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Glioblastoma multiform is a lethal primary brain tumor derived from astrocytic, with a poor
prognosis in adults. Reticulocalbin-1 (RCN1) is a calcium-binding protein, dysregulation of
which contributes to tumorigenesis and progression in various cancers. The present study
aimed to identify the impact of RCN1 on the outcomes of patients with Glioblastoma
multiforme (GBM). The study applied two public databases to require RNA sequencing
data of Glioblastoma multiform samples with clinical data for the construction of a training
set and a validation set, respectively. We used bioinformatic analyses to determine that
RCN1 could be an independent factor for the overall survival of Glioblastoma multiform
patients. In the training set, the study constructed a predictive prognostic model based on
the combination of RCN1 with various clinical parameters for overall survival at 0.5-, 1.0-,
and 1.5-years, as well as developed a nomogram, which was further validated by validation
set. Pathways analyses indicated that RCN1 was involved in KEAS and MYC pathways
and apoptosis. In vitro experiments indicated that RCN1 promoted cell invasion of
Glioblastoma multiform cells. These results illustrated the prognostic role of RCN1 for
overall survival in Glioblastoma multiform patients, indicated the promotion of RCN1 in cell
invasion, and suggested the probability of RCN1 as a potential targeted molecule for
treatment in Glioblastoma multiform.
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INTRODUCTION

Glioblastoma multiforme (GBM) represents the most prevalent brain cancer in adults and has a
dismal prognosis and poor quality of life (Omuro and DeAngelis, 2013). The current treatment
strategies for GBM are maximum surgical resection followed by a combination of chemotherapy and
radiotherapy (Gilbert et al., 2013; Ostrom et al., 2015). Even with the advancement in therapeutic
options over recent decades, recent studies have demonstrated that the median survival of GBM
patients is 16.6 months, which decreases after 2 years, with a survival rate of only 34% (Gilbert et al.,
2013). Several studies have illustrated that some omics markers within tumors could impact patients’
survival, like the status of Isocitrate dehydrogenase 1/2 (IDH1/2) mutation, glioma-CpG island
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methylator phenotype (G-CIMP), methylation of O-6-
methylguanine-DNA methyltransferase (MGMT), and
codeletion for chromosome 1p and 19q (1p/19q codeletion)
(Hartmann et al., 2010; Wick et al., 2013; Hainfellner et al.,
2014; Louis et al., 2016). In addition, further improvements have
been made with subspecialized care, improved resection methods
precisely targeted radiotherapy, and early systemic salvage
therapies (Jayamanne et al., 2018). However, patients with
GBM still have a poor prognosis due to the GBM’s aggressive
behavior, rapid progression, and frequent recurrence (Soffietti
et al., 2014). Thus, it is imperative to search for a novel biomarker
with good prediction for the prognostic signature of GBM via
various methods, to explore the molecular mechanisms for
precisely targeted treatments in GBM.

Reticulocalbin-1 (RCN1), a calcium-binding protein, contains
six conserved regions and is located in the endoplasmic reticulum
(Ozawa and Muramatsu, 1993), which regulates calcium-
dependent activities combined with reticulocalbin 2 (RCN2)
(Nakakido et al., 2016). Dysregulation of RCN1 protein has
been reported in multifarious diseases, including cancer,
cardiovascular, and neuromuscular diseases (Grzeskowiak

et al., 2003; Liu et al., 1997; Zhang et al., 2006). It has been
found that RCN1 is involved in breast cancer (Nakakido et al.,
2016), colorectal cancer (Nimmrich et al., 2000), liver cancer (Lu
et al., 2015), kidney cancer (Giribaldi et al., 2013), and non-small
cell lung cancer (Chen et al., 2019). In addition, it is reported that
down-regulation of RCN1 facilitates apoptosis and necroptosis in
prostate cancer cells (Liu et al., 2018). Overall, the above findings
have revealed that dysregulation of RCN1 could contribute to
tumorigenesis and progression. However, the relationship
between RCN1 and prognosis, nor its biological functions in
GBM, have been completely investigated.

In our study, GBM samples in the Cancer Genome Atlas
(TCGA) database were enrolled in the training set, and cases in
the Chinese Glioma Genome Atlas (CGGA) were used for the
external validation set, to assess the RCN1-related prognostic
signature in GBM. Gene Expression Profiling and Interactive
Analyses (GEPIA2) (Tang et al., 2017) (http://gepia2.cancer-pku.
cn/#index) were used to profile the tissue-wise expression of
RCN1 in GBM. In addition, the next version of Cell type
Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORTx, (Newman et al., 2019) https://

FIGURE 1 | Flow chart of this study.
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cibersortx.stanford.edu/) was used to illustrate the abundances of
the infiltration immune cells correlating with expression of RCN1
in GBM, and the single sample gene search enrichment analyses
(ssGSEA) (Barbie et al., 2009) was utilized to determine potential
pathways of RCN1 involved (Figure 1).

MATERIALS AND METHODS

Data Acquisition
The RNA sequencing data (level 3) of GBM with corresponding
clinical data were downloaded from the TCGA database to assess
the prognostic impact of RCN1-signature on patients with GBM,
and were enrolled into the training set. Then, GBM samples from
the Chinese Glioma Genome Atlas (CGGA) dataset were
employed as an external validation set for further verification.

Differential Analysis of Reticulocalbin-1
Expression in Glioblastoma Multiforme
Gene Expression Profiling and Interactive Analyses (GEPIA)
(Tang et al., 2017) is an online resource for gene expression
analysis, and GEPIA2 (http://gepia2.cancer-pku.cn/#index)
(Tang et al., 2019) was an updated version of GEPIA,
containing 163 GBM cases of TCGA and 207 normal brain
samples of the Genome Tissues Expression database (GETx)
(GTEx Consortium, 2015). We performed a differential
analysis of RCN1 expression through GEPIA2 and used a
boxplot to show the results with log2 of transcript count per
million [log2 (TPM+ 1)] presenting the expression level of RCN1.

Survival Analysis
As described previously (Ogłuszka et al., 2019), we used survMisc
package in R to divide GBM samples into high and low RCN1
groups based on the optimum cutoff. For the exploration of the
association between the expression of RCN1 and survival,
Kaplan-Meier (KM) analysis with log-rank test was conducted
by using survival package.

Evaluation of Reticulocalbin-1-Based
Prognostic Value
To explore the effect of the variation of RCN1 expression on OS
in GBM patients, we estimated the relative risk and log2-based
transformation for survival status, followed by fitting smooth line
using a locally estimated scatterplot smoothing (LOESS) method
(Zheng et al., 2020). We then compared the predictive effect of
RCN1 with different prognostic factors by receiver operating
characteristic (ROC) curve (Zhou et al., 2019). We regarded the
RCN1 expression as a single continuous covariate for further
regression analysis based on the result of LOESS analysis. We
adjusted for clinical features, which changed the regression
coefficients of RCN1 by more than 10%, or of p < 0.1 through
the univariate analysis (Kernan et al., 2000). Next, adjust I model
was determined after adjusting confounders, while all clinical
factors were enrolled as adjust II model. Then, univariate and
multivariate analyses using Cox proportional hazard regression

model were performed. We also applied LOESS method to
visually assess the relationship between RCN1 expression and
OS in adjust I and adjust II models, respectively. Interaction test
and stratified analysis (Soria et al., 2015) were also carried out to
assess the differential prognostic value of RCN1 in accordance
with a different model. A two-tailed p < 0.05 was considered to be
statistically significant.

Construction and Comparison of Three
Prognostic Models
After determining the prognostic features, five clinical prognostic
factors in GBM (age, gender, IDH status, chemotherapy, as well as
radiotherapy) were enrolled to construct the prognostic model as
model 1. Model 2 (the expression of RCN1) and model 3 (model 1 +
model 2) were compared with model 1 to estimate the robustness of
different prognostic features to GBM prognosis, respectively. We
used discrimination, calibration, and model improvement capability
to evaluate the different models. The discrimination of these models
was estimated by ROC curve, concordance index (C-index) (Harrell
et al., 1996), as well as decision curve analysis (DCA) (Vickers and
Elkin, 2006; Vickers et al., 2008; Rousson and Zumbrunn, 2011; Kerr
et al., 2016). Three corresponding models were constructed with
coxph function in survival package, and then the risk value of patients
in eachmodel was calculatedwith predict function, and thus the ROC
curves were constructed by timeROC (Heagerty et al., 2000; Blanche
et al., 2013) with those risk values. Threemodels were firstly built with
cph function, and then their C-index at different times with the
prediction error curve was calculated by cindex function in pec
package. The stdca package was applied to visualization for DCA.
The calibration curves of different models were completed via caoplot
function in pec package. Notably, we used the bootstrap method with
1,000 resamples both for analyses of discrimination and calibration.
Moreover, the improvement capability of the model was assessed
through the net reclassification improvement (NRI) and the
integrated discrimination improvement (IDI) by using IDI.
INF.OUT function in survIDINRI package (Pencina et al., 2008).
After the best model was determined, regplot package was employed
to construct the diagram of the nomogram.

External Validation of the Prognostic
Signature
The prognostic capability of the RCN1-based signature was
externally validated in the validation set. The gene expression
information with corresponding clinical factors of GBM was
obtained from the CGGA database. Similarly, we divided
GBM patients into high- and low-RCN1 groups by the
optimum cut-off value, and then performed the KM survival
curve. Afterward, using predict function, the time-independent
ROC curves, C-index, and calibration curves were employed to
assess the accuracy of prognostic model RCN1 signature-based.

Infiltrative Immune Cell Analysis
CIBERSORTx (Newman et al., 2019), the next-generation version
of CIBERSORT, a machine learning tool, provides an estimation
of the abundances of member cell types in a condition with a
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mixed cell population, by using gene expression data (Newman
et al., 2019). We applied CIBERSORTx to analyze the infiltration
level of 22 immune cells in high- and low-RCN1 groups, using
samples from TCGA and CGGA datasets, respectively. After
enabling batch correction, performing the “Bulk mode”, and
selecting the quantile normalization algorithm, the results were
represented with an absolute score for the proportion of 22
immune cell subsets of GBM samples. Consecutively, the
samples with p < 0.05 were retained after repeating the
crossover operation 500 times (Ali et al., 2016). Wilcoxon
rank-sum test was applied to identify the differences between
the two groups.

ssGSEA
The ssGSEA was used to identify the differentially enriched
hallmarks for a single sample (Barbie et al., 2009). To identify
key pathways related to RCN1, we chose to focus on 50 hallmark
gene sets, which were designed to highlight gene sets contained in
the Molecular Signatures Database (MSigDB) (Subramanian
et al., 2005). Gene symbol profiles for homo sapiens were
downloaded from MSigDB database (Liberzon et al., 2015).
Then we estimated the degree of each hallmark’s ssGSEA
profile in two groups, using the gsva package, both in the
training and validation cohort. Next, by limma package,
differential analysis was performed; and |t| > 1 or adjusted p <
0.05 were considered as statistically significant.

Validation of the Effect of Reticulocalbin-1
on Glioblastoma Multiforme Cells
Cell Culture
Human GBM cell lines U87 and A172 were purchased from
American Type Culture Collection (ATCC, Manassas, Virginia,
United States), which were authenticated with a short tandem
repeat. Cells were set on a humidified incubator with 5% CO2 at
37°C, as well as cultured in Dulbecco’s Modified Eagle’s Medium
(GIBCO, Billings, MT, United States) added with 10% fetal
bovine serum (GIBCO).

Small Interfering RNA Transfection
The small interfering RNA of RCN1 (si-RCN1) sequences and the
corresponding negative control were designed and purchased
from RiboBio (Guangzhou, China). For transient silencing, A172
and U87 GBM cell lines were transfected with negative control or
si-RCN1 by LipofectamineTM 3,000 Reagent (Invitrogen, United
States) according to the manufacturer’s instruction. After 48 h,
cells were harvested for quantitative real-time-polymerase chain
reaction (qRT-PCR) analysis. Target sequences for transient
silencing were as follows: si-RCN1-1: GAAGCTAACTAAAGA
GGAA; si-RCN1-2: CCAGGCATCTGGTATATGA; negative
control siRNA was obtained from RiboBio (Guangzhou, China).

qRT-PCR
By using ReverTra Ace® qPCR RTMasterMix with gDNARemover
(TOYOBO, Shanghai, China), total RNAwas extracted and then was
used to synthesize the first complementary DNA (cDNA) strand
according to themanufacturer’s protocol. The qRT-PCR reactionwas

carried out to estimate the RNA levels and ACTIN was used as the
internal reference. The primers used for qRT-PCR were as follows:
RCN1 forward 5′-AAGGAGAGGCTAGGGAAGATT-3′ and
reverse 5′-ATCCAGGTTTTCAGCTCCTCA-3’; ACTIN forward
5′- CACCATTGGCAATGAGCGGTTC-3′ and reverse 5′- AGG
TCTTTGCGGATGTCCACGT -3’. The relative normalized
expression of the target genes was compared with that of ACTIN,
and the mRNA expression of each gene was calculated with the
2−ΔΔCt method (Liang et al., 2021).

Cell Invasion Assays
Cell invasion was measured through wound healing and transwell
migration assays following the manufacturers’ instructions. In
brief, cells were plated in 6-well plates and cultured at 37°C with
5% CO2. After 24 h, at which cells were reached on 80%
confluence, we used a sterile 10 μL disposable serological
pipette to make a straight-line scratch, and then cells were
harvested after 48 h. Images of the scratch width were taken
using an inverted microscope (Olympus IX73 Inverted
Microscope, Olympus, Beijing China) at 0 and 48 h after the
scratch, and then calculated by ImageJ software (version 1.52,
National Institutes of Health, United States).

As for the transwell migration assay, it was performed using
the Boyden chamber with a gelatin-coated polycarbonate filter
with an 8-μm pore size (Neuro Probe, Gaithersburg, MD,
United States). Cells were added to the upper chamber in 24-
well plates at a density of 5.0 × 104 cells per well, and the lower
chamber was filled with 800 μL 10% FBS for 24 h. Cells in the
transwell chamber were fixed with 4% paraformaldehyde for
15 min, stained with 0.1% crystal violet for 30 min, and then
observed by a BDS500 Inverted Biological Microscope
(Chongqing Optec Instrument Co., Ltd., China).

Statistical Analysis
All the data were presented as mean ± standard deviation and the
statistical analyses were performed by IBM SPSS Statistics 25.0
software (International Business Machines Corporation,
United States). The student’s t-test was performed to evaluate
the significant difference between the two groups.

TABLE 1 | The clinical characteristics of patients and expression of RCN1 in GBM.

Characteristics TCGA (N = 153) CGGA (N = 208)

Age 60 (52∼69) 53 (43∼60)
Male 54 (35.29%) 82 (39.42%)
RCN1 59.60 ± 12.29 6.12 (5.14∼6.62)
IDH status
Mutant 10 (6.54%) 31 (14.90%)
Wild type 143 (93.46%) 177 (85.10%)

Radiotherapy
Yes 130 (84.97%) 184 (88.46%)
No 23 (15.03%) 24 (11.54%)

Chemotherapy
Yes 112 (73.20%) 168 (80.77%)
No 41 (26.80%) 40 (19.23%)

Values are expressed as median (interquartile range), number of cases (%), or mean ±
standard deviation. TCGA: The Cancer Genome Atlas, CGGA: Chinese Glioma Genome
Atlas, RCN1: Reticulocalbin-1, IDH: isocitrate dehydrogenase.
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RESULTS

Patients Characteristics
A total of 361 GBM samples (153 patients from TCGA as the
training cohort and 208 patients from CGGA as the validation
cohort) were obtained in our study, as shown in Table 1.

Reticulocalbin-1 Was Elevated in
Glioblastoma Multiforme and May Act as an
Oncogene
As shown in Figure 2A, we found that the expression of RCN1
was higher in the GBM samples (n � 163) than in the normal
brain tissues (n � 207), by using the GEPIA2 tool. In the TCGA
database, as the near-linear correlation between the variation of
RCN1 expression and OS revealed through LOESS (Figure 2C),

RCN1 expression was considered as a single continuous variation
for further analysis. A total of 153 samples were clustered into the
high- (n � 97) or low-RCN1 group (n � 56) by the optimal cut-off
value (4.144). Patients with higher RCN1 expression had a worse
OS than those with a low one in GBM (p � 0.001) (Figure 2B).

Reticulocalbin-1 is an Independent
Prognostic Signature for Glioblastoma
Multiforme
Considering the interference of the confounding factors,
identifying and then adjusting for potential confounding
factors was conducted. We firstly found that RCN1 may be an
independent prognostic signature when compared with other
signatures (Supplementary Figure S1). In the training cohort, we
then identified variants (age and radiotherapy) to be adjusted and

FIGURE 2 | Exploration of the association between RCN1 and OS of patients with GBM in TCGA. (A) Boxplot. (B) Kaplan-Meier curve with log-rank test in TCGA.
(C) Association between the variation of RCN1 expression and OS in non-adjusted. (D) Association between the variation of RCN1 expression and OS in adjusted I
model. (E) Association between the variation of RCN1 expression and OS in adjusted II model.
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then enrolled these clinical features into the adjusted I model. The
adjustments for age, gender, IDH status, chemotherapy, and
radiotherapy were included in the adjusted II model. Both
non-adjusted and two adjusted models were analyzed by using
the Cox regression analysis to further investigate whether RCN1
could estimate OS independently (Figure 3). As shown in
Table 2, in the non-adjusted model, prognosis was correlated
with age (HR � 1.03, 95% CI 1.01∼1.04, p < 0.001), radiotherapy
(HR � 0.42, 95% CI: 0.26∼0.67, p < 0.001), IDH status (HR � 0.38,
95% CI: 0.16∼0.94, p � 0.036), chemotherapy (HR � 0.57, 95% CI
0.38∼0.84, p � 0.005), and RCN1 expression (HR � 1.71, 95% CI
1.21∼2.42, p � 0.002) in the training cohort. In adjust I model,
after adjusting for confounding factors (age and radiotherapy),
RCN1 was still associated with OS (HR � 1.69, 95% CI 1.16∼2.46,
p � 0.007) (Table 2). Furthermore, after adjusting for five
predominant clinical features (age, gender, IDH status,
chemotherapy, and radiotherapy), RCN1 independently
predicted prognosis in the training cohort (HR � 1.67, 95% CI
1.13∼2.45, p � 0.009) (Table 2). In the same way, we also found
the near-linear correlation between the variation of RCN1

expression and OS both in adjust I model (Figure 2D) and
adjust II model (Figure 2E), thus, we enrolled RCN1 as a single
continuous variation for further analysis. In addition, subgroup
analysis showed that there were no statistical differences neither
in the non-adjusted model nor adjusted I model, except for
chemotherapy (Pinteraction � 0.0019 in the non-adjusted model,
Pinteraction � 0.0118 in the adjusted I model, respectively)
(Table 3), revealing that RCN1 might be an independent
prognostic factor for OS in patients with GBM.

Construction and Evaluation of Three
Prognostic Models
The clinical features and RCN1 were enrolled to construct the
prognostic models for GBM. We firstly built three prognostic
models (model 1: five clinical variants, model 2: the expression of
RCN1, and model 3: model 1 + model 2) and then evaluated
them. Model 3 had a higher area of under curve (AUC), better
C-index, and lower prediction error compared with model 2 and
model 1 (Figures 4A–C). DCA showed that the net benefit of

FIGURE 3 | Forest plot of the Cox regression analysis. (A) Univariable Cox regression analysis for the training cohort. (B) Multivariable Cox regression analysis for
the training cohort. (C) Multivariable Cox regression analysis for adjusted I model in the training cohort. (D) Multivariable Cox regression analysis for clinical features in
training cohort.

TABLE 2 | Cox proportional hazards regression models of various prognostic parameters in patients with GBM in TCGA.

Characteristic Non-adjusted model Adjusted I model Adjusted II model

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Age 1.03 (1.01–1.04) <0.001 1.02 (1.01–1.03) 0.004 1.02 (1.0–1.03) 0.008
Gender 0.96 (0.66–1.4) 0.836 — — 1.13 (0.75–1.71) 0.562
IDH status 0.38 (0.16–0.94) 0.036 — — 0.72 (0.28–1.84) 0.489
Radiotherapy 0.42 (0.26–0.67) <0.001 0.37 (0.23–0.6) <0.001 0.36 (0.18–0.75) 0.006
Chemotherapy 0.57 (0.38–0.84) 0.005 — — 1.0 (0.53–1.88) 0.997
RCN1 1.71 (1.21–2.42) 0.002 1.69 (1.16–2.46) 0.007 1.67 (1.13–2.45) 0.009

Adjusted I model: Factors including age, radiotherapy for adjustment, Adjusted II model: Factors including age, gender, IDH, radiotherapy and chemotherapy for adjustment. HR: hazard
ratio, CI: confidence interval.
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model 3 in 0.5 and 1 year is better than the other two models, but
there was no significant difference in 1.5 years (Figures 4D–F). It
was found that the calibration of model 3 was better than that of
model 1 and model 2 in 0.5 and 1 year, while the calibration of the
three models was poor in 1.5 years (model 2 was better than
others) (Figures 4G–I). As for model improvement capability,
whenmodel 1 was considered as the reference, the NRI and IDI of
model 3 were both positive, in which the NRI of 1.5 years was
increased by 16.7% (p � 0.064) and the IDI of 1.5 years was
increased by 3.7% (p � 0.034); on the contrary, the NRI and IDI of
model 2 were both negative, where the IDI of 0.5 year was
decreased by 11.4% (p � 0.0016) meanwhile the NRI was
decreased by 27.4% (p � 0.040) (Table 4). From the above
results, it can be determined that model 3 had good
discrimination and calibration in the prediction of OS.
Therefore, we developed a nomogram in accordance with
model 3 to assess OS at 0.5-, 1.0-, and 1.5-years in the TCGA
dataset, in which each signature was assigned points according to
its risk contribution to OS (Figure 5).

External Validation for Nomogram in
Chinese Glioma Genome Atlas
To assess whether an RCN1 signature-based model can similarly
play a prognostic value in different populations, a total of 208
GBM samples from the CGGA database as an external validation
cohort were used to assess its prediction performance. According
to the optimum cutoff (5.521), high- (n � 147) and low- (n � 61)
RCN1 groups were determined. Consistent with the findings in
the training cohort, the Kaplan-Meier curve revealed patients
with high RCN1 represented a worse OS than those with low
expression (p � 0.0047) (Figure 6A). Moreover, the time-
dependent ROC curves were performed and the AUCs of the
0.5-, 1.0-, and 1.5-year survival for the constructed nomogram in

the training cohort were 0.737, 0.673, and 0.694, respectively, in
the validation cohort (Figure 6B). The nomogram shared a
C-index of more than 0.6 at different times (Figure 6C) and a
relatively low prediction error (Figure 6D). Finally, the
calibration curves for this nomogram in the validation cohort
at 0.5 year was poor, while those at 1 year and 1.5 years were good
(Figures 6E–G).

Differential Abundances of Infiltrative
Immune Cells
By using the CIBERSORTx algorithm, the relative proportions of
22 immune cells between two groups in GBM were obtained. In
the TCGA dataset, there were three types of infiltrative immune
cells with significant difference at different groups, whereas in
CGGA there was fourteen, in which T cells CD4 memory resting,
eosinophils, andmacrophages M0 were differentially expressed in
two data at the same time (Figure 7). With more detail as shown
by bar plots in Figure 7A, in the training cohort, the infiltration
level of eosinophils was significantly higher in the low-risk group,
whereas the infiltration level of macrophages M0 and T cells CD4
memory resting was significantly higher in the high-risk group. In
the validation cohort, the infiltration levels of B cells naive,
dendritic cells resting, mast cells activated, macrophages M1,
eosinophils, T cells CD4 memory resting, neutrophils, NK cells
activated, and monocytes were significantly higher in the low-risk
group, whereas the B cells memory, macrophages (M0, M2),
T cells regulatory (Tregs), and plasma cells were significantly
higher in the high-risk group (Figure 7B).

Pathway Enrichment Analysis
The ssGSEA was used to identify signaling pathways RCN1-
involved in GBM, and then demonstrate significant differences in
the enrichment of MSigDB hallmark gene set in the TCGA and

TABLE 3 | Subgroup analysis of the associations between OS and RCN1 of patients with GBM in TCGA.

Covariates Total (N = 153) RCN1 RCN1a

HR (95% CI) P for interaction HR (95%CI) P for interaction

Age — — 0.2553 — —

<60 y 72 2.02 (1.24–3.29)c — — —

>�60 y 81 1.36 (0.84–2.21) — — —

Total 153 1.66 (1.16–2.36)c — — —

Gender — — 0.8929 — 0.7652
Male 54 1.67 (0.98–2.83) — 1.83 (0.96–3.51) —

Female 99 1.75 (1.11–2.75)b — 1.62 (1.00–2.63) —

Total 153 1.71 (1.21–2.42)c — 1.69 (1.15–2.50)c —

Radiotherapy — — 0.6713 — —

No 23 2.70 (0.50–14.62) — — —

Yes 130 1.86 (1.28–2.70)c — — —

Total 153 1.89 (1.31–2.73)d — — —

Chemotherapy — — 0.0019 — 0.0118
No 41 0.62 (0.29–1.33) — 0.81 (0.38–1.73) —

Yes 112 2.33 (1.53–3.53)d — 2.55 (1.63–3.98)d —

Total 153 1.66 (1.17–2.34)c — 1.91 (1.30–2.80)c —

aCovariates were adjusted as in Adjusted I model (Table 2). HR (95% CI) were derived from Cox proportional hazards regression models.
bP < 0.05.
c< 0.01.
dP < 0.001. HR: hazard ratio, CI: confidence interval.
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FIGURE 4 | Evaluation of three prognostic models in TCGA. (A) ROC curves of the three models at different times. (B) C-index curves of the three models at
different times. (C) Prediction error probability curves of the three models at different times. (D–F) Calibration curves of the three models at different times. (G–I) DCA
curves of the three models at different times.

TABLE 4 | The model improvement capability in three prognostic models.

Year Model 3 vs Model 1 Model 2 vs Model 1

NRI IDI NRI IDI

Value p value Value p value Value p value Value p value

0.5 0.129 0.284 0.018 0.176 −0.274 0.040 −0.114 0.016
1.0 0.122 0.156 0.024 0.094 −0.082 0.384 −0.088 0.056
1.5 0.164 0.064 0.037 0.034 −0.035 0.707 −0.031 0.322

Model 1 represents the prognostic model with age, gender, IDH status, chemotherapy, and radiotherapy; Model 2 only comprises the expression of RCN1;Model 3 integration of model 1
and 2, including all factors (age, gender, IDH status, chemotherapy, radiotherapy, and the expression of RCN.
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CGGA databases, respectively. The results indicated that there
was no significant pathway screened in the TCGA database
(Figure 8A), whereas the KRAS-signaling-DN pathway was
significantly involved in the low-RCN1 group and some
pathways, including reactive oxygen species, MYC targets V2
and V1, apoptosis, and DNA repair pathways, in the high-RCN1
group in the CGGA database (Figure 8B).

Knockdown of Reticulocalbin-1Inhibited
Cell Invasion in Glioblastoma Multiforme
Finally, in order to elucidate the effect of RCN1on GBM cell
invasion, we conducted a series of morphological and molecular
biological experiments. The si-RCN1-1 and si-RCN1-2 could
effectively reduce endogenous RCN1 mRNA expression by
mRNA levels in both U87 and A172 cells (Figures 9A,B).
Later, we confirmed that si-RCN1 could decrease cell invasion
(Figures 9C–F).

DISCUSSION

GBM is the most aggressive brain tumor. The prognosis of
patients with GBM remains poor, although treatment
strategies, including maximum surgical resection, radiation,
and chemotherapy, have been conducted. The role and
mechanism of biomarkers in GBM tumorigenesis are very
important for the development of treatment of patients with
GBM (Sasmita et al., 2018). Recently, ample molecular markers

have been identified, which could provide new insight regarding
GBM formation and progression. The discoveries and roles of
molecular biomarkers, GBM-specific microRNAs, and GBM
stem cells were delineated (Sasmita et al., 2018; Hassn Mesrati
et al., 2020). There are some genetic mutation features, epigenetic
modification, and some molecular alterations in situ. As
highlighted by Alireza Mansouri and his colleagues, the
methylation of MGMT promoter has been identified to
provide better outcome prediction when GBM patients receive
temozolomide chemotherapy (Mansouri et al., 2019). Meanwhile,
the amplification of CCND2 suggests better clinical outcomes in
IDH-mutant patients while the elevated total copy number
variation, co-amplification of CDK4/MDM2, amplification of
PDGFRA, and CDKN2A show worse association (Zheng et al.,
2013; Sasmita et al., 2018; Mirchia et al., 2019; Louis et al., 2021).
Large-scale studies further demonstrated that IDH-mutant GBMs
tend to have a higher concentration of 2-hydroxyglutarate (an
oncometabolite produced as a result of the IDH1/2 mutation),
which may promote infiltration via upregulation of HIF-1α and
VEGF(K. Mirchia and Richardson, 2020; Sasmita et al., 2018). For
IDH-wide type GBM patients, the mutation of BRAFmay benefit
them while the co-alteration of EGFR/PTEN/CDKN2A and
mutation of PIK3CA and H3K27M correlates with worse
clinical outcomes (Mirchia and Richardson, 2020; Umehara
et al., 2019). Circulating biomarkers have also been developed
in GBM because of their non-invasive potential (Jelski and
Mroczko, 2021; Kefayat et al., 2021), but the sensitivity and
specificity are still problems to be solved (Müller Bark et al.,
2020; Raza et al., 2020; Jones et al., 2021). Additionally, there are

FIGURE 5 | Construction of prognostic nomogram.
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still no clinically validated circulating biomarkers for GBM
patients because of the limitation in blood-brain-barrier, low
concentration, and their short half-life (Müller Bark et al., 2020).

It could not even be proven the release of potential biomarkers
were exclusive from tumor cells or not. According to a systematic
review, about 133 distinct biomarkers were identified from 1853

FIGURE 6 | External validation of the prognostic signature in CGGA. (A) Kaplan-Meier curve with log-rank test in CGGA. (B) ROC curves of the three models at
different times. (C) C-index curves of the three models at different times. (D) Prediction error probability curves of the three models at different times. (E–G) Calibration
curves of the three models at different times.
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patients and evaluated based on level of evidence (IA∼IVD) using
an adapted framework from the National Comprehensive Cancer
Network guideline (Raza et al., 2020). Nevertheless, few can reach
level IA and further refinements are needed. Therefore, it is
urgent to identify new biomarkers that can illustrate the in-
depth molecular mechanism, enhance the diagnosis, respond to
treatment, and provide prognostic prediction of GBM. Here, we
identified the potential of RCN in GBM. RCN1, as a calcium-
binding protein located in the lumen of the endoplasmic

reticulum, containing six conserved regions with similarity to
a high-affinity calcium-binding motif, the EF-hand. Recently,
several studies have revealed that RCN1 acts as an oncogene
involved in tumor progression. In our study, we found that the
expression of RCN1 is higher in GBM samples than normal brain
tissues by utilizing the GEPIA2 online tool, which is consistent
with previous findings that high RCN1 expression is present in
various malignancies (Amatschek et al., 2004). Recently, RCN1
has been demonstrated to be a prognostic marker in various

FIGURE 7 | Differential abundances of infiltrative immune cells between high- and low-RCN1 groups. (A) TCGA. (B) CGGA.
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cancers, such as non-small cell lung cancer (Chen et al., 2019) and
renal cell carcinoma (Giribaldi et al., 2013). However, the
function and the underlying mechanism of RCN1 involved in
GBM remains a vague notion. Based on the observation in
previous studies (Chen et al., 2019; Giribaldi et al., 2013; Liu
et al., 2018), we hypothesized that RCN1 could be a promising
prognostic marker or as a response predictor for targeted therapy
in GBM. Interestingly, we confirmed our hypothesis through
TCGA and validated them in CGGA and experiments. At the
same time, the mechanisms behind RCN1 were also explored and
the identified pathways were consistent with previous studies

(Fukasawa et al., 2021; Pucci et al., 2021; Sighel et al., 2021; Xue
et al., 2021).

The convenient access to the public database allows us for
the application of large-scale gene expression profiling and
database mining for potential correlation between genes and
overall survival of a variety of malignancies including GBM
(Aldape et al., 2015; Zhou et al., 2021). In the present study,
RCN1 was identified as an independent factor for the
prognosis of GBM patients in TCGA, according to the
results of univariate and multivariate analysis, with or
without adjustment for confounders on the survival
difference as described in a previous study (Erturk and Tas,
2017). By identifying the confounding factors, we further
revealed the independent prognostic role of RCN1 in GBM
patients. Since several clinical characteristics have been
identified to influence the outcomes of GBM patients,
interaction may exist (Brankovic et al., 2019) and it is
plausible to perform subgroup analysis to estimate the
interaction between RCN1 and selective clinical
characteristics (Gönen, 2003). Here we innovatively
identified confounding factors to increase the reliability of
the results. Discrimination and calibration are the most
commonly used indicators in evaluating prediction models.
However, a systematic review found that 63% of the studies
reported the discrimination information of prediction models,
but only 36% of the studies reported the calibration
information (Wessler et al., 2015); we reported both
discrimination and calibration.

Recently, endoplasmic reticulum (ER) stress has been
reported to have a considerable impact on cell growth,
proliferation, metastasis, invasion, angiogenesis, and
chemoradiotherapy resistance in various cancers.
Accumulated studies have demonstrated that ER stress
governs multiple pro-tumoural attributes in the cancer cell
mainly via reprogramming the function of immune cells. The
tumor microenvironment can be shaped because of the
functional impact of ER stress responses in endothelial cells,
cancer-associated fibroblasts, and other stromal cells during
cancer progression (Chen and Cubillos-Ruiz, 2021). ER stress
and downstream autophagy in the regulation of cell fate may
function in temozolomide treatment and they have the
potential to be therapeutic targets in GBM (He et al., 2019).
Besides, it was revealed that the ER stress-related genes-based
risk model can serve as a prognostic factor to predict the
outcome for patients and be correlated with immune and
inflammation responses in glioma (Zhang et al., 2021).
Among these genes, RCN1, as an ER-resident calcium-
binding protein, is verified as one of ER stress-related
genes, of which the depletion causes the ER stress-induced
cells’ apoptosis in various cancers (Huang et al., 2020; Liu et al.,
2018; Xu et al., 2017). In the early study, it was demonstrated
that RCN1 was identified as a genuine phagocytosis ligand to
stimulate microglial phagocytosis of apoptotic neurons that
were subsequently targeted by phagosomes (Ding et al., 2015).
It was also observed that RCN1 interacts with SEC63p to
activate protein translocation and quality control pathways
in the ER (Honoré, 2009). As mentioned above, RCN1 proteins

FIGURE 8 | Difference of Hallmark gene set in high- and low-RCN1
groups. (A) TCGA. (B) CGGA.
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can not only have intrinsic roles in tumor development but
also serve as a regulator involved in immune-related activities.
Considering the powerful role of tumor microenvironment
cells contributing significantly to prognosis, we further
investigated the immune cell infiltration between the high-
and low-risk groups in the TCGA and CGGA datasets,
respectively. It was revealed that the infiltration levels of
T cells CD4 memory resting, eosinophils, and macrophages
M0 were differentially changed in both TCGA and CGGA
cohorts. Furthermore, we found that macrophages M0 was
significantly higher in the high-risk group both in the TCGA
and CGGA datasets, representing a certain relationship
between them.

Furthermore, our results also suggested that high RCN1may have
a certain biological function in GBM. Therefore, to further investigate
the role RCN1 played in GBM, we performed in vitro experiments
and verified that the downregulation of RCN1 inhibited the cell
invasion in GBM cell lines. The results of functional experiments are
consistent with the above mentioned in our study, and further
confirmed the critical role of RCN1 in GBM.

Several limitations should be noted in our study. Firstly,
although we selected clinical samples from two different
databases for mutual validation, verification in a larger sample
is needed in the future. In addition, the variables involved in our
prognostic model are easy to obtain, which is undoubtedly very
convenient for clinical application, but it also needs to be further
confirmed in clinical practice. Thirdly, although we verified the
results of rigorous data mining, more animal or clinical
exploration is still urgently needed. In addition, as for the

absence of 1p19q characterization in TCGA, the status of
1p19q codeletion was not included for analyses. Finally,
considering a lack of verification from clinical samples, the
effectiveness of the RCN1-signature in GBM patients needs to
be further verified by well-designed investigations in clinic. And
how RCN1 regulates ER stress biology still needs to be further
illustrated by experiments.

Overall, we found that high RCN1 has a poor OS for GBM
patients, and confirmed RCN1 as an independent prognostic
factor and developed a prognostic predictive model based on
RCN1, which performed well in the prediction of OS for GBM
patients.
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