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ABSTRACT

DifferentialNet is a novel database that provides
users with differential interactome analysis of human
tissues (http://netbio.bgu.ac.il/diffnet/). Users query
DifferentialNet by protein, and retrieve its differential
protein—protein interactions (PPIs) per tissue via an
interactive graphical interface. To compute differen-
tial PPIs, we integrated available data of experimen-
tally detected PPIs with RNA-sequencing profiles of
tens of human tissues gathered by the Genotype-
Tissue Expression consortium (GTEx) and by the
Human Protein Atlas (HPA). We associated each PPI
with a score that reflects whether its corresponding
genes were expressed similarly across tissues, or
were up- or down-regulated in the selected tissue. By
this, users can identify tissue-specific interactions,
filter out PPIs that are relatively stable across tis-
sues, and highlight PPIs that show relative changes
across tissues. The differential PPls can be used to
identify tissue-specific processes and to decipher
tissue-specific phenotypes. Moreover, they unravel
processes that are tissue-wide yet tailored to the spe-
cific demands of each tissue.

INTRODUCTION

Proteins, the main building blocks of living cells, carry out
their functions by interacting with other molecules and par-
ticularly with other proteins. Analysis of their interactions
therefore unravels their molecular functions and roles in
health and disease (1-3). Realizing the importance of their
interactions, many studies conducted large-scale screens for
interaction detection by using various experimental tech-
niques (4-7). In human, which is the focus of Differential-
Net, over 240 000 protein—protein interactions (PPIs) be-
tween >20 000 human proteins have been discovered to date
(8). Combining all known PPIs into one network, denoted
interactome, results in a huge, dense, ‘hair-ball’ network.

Large-scale PPI detection screens tend to provide lim-
ited physiological context. Yeast-two-hybrid screens, for ex-
ample, detect PPIs within yeast cells, and affinity-based as-
says are typically carried in a single condition and are not
repeated across conditions (3,9). Yet in biological settings
PPIs are context-sensitive. The human body is composed of
many tissues and cell types that differ from each other by the
levels of genes and proteins that they express (10-13). Hu-
man proteins, therefore, frequently interact with different
partners in distinct tissues and cell types (14,15). For exam-
ple, the protein DAGI is expressed throughout the human
body, yet interacts with the protein CAV3 only in the subset
of tissues that express CAV3, such as muscle and heart, and
not in other tissues.

In recent years, several studies incorporated tissue and
cell type contexts into the human interactome. The gen-
eral approach for creating a tissue interactome is to penalize
PPIs between pair-mates that are lowly-expressed or unde-
tectable in that tissue, or remove them completely from the
network (14,16-19). Such tissue interactomes were used in
several applications and outperformed the global interac-
tome in illuminating the molecular basis of hereditary dis-
eases (20) or in prioritizing candidate disease genes (16—
18,21,22).

To get a better understanding of the processes that sepa-
rate a specific tissue from other tissues, we should consider
the quantitative changes in gene expression and how they
relate to PPIs. Rather than ask ‘which interactions are most
expressed in a certain tissue?” we should ask ‘which interac-
tions are most altered between tissues?” (23). This differen-
tial network approach aims to identify PPIs that are differ-
entially relevant in the tissue or condition of interest. The
power of this approach was nicely illustrated by the usage
of differential epistasis mapping for understanding DNA-
damage response in yeast (24). The genetic interaction net-
work that was measured in yeast cells that were perturbed
with a DNA-damaging agent did not show a clear DNA-
damage signature; only upon focusing on interactions that
were altered significantly between this network and the net-
work measured in unperturbed cells, the DNA-damage sig-
nature emerged.
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Several tools offer schemes for differential network analy-
sis. The Differential Network Analysis (DNA) package ana-
lyzes differential co-expression based on microarray data. It
calculates expression correlations between genes, and high-
lights gene pairs with altered co-regulation between condi-
tions (25). The Diffany tool uses an interaction ontology
to infer differential networks and functional roles (26). The
DINA framework identifies gene pairs whose co-expression
is condition-specific based on microarray data, and predicts
transcriptional regulators that may be responsible for their
co-regulation (27). DyNet is a Cytoscape application that
computes the variance of nodes and interactions in different
networks, and highlights those that are highly variable (28).
DINGO is a framework that estimates topological differ-
ences between networks and highlights sub-networks that
are altered (29). This was used to elucidate cancer develop-
ment pathways. These various tools are available as desktop
applications, and require that users gather expression-data
and/or PPI data on their own. Furthermore, some of the
tools fit microarray data, which are becoming less common.

Here, we present DifferentialNet, a novel web-based
database for differential network analysis of human tissue
interactomes. To this end, we integrated current data of
experimentally-detected PPIs with data of gene expression
across tissues, to obtain a differential view of the human in-
teractome. Data of gene expression across tissues was gath-
ered by two major initiatives, The Genotype-Tissue Expres-
sion (GTEx) consortium (30) and the Human Protein At-
las (HPA) (11), that applied RNA-sequencing to samples
from 42 and 29 tissues, respectively. DifferentialNet asso-
ciates each PPI with a tissue-specific score that reflects how
its likelihood changed in the selected tissue relative to other
tissues, based on the expression levels of the pair-mates
across tissues. Users query DifferentialNet by protein and
tissue, and obtain a graphical network that highlights the
differential interactions of the protein in that tissue along
with additional information regarding the presented inter-
actions. Users can interactively alter the highlighted inter-
actions and toggle between different tissues for comparative
analyses. Thus, DifferentialNet greatly facilitates analyses
of the altered roles of human proteins and their interactions
across tissues.

RESULTS
The DifferentialNet approach

DifferentialNet synergizes between large-scale data of PPI
and expression profiles across tissues to create a novel
database that points to PPIs that are up- or down-regulated
in a selected human tissue relative to all other human tis-
sues. To compute differential PPIs, we gathered PPIs from
four major PPI databases, BioGrid (8), DIP (31), MINT
(32) and IntAct (33), and consolidated them by using the
MyProteinNet web-server (34). This resulted in a global in-
teractome that contained 200,183 PPIs between 16,532 hu-
man proteins. The use of MyProteinNet guaranteed that
only PPIs detected by established experimental methods
were included. Expression data were gathered from GTEX,
which included 421 samples from 42 tissues, and from HPA,
which included 192 samples from 29 tissues (see Methods).
Only genes that were expressed above a certain threshold
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in at least one tissue were included (see Methods). This re-
sulted in interactomes that contained 134,223 PPIs between
13,523 human proteins for GTEx, and interactomes that
contained 137,613 PPIs between 13,613 human proteins for
HPA.

For each tissue in each dataset, we created its differen-
tial interactome. This was achieved as follows. First, we
assigned each interaction with a tissue-specific score that
reflects the likelihood of the interaction, and is based on
multiplying the expression levels of the interacting pair-
mates (see Methods). This implies that interactions between
highly expressed partners were scored high. We repeated
this procedure across all tissues, and recorded for each in-
teraction its median score across all tissues. The differential
tissue-specific score of an interaction was then computed as
the difference between its tissue-specific score and its me-
dian score (Figure 1A). By this scoring method, interactions
between pair-mates that were similarly expressed across all
tissues, i.e. unchanged, had low differential scores, even if
the pair-mates were highly expressed. In contrast, interac-
tions between pair-mates that had different expression levels
across tissues were assigned positive or negative scores, ac-
cording to whether they were up- or down-regulated in that
tissue.

DifferentialNet usage

Users query DifferentialNet by a protein, a tissue and a re-
source (GTEx or HPA), and can search up to five proteins in
one query. Proteins can be specified by using Ensembl gene
ID, Entrez gene ID, or gene symbols. The full lists of pro-
teins with PPIs in DifferentialNet are accessible from the
DifferentialNet homepage. DifferentialNet also provides a
‘sample protein’ query that retrieves the differential PPIs of
the human protein DAGI (Figure 1B), and a ‘random pro-
tein’ query that retrieves the differential PPIs of a randomly
selected protein and tissue.

DifferentialNet output includes a graphical network view
that uses the Cytoscape.js plugin (35), and textual infor-
mation of the output proteins and PPIs. The network de-
notes proteins as nodes and PPIs as edges, while highlight-
ing their differential tissue scores: up-regulated interactions
appear in red and down-regulated interactions appear in
blue. DifferentialNet also offers an interactive user interface
which allows users to set a percentile threshold for the dif-
ferential scores. By this they can filter the displayed PPIs,
so that only PPIs that score in the top percentile (e.g., top
10%) or in the bottom percentiles (e.g., bottom 10%) are
shown. A sliding bar allows users to interactively set the per-
centile threshold to obtain an adjusted network. Another
menu allows users to toggle between different tissues, or to
display unfiltered interactions (Figure 1B). DifferentialNet
also highlights disease-associated proteins by using a differ-
ent node shape. Data of disease-association were gathered
from the Online Mendelian Inheritance in Man (OMIM)
(36) database.

The textual information is divided into tabs, each relat-
ing to a different type of data regarding the output. The
‘Properties’ tab lists the different gene identifiers and de-
tection methods for selected proteins and PPIs. The ‘Gene
Ontology’ (GO) tab provides the GO annotations (37) and
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Figure 1. DifferentialNet model and output. (A) A flowchart describing the scoring framework of DifferentialNet. The differential analysis starts with
scoring tissue PPIs by the expression levels of the interacting genes. Then, a median interactome is created, such that the score of each PPI is set to its
median score across all tissues. The median score of each interaction is then subtracted from its tissue score, to create a tissue-specific differential network.
The differential scores represent whether the interaction is up-regulated (red edge) or down-regulated (blue edge) in the tissue. (B) The differential network
view for the protein DAG] in skeletal muscle based on GTEx. The network on the left shows DAG1 with all its PPIs, where up-regulated PPIs appear in
red, down-regulated PPIs appear in blue, and unchanged PPIs are marked in gray. The network on the right shows only differential PPIs that score at 10th

percentile (top 10th percentile in red and bottom 10th percentile in blue).

description of selected proteins in the network, obtained
from the MyGene.info (38) web-service. The ‘Differential’
tab lists the scores and percentiles of selected PPIs in ev-
ery tissue. Lastly, the ‘Graph Options’ tab allows users to
change the network layout, remove proteins from the net-
work, expand the network from a selected protein, or dis-
play PPIs that are differential in few tissues or across many
tissues. It also allows users to export the network in Cy-
toscape.JSON format for further analysis in Cytoscape.

SUMMARY

The DifferentialNet database provides differential interac-
tomes for over 29 human tissues by scoring data of PPIs by
data of gene expression according to user-defined param-
eters. The output of DifferentialNet highlights differential
PPI sub-networks and disease genes. By this, Differential-
Net offers a novel means to illuminate protein functions,
processes and phenotypes that are either preferred or dis-
favored in certain tissues. DifferentialNet functionality and
user-friendly interface can accommodate new data of ad-

ditional tissues and interactions as they become available.
In face of the increasing density of the human interactome,
tools like DifferentialNet that provide sparse and context-
specific views into the interactome become ever more im-
portant in applied research of human phenotypes and dis-
eases.

METHODS
Expression data sources

Tissue expression profiles were gathered from GTEx (10)
and HPA (11). From GTEx we gathered RNA-Sequencing
raw counts for all samples that were denoted with cause
of death of traumatic injury, resulting in 421 samples from
42 tissues. From HPA we gathered RNA-sequencing reads
for 192 tissues (ArrayExpress accession number: E-MTAB-
2836). We converted these raw reads data into normalized
counts as described elsewhere (39). Only genes with more
than 10 normalized counts in at least one tissue were in-
cluded in the analysis.



Protein—protein interactions data

Human PPIs were gathered from BioGrid (8), DIP (31),
MINT (32) and IntAct (33) by using the MyProteinNet
web-server (34). MyProteinNet ensures that only PPIs de-
tected by established methods for physical interactions de-
tection were considered.

Differential PPI scoring

Differential interactomes were created by using the follow-
ing scheme: In each tissue, let ¢} and e?" denote the normal-
ized read counts of proteins i and j in tissue #. Since the
probability for an interaction between protein i and protein
j increases with their concentration, it can be approximated
by e} * e;f". Thus, we set the score of their interaction, de-

noted w'}, to the sum of the log2 normalized read count

values of proteins i and j (Equation 1) in tissue #. We fur-
ther normalized this score to fit the range of [0, 1] (Equa-
tion 2).

w'jj = logaef' + log,e} (1)

71
w'’

o ij
wij - 71k (2)
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After obtaining a score for each interaction in each tissue,
the differential score of a specific interaction in tissue # was
computed by subtracting its median score across all tissues
from its score in tissue # (Equation 3).

_ wmediun (3)
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Implementation

The DifferentialNet server was implemented in Python by
using the Flask framework with data stored on a MySQL
database. The website client was programmed using the Re-
act]S framework and designed with Semantic-UI. The net-
work view is displayed by the cytoscape.js plugin (35). The
website supports all major browsers. Recommended view-
ing resolution is 1440 x 900 and above.

Download

The DifferentialNet database is available for download un-
der the permissive Creative Commons license. Download-
able data is versioned by numbered database builds and
by global interactome build dates. The download page en-
ables users to download data separately for each expression
dataset.

‘Web-service access

The DifferentialNet database offers a web-service access
to programmatically query the database by an expression
dataset, tissue, threshold and genes. This is implemented via
a REST-API method, which is callable via code or wget.
More information can be found at http://netbio.bgu.ac.il/
diffnet-api.
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