2005). Lett. Org. Chem. 2, 293-301.
- Yu, H. X., Ma, J. F., Xu, G. H., Li, S. L., Yang, J., Liu, Y. Y. & Cheng, Y. X. (2006). J. Organomet. Chem. 691, 3531–3539.

supporting information

Acta Cryst. (2014). E70, o933-o934 [doi:10.1107/S1600536814016754]

Crystal structure of {(*E*)-4-[(1-allyl-1*H*-1,2,3-triazol-4-yl)methoxy]benzylidene} [2-(morpholin-4-yl)ethyl]amine

Sevim Türktekin Çelikesir, Mehmet Akkurt, Aliasghar Jarrahpour, Mehdi Mohammadi Chermahini, Pezhman Shiri and Orhan Büyükgüngör

S1. Synthesis and crystallization

Reaction of 4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (1.0 mmol) with 2-morpholinoethanamine (1.0 mmol) in refluxing ethanol gave the title compound. Recrystallization from ethanol gave light brown crystals in 75% yield. m.p. 385 - 387 K. IR (KBr, cm⁻¹): 1635 (C=N). ¹H-NMR (250 MHz, CDCl₃), δ (ppm): 2.48 (CH₂—N morpholine, t, 4H, J=5 Hz), 2.62 (morpholine-CH₂—CH₂, t, 2H, J=7.5 Hz), 3.65 (CH₂—O morpholine and morpholine-CH₂—CH₂, t, 6H, J=5 Hz), 4.92 (d, 2H, J=7.5 Hz), 5.17 (s, 2H), 5.29 (m, 2H), 5.98 (m, 1H), 6.92 (aromatic H, d, 2H, J=10 Hz), 7.56 (aromatic H, d, 2H, J=Hz 5), 7.6 (H triazole, s, 1H), 8.15 (HC=N, s, 1H). ¹³CNMR (62.9 MHz, CDCl₃), δ (p.p.m): 53.9 (CH₂—N morpholine), 58.8, 59.3 (N—CH₂—CH₂, and CH₂—N), 61.9 (CH₂—O), 66.9 (CH₂—O morpholine), 114.7-143.9 (aromatic carbons and C=C triazole), 161.1 (C=N).

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 - 0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. Reflections (1 2 0), (1 3 0) and (0 4 1) were omitted owing to bad agreement. Atoms C5A/C5B, C6A/C6B, C18A/C18B and C19A/C19B are disordered over two sites with an occupancy ratio of 0.634 (13):0.366 (13). Owing to the poor quality of the crystal the value of R_{int} is high (0.191).

Figure 1

The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. For clarity only the major disordered components are shown.

Figure 2

Crystal packing diagram of the title compound viewed along the b axis. For clarity only the major disordered components are shown.

{(*E*)-4-[(1-Allyl-1*H*-1,2,3-triazol-4-yl)methoxy]benzylidene}[2-(morpholin-4-yl)ethyl]amine

Crystal data	
$C_{19}H_{25}N_5O_2$	$V = 1940.71 (17) Å^3$
$M_r = 355.44$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 760
Hall symbol: -P 2ybc	$D_{\rm x} = 1.217 {\rm ~Mg} {\rm ~m}^{-3}$
a = 22.3034 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 5.2531 (3) Å	Cell parameters from 15061 reflections
c = 16.5878 (8) Å	$\theta = 1.5 - 27.1^{\circ}$
$\beta = 93.051 \ (4)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$

T = 296 KBlock, light brown

Data collection

Stoe IPDS 2	$T_{\rm min} = 0.961, \ T_{\rm max} = 0.993$
diffractometer	25155 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4	3610 independent reflections
mm long-fine focus	1769 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.191$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
ω scans	$h = -26 \rightarrow 26$
Absorption correction: integration	$k = -6 \rightarrow 6$
(X-RED32; Stoe & Cie, 2002)	$l = -20 \longrightarrow 20$
Refinement	
Refinement on F^2	Hydrogen site location: inferred fr

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0624P)^2]$
<i>S</i> = 0.93	where $P = (F_o^2 + 2F_c^2)/3$
3610 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
272 parameters	$\Delta ho_{ m max} = 0.16$ e Å ⁻³
7 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $0.61 \times 0.43 \times 0.10 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.00977 (10)	0.1772 (6)	0.1080 (2)	0.1613 (15)	
O2	0.52892 (6)	0.7614 (3)	0.42272 (9)	0.0777 (6)	
N1	0.12323 (13)	0.3855 (6)	0.15681 (19)	0.1249 (11)	
N2	0.27681 (10)	0.5151 (6)	0.24066 (15)	0.1151 (10)	
N3	0.65963 (9)	0.6517 (4)	0.44128 (13)	0.0839 (8)	
N4	0.70715 (9)	0.6485 (4)	0.49113 (14)	0.0923 (9)	
N5	0.70797 (8)	0.8676 (4)	0.53186 (12)	0.0807 (8)	
C1	0.0707 (2)	0.4126 (9)	0.2028 (3)	0.172 (2)	
C2	0.01503 (16)	0.4008 (10)	0.1505 (3)	0.179 (3)	
C3	0.05926 (16)	0.1478 (10)	0.0616 (3)	0.180 (2)	
C4	0.11659 (13)	0.1510 (8)	0.1120 (2)	0.1436 (18)	
C5A	0.1714 (3)	0.4194 (16)	0.2175 (5)	0.096 (2)	0.634 (13)
C6A	0.2293 (3)	0.482 (2)	0.1740 (5)	0.096 (3)	0.634 (13)
C7	0.31518 (10)	0.6820 (5)	0.23080 (15)	0.0809 (10)	
C8	0.37040 (9)	0.7061 (4)	0.28150 (13)	0.0658 (8)	

С9	0.38592 (9)	0.5339 (4)	0.34293 (14)	0.0711 (8)	
C10	0.43840 (9)	0.5580 (4)	0.38852 (14)	0.0695 (8)	
C11	0.47744 (9)	0.7556 (4)	0.37429 (13)	0.0646 (8)	
C12	0.46337 (10)	0.9286 (4)	0.31340 (14)	0.0774 (9)	
C13	0.40997 (11)	0.9006 (4)	0.26846 (15)	0.0805 (9)	
C14	0.57484 (10)	0.9369 (4)	0.40298 (15)	0.0775 (9)	
C15	0.63014 (9)	0.8731 (4)	0.45100 (13)	0.0644 (8)	
C16	0.66101 (11)	1.0086 (5)	0.50812 (15)	0.0795 (9)	
C17	0.75478 (13)	0.9218 (7)	0.59454 (18)	0.1190 (14)	
C18A	0.7974 (4)	1.113 (2)	0.5714 (7)	0.114 (3)	0.634 (13)
C19A	0.8541 (6)	1.080 (3)	0.5825 (11)	0.151 (5)	0.634 (13)
C5B	0.1961 (5)	0.338 (2)	0.1835 (7)	0.083 (4)	0.366 (13)
C6B	0.2144 (7)	0.590 (3)	0.2047 (9)	0.104 (5)	0.366 (13)
C18B	0.8105 (6)	0.998 (4)	0.5629 (12)	0.109 (6)	0.366 (13)
C19B	0.8417 (14)	1.199 (3)	0.579 (2)	0.153 (10)	0.366 (13)
H1A	0.07240	0.57420	0.23110	0.2060*	
H1B	0.07020	0.27810	0.24280	0.2060*	
H5A1	0.17700	0.26510	0.24920	0.1160*	0.634 (13)
H3A	0.05980	0.28410	0.02220	0.2160*	
H3B	0.05590	-0.01220	0.03260	0.2160*	
H6A2	0.22430	0.63690	0.14260	0.1150*	0.634 (13)
H5A2	0.16200	0.55730	0.25360	0.1160*	0.634 (13)
H2A	-0.01930	0.41900	0.18370	0.2150*	
H2B	0.01450	0.54230	0.11290	0.2150*	
H6A1	0.23960	0.34400	0.13840	0.1150*	0.634 (13)
H10	0.44790	0.44120	0.42930	0.0830*	
H12	0.48940	1.06130	0.30290	0.0930*	
H13	0.40040	1.01780	0.22780	0.0970*	
H14A	0.56250	1.10930	0.41490	0.0930*	
H14B	0.58190	0.92630	0.34590	0.0930*	
H16	0.65130	1.16920	0.52710	0.0950*	
H17A	0.73600	0.97870	0.64280	0.1430*	
H17B	0.77630	0.76560	0.60780	0.1430*	
H18A	0.78320	1.26370	0.54790	0.1370*	0.634 (13)
H19A	0.86880	0.93050	0.60600	0.1820*	0.634 (13)
H19B	0.88050	1.20590	0.56710	0.1820*	0.634 (13)
H4A	0.11720	0.00870	0.14930	0.1720*	
H4B	0.15010	0.13150	0.07760	0.1720*	
H7	0.30840	0.79780	0.18890	0.0970*	
Н9	0.36010	0.40000	0.35310	0.0850*	
H5B1	0.20110	0.22290	0.22900	0.0990*	0.366 (13)
H5B2	0.21790	0.27290	0.13880	0.0990*	0.366 (13)
H6B1	0.18950	0.66640	0.24420	0.1250*	0.366 (13)
H6B2	0.21640	0.70040	0.15800	0.1250*	0.366 (13)
H18B	0.82620	0.88730	0.52550	0.1310*	0.366 (13)
H19C	0.82840	1.31630	0.61640	0.1840*	0.366 (13)
H19D	0.87750	1.22610	0.55460	0.1840*	0.366 (13)

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
01	0.0905 (16)	0.195 (3)	0.196 (3)	-0.0408 (17)	-0.0134 (17)	-0.031 (2)
02	0.0721 (9)	0.0850 (10)	0.0749 (11)	-0.0148 (8)	-0.0063 (8)	0.0196 (8)
N1	0.1009 (18)	0.141 (2)	0.127 (2)	-0.0382 (17)	-0.0480 (18)	0.0348 (19)
N2	0.0763 (14)	0.164 (2)	0.1018 (18)	-0.0213 (15)	-0.0260 (13)	0.0395 (17)
N3	0.0847 (13)	0.0753 (13)	0.0906 (16)	0.0021 (11)	-0.0044 (12)	-0.0121 (11)
N4	0.0861 (14)	0.0884 (15)	0.1015 (17)	0.0078 (12)	-0.0030 (13)	-0.0022 (13)
N5	0.0753 (13)	0.0914 (14)	0.0747 (14)	-0.0147 (12)	-0.0029 (11)	0.0018 (12)
C1	0.147 (3)	0.194 (4)	0.171 (4)	-0.033 (3)	-0.022 (3)	-0.030 (3)
C2	0.101 (3)	0.206 (5)	0.227 (5)	-0.006 (3)	-0.021 (3)	-0.035 (4)
C3	0.090 (2)	0.266 (5)	0.180 (4)	-0.035 (3)	-0.021 (3)	-0.065 (4)
C4	0.090 (2)	0.183 (4)	0.156 (3)	-0.008 (2)	-0.011 (2)	-0.001 (3)
C5A	0.066 (3)	0.141 (5)	0.082 (4)	-0.004 (3)	0.001 (3)	0.001 (3)
C6A	0.059 (3)	0.151 (7)	0.077 (5)	-0.011 (4)	0.000 (3)	-0.001 (4)
C7	0.0742 (15)	0.1012 (19)	0.0670 (16)	0.0125 (14)	0.0008 (13)	0.0074 (14)
C8	0.0673 (13)	0.0702 (14)	0.0597 (15)	0.0124 (11)	0.0007 (11)	-0.0038 (11)
C9	0.0664 (14)	0.0790 (14)	0.0680 (16)	-0.0028 (11)	0.0048 (12)	0.0050 (13)
C10	0.0686 (13)	0.0735 (14)	0.0664 (15)	-0.0002 (11)	0.0041 (12)	0.0155 (11)
C11	0.0681 (13)	0.0658 (13)	0.0594 (14)	0.0053 (11)	-0.0024 (11)	0.0016 (11)
C12	0.0843 (16)	0.0622 (14)	0.0844 (18)	-0.0044 (11)	-0.0085 (14)	0.0129 (12)
C13	0.0953 (17)	0.0662 (14)	0.0785 (18)	0.0044 (13)	-0.0104 (14)	0.0156 (12)
C14	0.0825 (15)	0.0649 (13)	0.0845 (18)	-0.0127 (11)	0.0003 (13)	0.0070 (12)
C15	0.0676 (13)	0.0558 (12)	0.0697 (15)	-0.0082 (11)	0.0032 (12)	0.0023 (11)
C16	0.0864 (16)	0.0665 (13)	0.0849 (18)	-0.0048 (13)	-0.0009 (14)	-0.0124 (13)
C17	0.0904 (19)	0.175 (3)	0.089 (2)	-0.029 (2)	-0.0193 (17)	0.002 (2)
C18A	0.094 (5)	0.092 (5)	0.152 (6)	-0.016 (5)	-0.042 (5)	-0.009 (5)
C19A	0.093 (6)	0.206 (13)	0.153 (7)	-0.026 (9)	-0.007 (5)	0.020 (11)
C5B	0.071 (7)	0.119 (7)	0.057 (6)	0.029 (5)	0.000 (5)	0.002 (5)
C6B	0.114 (10)	0.128 (10)	0.068 (8)	0.010 (8)	-0.008 (6)	0.006 (6)
C18B	0.066 (9)	0.125 (12)	0.134 (9)	0.009 (7)	-0.011 (6)	-0.027 (10)
C19B	0.116 (17)	0.127 (13)	0.217 (19)	-0.036 (11)	0.016 (14)	-0.018 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01-C2	1.372 (6)	C1—H1A	0.9700
O1—C3	1.388 (5)	C1—H1B	0.9700
O2—C11	1.366 (2)	C2—H2A	0.9700
O2—C14	1.429 (3)	C2—H2B	0.9700
N1-C1	1.439 (5)	С3—НЗА	0.9700
N1C4	1.442 (5)	С3—Н3В	0.9700
N1—C5A	1.444 (8)	C4—H4A	0.9700
N1—C5B	1.680 (12)	C4—H4B	0.9700
N2—C6A	1.500 (8)	C5A—H5A1	0.9700
N2—C7	1.242 (4)	C5A—H5A2	0.9700
N2—C6B	1.536 (16)	C5B—H5B1	0.9700
N3—N4	1.309 (3)	C5B—H5B2	0.9700

N4—N5 1.334 (i) C6A—H6A1 0.9700 N5—C16 1.325 (3) C6B—H6B2 0.9700 N5—C17 1.462 (4) C6B—H6B1 0.9700 C1—C2 1.478 (6) C7—H7 0.9300 C3—C4 1.490 (5) C9—H9 0.9300 C5A—C6A 1.548 (10) C10—H10 0.9300 C5B—C6B 1.424 (19) C12—H12 0.9300 C8—C13 1.375 (3) C14—H14A 0.9700 C9—C10 1.365 (3) C16—H16 0.9300 C1—C11 1.383 (3) C17—H17A 0.9700 C12—C13 1.375 (3) C14—H14A 0.9700 C14—C15 1.471 (3) C18A—H18A 0.9300 C14—C15 1.471 (3) C18A—H18A 0.9300 C17—C18B 1.432 (15) C19A—H19B 0.9300 C17—C18A 1.449 (10) C19B—H19C 0.9300 C17—C18A 1.449 (10) C19B—H19D 0.9300 C17—C18A 1.449 (10) C19B—H19D 0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C2O1C3109.4 (3)N1C4H4B109.00C11O2C14118.02 (17)C3C4H4A109.00C1N1C4107.1 (3)C3C4H4B110.00C1N1C5A102.4 (4)H4AC4H4B108.00C1N1C5B132.7 (5)N1C5AH5A1110.00C4N1C5A121.1 (4)N1C5AH5A2110.00C4N1C5B94.6 (4)C6AC5AH5A1110.00C6AN2C7116.7 (4)C6AC5AH5A2100.00C6BN2C7112.6 (6)H5A1C5AH5A2108.00N4N3C15108.6 (2)H5B1C5BH5B2109.00N3N4N5107.31 (19)N1C5BH5B2112.00N4N5C16110.0 (2)C6BC5BH5B1112.00N1C1C2111.5 (4)N2C6AH6A2111.00O1C2C1112.6 (4)C5AC6AH6A1111.00N1C1C2111.1 (3)C5AC6AH6A2111.00N1C5AC6A108.0 (6)H6A1C6AH6A2109.00N1C5AC6A108.0 (6)H6A1C6AH6A2109.00N1C5BC6B100.8 (9)N2C6BH6B1113.00N2C6AC5A104.8 (6)C5BC6BH6B2113.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C4—N1—C5A121.1 (4)N1—C5A—H5A2110.00C4—N1—C5B94.6 (4)C6A—C5A—H5A1110.00C6A—N2—C7116.7 (4)C6A—C5A—H5A2110.00C6B—N2—C7112.6 (6)H5A1—C5A—H5A2108.00N4—N3—C15108.6 (2)H5B1—C5B—H5B2109.00N3—N4—N5107.31 (19)N1—C5B—H5B2112.00N4—N5—C16110.0 (2)C6B—C5B—H5B1112.00N4—N5—C17121.2 (2)N1—C5B—H5B1112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00O1—C3—C4111.8 (4)N2—C6A—H6A1111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2111.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
C4—N1—C5B94.6 (4)C6A—C5A—H5A1110.00C6A—N2—C7116.7 (4)C6A—C5A—H5A2110.00C6B—N2—C7112.6 (6)H5A1—C5A—H5A2108.00N4—N3—C15108.6 (2)H5B1—C5B—H5B2109.00N3—N4—N5107.31 (19)N1—C5B—H5B2112.00N4—N5—C16110.0 (2)C6B—C5B—H5B1112.00N4—N5—C17121.2 (2)N1—C5B—H5B1112.00C16—N5—C17128.7 (2)C6B—C5B—H5B2112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00N1—C4—C3111.1 (3)C5A—C6A—H6A2111.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
N4—N3—C15108.6 (2)H5B1—C5B—H5B2109.00N3—N4—N5107.31 (19)N1—C5B—H5B2112.00N4—N5—C16110.0 (2)C6B—C5B—H5B1112.00N4—N5—C17121.2 (2)N1—C5B—H5B1112.00C16—N5—C17128.7 (2)C6B—C5B—H5B2112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00O1—C3—C4111.8 (4)N2—C6A—H6A1111.00N1—C4—C3111.1 (3)C5A—C6A—H6A2111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N3—N4—N5107.31 (19)N1—C5B—H5B2112.00N4—N5—C16110.0 (2)C6B—C5B—H5B1112.00N4—N5—C17121.2 (2)N1—C5B—H5B1112.00C16—N5—C17128.7 (2)C6B—C5B—H5B2112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00O1—C3—C4111.8 (4)N2—C6A—H6A1111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N4—N5—C16110.0 (2)C6B—C5B—H5B1112.00N4—N5—C17121.2 (2)N1—C5B—H5B1112.00C16—N5—C17128.7 (2)C6B—C5B—H5B2112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00O1—C3—C4111.8 (4)N2—C6A—H6A1111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N4—N5—C17121.2 (2)N1—C5B—H5B1112.00C16—N5—C17128.7 (2)C6B—C5B—H5B2112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00O1—C3—C4111.8 (4)N2—C6A—H6A1111.00N1—C4—C3111.1 (3)C5A—C6A—H6A2111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
C16—N5—C17128.7 (2)C6B—C5B—H5B2112.00N1—C1—C2111.5 (4)N2—C6A—H6A2111.00O1—C2—C1112.6 (4)C5A—C6A—H6A1111.00O1—C3—C4111.8 (4)N2—C6A—H6A1111.00N1—C4—C3111.1 (3)C5A—C6A—H6A2111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N1—C1—C2 111.5 (4) N2—C6A—H6A2 111.00 O1—C2—C1 112.6 (4) C5A—C6A—H6A1 111.00 O1—C3—C4 111.8 (4) N2—C6A—H6A1 111.00 N1—C4—C3 111.1 (3) C5A—C6A—H6A2 111.00 N1—C5A—C6A 108.0 (6) H6A1—C6A—H6A2 109.00 N1—C5B—C6B 100.8 (9) N2—C6B—H6B1 113.00 N2—C6A—C5A 104.8 (6) C5B—C6B—H6B2 113.00
O1C2C1112.6 (4)C5AC6AH6A1111.00O1C3C4111.8 (4)N2C6AH6A1111.00N1C4C3111.1 (3)C5AC6AH6A2111.00N1C5AC6A108.0 (6)H6A1C6AH6A2109.00N1C5BC6B100.8 (9)N2C6BH6B1113.00N2C6AC5A104.8 (6)C5BC6BH6B2113.00
O1C3C4111.8 (4)N2C6AH6A1111.00N1C4C3111.1 (3)C5AC6AH6A2111.00N1C5AC6A108.0 (6)H6A1C6AH6A2109.00N1C5BC6B100.8 (9)N2C6BH6B1113.00N2C6AC5A104.8 (6)C5BC6BH6B2113.00
N1—C4—C3111.1 (3)C5A—C6A—H6A2111.00N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N1—C5A—C6A108.0 (6)H6A1—C6A—H6A2109.00N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N1—C5B—C6B100.8 (9)N2—C6B—H6B1113.00N2—C6A—C5A104.8 (6)C5B—C6B—H6B2113.00
N2—C6A—C5A 104.8 (6) C5B—C6B—H6B2 113.00
N2—C6B—C5B 95.7 (10) N2—C6B—H6B2 113.00
N2—C7—C8 123.5 (2) C5B—C6B—H6B1 113.00
C9—C8—C13 117.5 (2) H6B1—C6B—H6B2 110.00
C/-C8-C9 122.3 (2) N2C/H/ 118.00

C8—C9—C10	121.17 (19)	С10—С9—Н9	119.00
C9—C10—C11	120.3 (2)	С8—С9—Н9	119.00
O2—C11—C12	124.47 (19)	С9—С10—Н10	120.00
C10—C11—C12	119.8 (2)	C11—C10—H10	120.00
O2—C11—C10	115.68 (19)	C11—C12—H12	121.00
C11—C12—C13	118.7 (2)	C13—C12—H12	121.00
C8—C13—C12	122.5 (2)	С8—С13—Н13	119.00
O2—C14—C15	108.63 (18)	C12—C13—H13	119.00
C14—C15—C16	130.1 (2)	O2—C14—H14A	110.00
N3—C15—C14	122.10 (19)	O2—C14—H14B	110.00
N3—C15—C16	107.8 (2)	C15—C14—H14A	110.00
N5-C16-C15	106.3 (2)	C15—C14—H14B	110.00
N5-C17-C18A	113.6 (5)	H14A—C14—H14B	108.00
N5-C17-C18B	113.3 (8)	C15—C16—H16	127.00
C17—C18A—C19A	121.7 (11)	N5—C16—H16	127.00
C17—C18B—C19B	129 (2)	N5—C17—H17A	109.00
N1—C1—H1A	109.00	C18A—C17—H17B	109.00
N1—C1—H1B	109.00	N5—C17—H17B	109.00
C2—C1—H1A	109.00	C18A—C17—H17A	109.00
C2—C1—H1B	109.00	C18B—C17—H17B	84.00
H1A—C1—H1B	108.00	H17A—C17—H17B	108.00
O1—C2—H2A	109.00	C18B—C17—H17A	130.00
O1—C2—H2B	109.00	C19A—C18A—H18A	119.00
C1—C2—H2A	109.00	C17—C18A—H18A	119.00
C1—C2—H2B	109.00	C19B—C18B—H18B	116.00
H2A—C2—H2B	108.00	C17—C18B—H18B	116.00
O1—C3—H3A	109.00	C18A—C19A—H19B	120.00
O1—C3—H3B	109.00	H19A—C19A—H19B	120.00
С4—С3—НЗА	109.00	C18A—C19A—H19A	120.00
С4—С3—Н3В	109.00	C18B—C19B—H19C	120.00
НЗА—СЗ—НЗВ	108.00	C18B—C19B—H19D	120.00
N1—C4—H4A	109.00	H19C—C19B—H19D	120.00
C2—O1—C3—C4	57.7 (5)	N4—N5—C16—C15	0.0 (3)
C3—O1—C2—C1	-57.7 (5)	N1—C1—C2—O1	58.5 (5)
C14—O2—C11—C12	-8.4 (3)	O1—C3—C4—N1	-58.5 (5)
C11—O2—C14—C15	-167.78 (18)	N1—C5A—C6A—N2	179.8 (6)
C14—O2—C11—C10	170.68 (19)	N2-C7-C8-C13	-178.0 (3)
C1—N1—C4—C3	55.4 (4)	N2—C7—C8—C9	3.4 (4)
C4—N1—C5A—C6A	79.1 (7)	C7—C8—C13—C12	-178.5 (2)
C4—N1—C1—C2	-55.3 (5)	C7—C8—C9—C10	178.8 (2)
C5A—N1—C1—C2	176.3 (5)	C9—C8—C13—C12	0.1 (3)
C1—N1—C5A—C6A	-161.9 (6)	C13—C8—C9—C10	0.1 (3)
C5A—N1—C4—C3	172.1 (5)	C8—C9—C10—C11	-0.1 (3)
C6A—N2—C7—C8	-167.7 (4)	C9—C10—C11—C12	-0.3 (3)
C7—N2—C6A—C5A	-143.5 (5)	C9—C10—C11—O2	-179.44 (19)
C15—N3—N4—N5	-0.4 (3)	C10-C11-C12-C13	0.6 (3)
N4—N3—C15—C14	179.4 (2)	O2—C11—C12—C13	179.6 (2)

NA N3 C15 C16	0.1(3)	C_{11} C_{12} C_{13} C_{8}	-0.5(3)
	0.4 (3)		(5,1,(2))
N3—N4—N5—C16	0.3 (3)	02—C14—C15—N3	65.1 (3)
N3—N4—N5—C17	178.3 (2)	O2—C14—C15—C16	-116.2 (3)
C17—N5—C16—C15	-177.8 (2)	N3—C15—C16—N5	-0.3 (3)
N4—N5—C17—C18A	108.4 (5)	C14—C15—C16—N5	-179.1 (2)
C16—N5—C17—C18A	-74.0 (5)	N5—C17—C18A—C19A	-132.7 (12)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the 1,2,3-triazole ring N3–N5/C15/C16.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C6A - H6A1 \cdots Cg^i$	0.97	2.90	3.617 (8)	132

Symmetry code: (i) -x+1, y-1/2, -z+1/2.