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Theta-burst stimulation is a non-invasive brain stimulation technique that was

introduced as a potential augmentation treatment for patients with schizophrenia.

The purpose of this meta-analysis was to investigate the therapeutic efficacy and

safety of intermittent theta-burst stimulation in patients with schizophrenia.

Following the PRISMA guidelines, the MEDLINE, Embase, Cochrane, Scopus,

Web of Science, and CNKI databases were searched for relevant studies from

database inception to9 January 2022.Change in symptomseverity amongpatients

with schizophrenia was the primary outcome, and changes in cognitive function

and safety profiles, including the discontinuation rate and adverse events, were

secondary outcomes. In total, 13 double-blind randomized sham-controlled trials

with 524 patients were included. Intermittent theta-burst stimulation adjunct to

antipsychotics was associated with significantly improved psychopathology in

patients with schizophrenia, particularly for negative symptoms and general

psychopathology but not for positive symptoms or cognitive function. The

stimulation parameters influenced the effectiveness of intermittent theta-burst

stimulation. A more favorable effect was observed in patients who received theta-

burst stimulation at the left dorsolateral prefrontal cortex, with ≥1800 pulses per

day, for ≥20 sessions, and using an inactive sham coil as a placebo comparison in

the study. The intermittent theta-burst stimulation is well tolerated and safe in

patients with schizophrenia. Intermittent theta-burst stimulation adjunct to

antipsychotics treatment is associated with significant improvement in negative

symptoms and favorable tolerability in patients with schizophrenia. This meta-

analysis may provide insights into the use of intermittent theta-burst stimulation as

an additional treatment to alleviate the negative symptoms of schizophrenia.
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1 Introduction

Schizophrenia is a chronic and disabling mental disorder that

affects 0.3%–0.7%of the general populationworldwide (McGrath et al.,

2008). It is characterized by two primary symptom domains: positive

symptoms (delusions, hallucinations, and disorganized thoughts) and

negative symptoms (blunted affect, alogia, anhedonia, asociality, and

avolition). Other forms of common psychopathologies, for example,

anxiety, depression, active social avoidance, uncooperativeness, poor

attention, and poor impulse control, are summarized by one general

underlying psychopathology of schizophrenia. Furthermore, there is

growing awareness that cognitive symptoms, for instance, impaired

memory, concentration, and executive functioning, need to be

considered to gain a thorough understanding of the etiology and

for better function restoration in schizophrenia (Schaefer et al., 2013).

Although antipsychotics are the treatment of choice for schizophrenia,

approximately one-third of patients exhibit a poor response (Elkis and

Buckley, 2016). In patientswith schizophreniawho are unresponsive to

antipsychotics, nonpharmacological treatment strategies may be

tailored to improve their symptoms (Kane et al., 2019).

Electroconvulsive therapy (ECT) is indicated for patients

with schizophrenia who are treatment-resistant, but it has

been limited its use to its need for anesthesia and its cognitive

side effects (Grover et al., 2019). Increasing attention has been

drawn to the implication of newly invented brain stimulation

strategies for schizophrenia. Repetitive transcranial magnetic

stimulation (rTMS) is a non-invasive technique that can

modulate the activity of targeted cortical areas and their

associated networks as well as spreading across networks (Beynel

et al., 2020). Randomized sham-controlled trials of rTMS in patients

with schizophrenia have yielded inconsistent results due to

differences in the assessment tools, patient characteristics

(e.g., baseline psychopathology and duration of illness), and

rTMS protocol parameters (e.g., stimulation frequency,

stimulation strength, targeted brain area, total stimulation

sessions, and number of stimulation pulses per session) (He

et al., 2017). However, accumulating evidence indicates that

rTMS is a potential strategy for ameliorating both positive and

negative symptoms in patients with schizophrenia, but not

cognitive symptoms (Osoegawa et al., 2018; Li J et al., 2020;

Guttesen et al., 2021; Sciortino et al., 2021).

Theta-burst stimulation (TBS), a variation of rTMS, consists

of three bursts of 50-Hz stimulation with a 200-ms interval

between bursts at an active motor threshold intensity of 80%–

120%, corresponding to theta brain oscillations (Huang et al.,

2005; Blumberger et al., 2018). Compared with rTMS, TBS

requires a shorter stimulation duration and lower stimulation

pulse intensity, and it exerts more impact on synaptic plasticity

(Rounis and Huang, 2020; Ferro et al., 2022). Theoretically, TBS

transiently alters cortical excitability in the brain circuits through

the accumulation of glutamate and gamma-aminobutyric acid,

based on temporal pattern and level of the trigger factor, as well

as NMDA-receptors that involved (Huang et al., 2005; Huang

et al., 2007). The direction and amount of the after-effect are

determined by the sum of excitatory or inhibitory substances that

are critical in determining whether a synapse undergoes long-

term potentiation or long-term depression. Excitatory after-

effects are more rapid and shorter-lasting while inhibitory after-

effects take longer to cumulate (Rounis and Huang, 2020). Two

stimulation patterns of TBS, continuous theta-burst stimulation

(cTBS) and intermittent theta-burst stimulation (iTBS), are

resulted in different after-effects. In contrast to cTBS which

leads to long-term depression-like reduction of cortical

excitability after providing a 40 s continuous stimulation

consisting of 600 pulses, iTBS involves 600 pulses that are

delivered in a 2 s strains that are repeated every 10 s for

20 cycles and leading to long-term potentiation-like effects

of cortical excitability (Huang et al., 2005). The therapeutic

efficacy of iTBS has been proven and its protocol was cleared

by the Food and Drug Administration (FDA) as a treatment

option for major depressive disorder in August 2018. Albeit

the FDA approvals, the mechanisms underlying excitability

changes and the dose-dependency of iTBS remain poorly

understood. Different parameter space of iTBS, including

location of stimulation target, focality of stimulation and

depth of target, frequency of stimulation, pulse intensity,

and duration of stimulation are accounted for the clinical

effects (Hurtado-Puerto et al., 2020).

Given the role of iTBS in clinical treatment of mental

disorders, various studies have examined the potential clinical

benefits of iTBS in patients with schizophrenia. Despite the

increased interest in this area, consensus regarding the efficacy

of iTBS augmentation for the treatment of schizophrenia is

lacking. Several randomized controlled trials (RCTs) of iTBS

in patients with schizophrenia have been published, which

encouraged us to investigate its effectiveness and safety.

Therefore, we conducted this meta-analysis to provide an update

on the therapeutic effect and safety of iTBS in patients with

schizophrenia, and we further investigated the effects of

potential influencing factors, including the parameter space of iTBS.

2 Materials and methods

The meta-analysis protocol is registered at PROSPERO

(http://www.crd.york.ac.uk/PROSPERO, registration number

CRD42021265299) and was in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-analyses

(PRISMA) guidelines (Moher et al., 2009).

2.1 Selection criteria

Selection criteria for studies were structured in accordance

with the Participants, Interventions, Comparisons, Outcomes

reporting structure.
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2.1.1 Participants
Patients with schizophrenia, who were diagnosed based on

any recognized diagnostic criteria, including the Diagnostic

and Statistical Manual of Mental Disorders, International

Statistical Classification of Diseases and Related Health

Problem, and Chinese Classification of Mental Disorders,

were included.

2.1.2 Interventions
All double-blind, randomized, sham-controlled trials of iTBS

in patients with schizophrenia were included. To compare the

effects of different stimulation parameters (i.e., brain target,

navigation method, coil type, and stimulation sessions), no

restriction was applied to the iTBS treatment protocol.

2.1.3 Comparisons
Sham groups were defined as those who were treated with

sham control (i.e., coil angled on the scalp or use of a sham coil).

Studies with a comparison of other treatment modalities were

excluded.

2.1.4 Outcomes
Change in symptom severity among patients with

schizophrenia was the primary outcome. Change in

psychopathology was measured using differences in Positive

and Negative Syndrome Scale (PANSS) scores between

baseline and study endpoint. The PANSS is used for

measuring the symptom severity of positive symptoms,

negative symptoms, and general psychopathology symptoms

among patients with schizophrenia (Kay et al., 1987).

Cognitive function improvement and safety profile (e.g.,

discontinuation and adverse-event rates) were defined as the

secondary outcomes.

No restrictions were imposed on the type of iTBS protocols

used in eligible studies. Similarly, no restrictions were applied

on the type of treatment prior to inclusion; the duration

of treatment; whether administration was adjunctive or

monotherapy; where the study was conducted; or the age,

sex, and ethnicity of the study participants. However, only

studies with adult participants were included. Studies that

employed both parallel and crossover designs were

included; however, for crossover studies, to avoid carryover

effects and possible loss of blinding integrity, only the results

from the initial randomization were included (Krogh et al.,

2019). Studies that started concomitantly with new

antipsychotics were excluded in order to measure the

effectiveness on the psychopathology was mainly brought by

the introduction of iTBS. Non-RCT studies, such as

observational studies, case reports, reviews, commentaries,

conference proceedings, and open-label studies, were

excluded. No publication language restriction was applied,

but the availability of an English abstract was required.

2.2 Search strategy

Two independent authors (KKG and MLL) designed the

search strategy with the following search terms: “theta burst

stimulation OR TBS OR theta burst transcranial magnetic

stimulation OR transcranial theta burst stimulation” AND

“schizophrenia OR schizo* OR psychotic OR psychosis”. The

MEDLINE, Embase, Cochrane, Scopus, Web of Science, and

CNKI databases were searched from database inception to

09 January 2022. The protocols of eligible studies were

obtained from ClinicalTrials.gov (https://clinicaltrials.gov/) or

other clinical trials registry platforms to confirm that all

included studies met the aforementioned inclusion and

exclusion criteria. All duplicates were excluded. The titles and

abstracts of the articles were screened for adherence to the

inclusion and exclusion criteria. The references listed in

selected articles were checked thoroughly to screen for

additional articles that could be included.

2.3 Data extraction

Data for all studies were extracted independently by two

researchers (KKG and MLL). The following details were

abstracted for each included study: (a) study characteristics

(primary author, publication year, country, context in which

the study was conducted, duration of the intervention, study

design, case number, sex ratio, and final study results); (b)

characteristics of the study population (age, sex, antipsychotic

dosage, duration of illness, and baseline psychopathology

severity); (c) details of the intervention (stimulation protocol,

targeted brain area, navigation method, coil type, stimulation

session, stimulation strength, and type of sham control); (d)

primary outcome (change in psychopathology); and (e)

secondary outcomes (change in cognitive function,

discontinuation rate, and adverse-event rate). Indirect

measurements were made according to the principles and

guidelines provided in the Cochrane Handbook for Systematic

Reviews of Interventions Version 5.1.0 (Higgins et al., 2011).

Corresponding authors of eligible studies were contacted by

email in the event of incomplete or partly unavailable results.

All available data were sought from authors until the date before

the final analysis.

2.4 Quality assessment

The risk of bias in the included studies was assessed using the

Cochrane Risk of Bias Assessment Tool version 2, for both

cluster-randomized trials and crossover trials (Sterne et al.,

2019). Two authors (KKG and MLL) independently assigned

a high or low rating to all bias domains, namely randomization

process, deviations from the intended interventions, missing

Frontiers in Pharmacology frontiersin.org03

Goh et al. 10.3389/fphar.2022.944437

http://ClinicalTrials.gov
https://clinicaltrials.gov/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.944437


outcome data, measurement of the outcome, and selection of the

reported result. Any discrepancies between the two authors were

resolved through consensus. The quality of evidence for the

primary and secondary outcomes was evaluated using GRADE

criteria (Guyatt et al., 2008).

2.5 Data synthesis and statistical analysis

The characteristics of the included studies, including the

primary author, publication year, country, study population and

context, study duration, intervention variables, use of adjunctive

antipsychotics, patient age, patient sex, duration of illness,

baseline severity, and iTBS effectiveness, are summarized. The

intention-to-treat principle was applied for subsequent analysis.

Therapeutic effects of iTBS are summarized by calculating

standardized mean differences (SMD) for change in symptom

severity in patients with schizophrenia, and discontinuation and

adverse-event rates were determined by calculating the risk ratios

(RR) of the included studies. Random-effects models were

applied to assess the heterogeneity among the included

studies, assuming that the effects estimated in the included

studies were not identical but followed certain distributions.

For continuous outcomes, DerSimonian and Laird random-

effects models with inverse-variance weighting were used to

summarize the effects across studies and estimate the SMDs

and their corresponding 95% confidence intervals (CIs). For

binary outcomes, Mantel–Haenszel random-effects models

were used to analyze the pooled RRs and 95% CIs. Two-sided

p values were calculated for each outcome. Pooled results were

only considered when at least two adequately powered studies

were available to avoid underpowered results (Turner et al.,

2013). To minimize the disparity in measurements, the total

Scale for the Assessment of Negative Symptoms (SANS) scores

were converted to PANSS negative subscale scores using the

following simple equation obtained through regression analysis

as PANSS negative score = 7.1196 + (0.3362 × total SANS scores)

while total Scale for the Assessment of Positive Symptoms

(SAPS) scores were converted to PANSS positive subscale

scores as PANSS positive score = 11.1886 + (0.2587 × total

SAPS scores) (van Erp et al., 2014). The meta-analysis was

performed using Review Manager (RevMan) version 5.4.0 for

Mac OS (The Nordic Cochrane Centre, The Cochrane

Collaboration, Copenhagen, Denmark).

Heterogeneity among the studies was quantified using the χ2
test and the I2 statistic, with p < 0.05 and I2 > 50% indicating

moderate heterogeneity. Exploratory meta-regression was

applied to explore the heterogeneity among baseline

characteristics (i.e., age, gender, severity of baseline

psychopathology, duration of illness, antipsychotic dosage, and

overall study duration) and stimulation parameters. Further, a

stratified meta-analysis was conducted with an a priori subgroup

to explore heterogeneity in the estimated effects between

different populations and to identify the potential moderators

or mediators of the reported outcomes, especially for different

protocols and stimulation parameters of iTBS (i.e., targeted brain

area, number of stimulation sessions, number of stimulation

pulses, stimulation strength, and type of sham control), and the

subgrouping was defined according to the median of the

parameters.

To examine the robustness of the study outcomes, we

conducted sensitivity analyses for study quality, alternative

statistical approach (fixed-effects models), study design,

population, sample size, publication language, and diagnostic

criteria used in the study. Publication bias was evaluated using

funnel-plot asymmetry, Begg and Mazumdar rank correlation,

Egger’s regression, the Fail-safe N test, and Duval and Tweedie’s

trim and fill method. Egger’s regression was used to test the

asymmetry of the funnel plot, with p < 0.05 indicating

publication bias. If the results for publication bias obtained

from the above analyses were conflicting, then Duval and

Tweedie’s trim and fill method was applied; this method

assumes that the most extreme results were not published,

and the effect size is re-estimated by imputing these missing

studies. A smaller change in the effect size during adjustment

with the trim and fill method indicates a higher accuracy in the

initial effect size (Idris, 2012). Meta-regression and publication

bias were analyzed using Comprehensive Meta-Analysis Version

3 (Biostat, Englewood, NJ, United States).

3 Results

3.1 Identification of eligible studies

A total of 502 articles were retrieved, and after the removal of

irrelevant studies and duplicates, 96 remained. The study

selection process is shown in Figure 1. Overall, 43 articles

were assessed for relatedness and eligibility by studying their

full-text versions to determine whether they met our inclusion

and exclusion criteria; 21 studies were found ineligible. Of the

remaining articles, six were excluded for using cTBS protocols,

two were excluded for the lack of a sham group for comparison

(Kindler et al., 2013), and one study was excluded due to its

inclusion of both patients with schizophrenia and patients with

depression (Bodén et al., 2021), leaving 13 for qualitative and

quantitative analyses.

3.2 Study and patient characteristics

This meta-analysis included 13 studies in which iTBS was

used to treat patients with schizophrenia (Chen et al., 2011;

Kazemi et al., 2012; Zheng et al., 2012; Zhao et al., 2014; Zhen

et al., 2015; Zhu et al., 2019; Walther et al., 2020; Wang et al.,

2020; Basavaraju et al., 2021; Bation et al., 2021; Chauhan et al.,
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2021; Wu et al., 2021; Zhu et al., 2021). The included studies were

published between 2011 and 2021. Table 1 summarizes the

characteristics of the included studies; including one study

that compared different protocols of iTBS using a three-arm

sham-controlled crossover design (i.e., cTBS, iTBS, and sham

control) (Walther et al., 2020). With regard to most studies that

delivered more than 10 sessions, one study that only

administered one session of iTBS (Walther et al., 2020) was

excluded for efficacy analysis. iTBS was delivered adjunct to

antipsychotics in patients with schizophrenia in all the included

studies. Of these studies, 10 were published in English, and three

were published in Chinese with an English abstract (Zheng et al.,

2012; Zhen et al., 2015; Zhu et al., 2019).

Overall, the 524 included patients were randomized to

receive iTBS (n = 266) or sham control (n = 258). The

common durations of treatment in these studies were 2 weeks

FIGURE 1
PRISMA flowchart of the study selection.
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TABLE 1 General characteristics of randomized controlled trials of intermittent theta-burst stimulation in patients with schizophrenia.

Study;
Country

Population;
Severity;
Setting

Coil;
Navigation
method

Duration
of Tx/
Endc

Daily
sessions;
Total
sessions;
PPS;
PPD;
Total
pulse
delivered

rMT
(%)

Treatment
protocol

n Male CPZEq
(mg/d)

Mean
age
(year)

Illness
duration
(year)

b-PANSS
scores

Efficacye

M SD M SD M SD M SD T P N

Brain target: Left dorsolateral prefrontal cortex

Bation et al.
(2021) France

Sch (DSM-IV); Neg; TRS;
b-SANS ≥20; . . .

Figure-8; 6 cma 10d/6m 2; 20; 990;
1980; 19800

80 iTBS 12 1.00 325 206 42.3 9.4 15.0 5.9 78.83 7.96 7 7 ✓
Inactive Sham 10 0.90 389 171 41.6 12.6 17.1 15.4 71.50 14.58

Chen et al. (2011)
China

Sch (DSM-IV); Neg;
b-PANSS-N ≥20; IPD

Circular; F3 20d/4w 4; 80; 600;
2400; 48000

80 iTBS 23 0.70 505 153 37.4 11.8 17.0 24.4 74.61 5.84 ✓ 7 ✓
Inactive Sham 19 0.58 466 131 39.7 13.3 13.0 22.2 74.95 6.56

Kazemi et al.
(2012) Iran

Sch (DSM-IV); b-PANSS-
P/N ≥15; . . .

Figure-8; 5 cma 20d/4w 1; 20; 600; 600;
12000

80 iTBS 5 . . . . . . . . . 26.6 4.7 3.6 1.9 113.60 15.57 7 7 ✓
Inactive Sham 5 . . . . . . . . . 27.6 2.5 4.6 2.1 115.60 18.42

Wang et al.
(2020) China

Sch (DSM-IV);
b-ΔPANSS <10%; OPD

Figure-8; MRI-Nv 14d/2m 3; 42; 600;
1800; 25200

80 iTBS 25 0.44 488 338 24.0 4.4 5.1 3.8 63.88 14.49 ✓ 7 ✓
Inactive Sham 25 0.44 350 292 26.6 9.0 4.9 5.3 63.91 16.31

Wu et al. (2021)
China

Sch (DSM-IV);. . .; OPD Figure-8; MRI-Nv 14d/2w 3; 42; 600;
1800; 25200

80 iTBS 16 . . . 98 29 22.1 3.3 3.4 3.2 60.44 14.13 ✓ ✓ ✓
Inactive Sham 16 . . . 97 28 26.1 9.7 3.7 4.1 58.75 9.98

Zhao et al. (2014)
China

Sch (DSM-IV); Neg;
b-PANSS-N ≥20; . . .

Circular; . . . 20d/4w 4; 80; 600;
2400; 48000

80 iTBS 24 0.54 . . . . . . 47.7 11.8 . . . . . . 76.10 8.60 7 7 7

80 Sham at 180° 22 0.55 . . . . . . 46.7 13.1 . . . . . . 78.30 7.60

Zhen et al. (2015)
China

Sch (DSM-IV);. . .; IPD Figure-8; . . . 20d/4w 2; 40; 600;
1200; 24000

80 iTBS 28 0.39 . . . . . . 41.4 11.2 7.7 2.0 . . . . . . . . . . . . . . .

Sham at 180° 29 0.48 . . . . . . 45.4 13.5 7.3 2.4 . . . . . .

Zheng et al.
(2012) China

Sch (CCMD-3); . . .; IPD Circular; . . . 5d/4w 2; 10; 600;
1200; 6000

80 iTBS 18 1.00 . . . . . . 56.4 9.3 32.9 8.1 65.20 12.60 7 7 7

Sham at 180° 17 1.00 . . . . . . 55.6 5.8 31.7 7.2 66.90 12.10

Brain target: Left inferior frontal gyrus

Walther et al.
(2020)
Switzerlandd

Sch (DSM-5); . . .;
OPD/IPD

Figure-8; F5/F7/FC5/
FT7 Figure-8; CP4/6

1d/1w 1; 1; 600;
600; 600

80 iTBS 20 0.60 479 638 34.3 12.6 11.6 8.9 96.60 24.20 . . . . . . . . .
80 Inactive Sham 20

Brain target: Cerebellar vermis

Basavaraju et al.
(2021) India

Sch (DSM-5); Neg;
b-SANS each item ≥3;
IPD/OPD

Figure-8; MRI-Nv 5d/6w 2; 10; 600;
1200; 6000

100 iTBS 30 0.80 . . . . . . 31.2 9.9 8.4 5.6 . . . . . . 7 7 7

Inactive Sham 30 0.73 . . . . . . 34.2 8.1 10.9 8.0 . . . . . .

Chauhan et al.
(2021) India

Sch (ICD-10); Pos; TRS;
b-BPRS ≥45; . . .

Figure-8; 1 cmb 5d/3w 2; 10; 600;
1200; 6000

80 iTBS 19 0.37 605 122 41.7 8.9 16.1 5.5 93.21 9.41 7 7 7

Inactive Sham 16 0.47 557 120 39.4 8.2 13.0 7.0 90.59 8.09

Zhu et al. (2019)
China

Sch (ICD-10); . . .; IPD Figure-8; 1 cmb 10d/2w 1; 10; 600; 600;
6000

100 iTBS 14 0.43 . . . . . . 31.5 4.9 13.9 6.1 . . . . . . . . . . . . . . .

Sham at 180° 17 0.41 . . . . . . 35.8 3.6 16.0 5.1 . . . . . .

(Continued on following page)
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and 4 weeks (M = 2.5, SD = 1.4, range = 1 day to 4 weeks). The

mean age of the patients was 37.2 years (SD = 12.6); approximately

59.02% of the patients were men, with a mean illness duration of

12.5 years (SD = 11.5). The mean baseline PANSS total score was

74.94 (SD = 19.75) in these patients. The baseline characteristics of

patients included in these studies did not significantly differ

between the iTBS and sham control groups.

3.3 Quality of included studies and risk of
bias assessment

The overall risk of bias in the individual studies was low,

except for two studies with a high risk of bias because of the high

attrition bias (six participants who left the study early were not

included in the final analysis and no information was provided

regarding which groups those participants were from) (Zhu et al.,

2019) and other bias (possible carryover effect in a crossover

study design without an adequate washout phase) (Walther et al.,

2020). Risks of bias for all included studies are shown in

Supplementary Table S1. The quality of evidence according to

the GRADE criteria is summarized in Supplementary Table S2.

Evidence for the primary and secondary outcomes were of high

quality.

3.4 Therapeutic efficacy

3.4.1 All studies
The effect of iTBS as an adjunct to antipsychotics on total

psychopathology in patients with schizophrenia was significant

relative to the sham control (trials = 8, n = 315, SMD = −0.92,

95% CI [−1.54, −0.30], p = 0.004, I2 = 84%). The improvement in

negative symptoms (trials = 10, n = 397, SMD = −1.30, 95% CI

[−2.03, −0.56], p < 0.001, I2 = 90%) and general psychopathology

(trials = 7, n = 305, SMD = −0.58, 95% CI [−1.15, -0.01], p = 0.04,

I2 = 82%) was also noticed among patients with schizophrenia

who received iTBS. Adjunctive iTBS did not have a marked effect

on positive symptoms in patients with schizophrenia; no

significant differences in the pooled scores for the positive

subscale of PANSS were noted between the iTBS and sham

control groups (trials = 9, n = 375, SMD = 0.08, 95% CI

[–0.35, 0.51], p = 0.73, I2 = 75%).

Several studies have examined the effects of iTBS on cognitive

function in patients with schizophrenia. To avoid underpowered

results, the pooled results were only considered when at least two

adequately powered studies were available (Turner et al., 2013).

The results of the pooled analysis of cognitive parameters (verbal

fluency test, forward digit span, backward digit span, trail making

test A, trail making test B, Stroop inference test, and visuospatial

working memory assessment) are summarized in Supplementary

Table S3. None of the cognitive parameters were superior in iTBS

group to the sham control group.T
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3.4.2 Left dorsolateral prefrontal cortex
Majority of the included studies (n = 8) selected left

dorsolateral prefrontal cortex (DLPFC) as iTBS stimulation

target. Concordance with the results in pooled analysis of all

studies, iTBS targeting the left DLPFC had beneficial effects on

the total PANSS scores (p < 0.001), negative subscale scores (p <
0.001), and the general psychopathology subscale score (p =

0.005), but not the positive subscale scores (p = 0.86) in patients

with schizophrenia. Figure 2 presents the results of the pooled

analysis of the iTBS studies targeting DLPFC.

3.4.3 Cerebellar vermis
Four studies examined the effectiveness of iTBS on the

cerebellar vermis in patients with schizophrenia. Pooled

analysis of these studies showed that cerebellar vermal iTBS

failed to yield a significant improvement in all domains of

psychopathology measured by PANSS scores (see Figure 3).

3.4.4 Meta-regression analysis
Moderators defined a priori were tested in an exploratory

meta-regression analysis to examine their effects on the primary

and secondary outcomes. No interaction of age, sex, illness

duration, overall study duration, or adjunct antipsychotic

dosage with the primary or secondary outcomes was observed

in this study. In other words, the dose of received antipsychotics

has no effect on the effectiveness of iTBS augmentation in

patients with schizophrenia. With regard to their baseline

psychopathology, we found that the patients’ baseline negative

symptoms and general psychopathology had significant effects

on the treatment response, in terms of reduction of PANSS

total, negative, and general psychopathology scores. This

implies that the more severe baseline negative symptoms and

general psychopathology of the patients, the more

improvement in PANSS total, negative, and general

psychopathology scores they are experienced after iTBS

augmentation. The stimulation parameters have significantly

interacted with the primary outcomes, including total PANSS

scores, negative subscale, and general psychopathology

subscale, but not with the secondary outcome

(discontinuation rate). The results of meta-regression were

summarized in Supplementary Table S4. The effects of the

stimulation parameters on treatment outcomes are discussed in

the following subgroup analyses.

3.4.5 Subgroup analyses of therapeutic efficacy
for various stimulation parameters

Stratified meta-analyses of therapeutic efficacy were

performed for various stimulation parameters, including targeted

brain area, stimulation session, number of stimulation pulses per

session, stimulation strength, and type of sham control. Aiming to

examine the ideal iTBS paradigm, all studies were categorized

according to their brain target. Only studies on DLPFC fulfilled

the criteria for subgroup analysis as the studies on cerebellar vermis

were too small in studies number. Despite the trends of superiority

that could be noticed in several parameters, the subgroup analyses of

the parameters mentioned above that showed statistically significant

differences between the two groups mainly focused on the general

psychopathology. The results are summarized in Figure 4.

3.4.5.1 Stimulation duration

The iTBS was delivered to patients with schizophrenia in 1, 5,

10, 14, and 20 days in different studies. As stratified by the

median days, those who received iTBS for more than 14 days

showed significantly better results for total PANSS scores (p <
0.001), negative symptoms (p = 0.002), and general

psychopathology (p < 0.001) compared with those who

received fewer than 14 days treatment, although the subgroup

differences were only significance for total PANSS score and

general psychopathology.

For the length of stimulation, a longer stimulation period

(≥1200 s) was more beneficial in total scores (p < 0.001), negative

scores (p = 0.01), and general scores (p < 0.001) of PANSS for

patients with schizophrenia under iTBS treatment. Furthermore,

those who received more than one session a day, a break for at

least 300s produced a more prominent treatment effect on scores

of totals (p< 0.001), negative (p = 0.01), and general (p < 0.001) scales

of PANSS for patients with schizophrenia. As illustrated in Figure 4,

the subgroup difference between different lengths of stimulation was

significant for the reduction of general psychopathology.

3.4.5.2 Stimulation sessions

The total number of stimulation sessions delivered to

patients with schizophrenia varied from 10, 20, 42, and 80.

Patients who received more than 20 sessions of iTBS showed

significantly better results for the total PANSS scores (p < 0.001),

negative symptoms (p = 0.01), and general psychopathology (p <
0.001) compared with those who received 20 sessions or less.

Those patients who received 3 to 4 sessions iTBS a day showed

better outcome than those who received 1 to 2 sessions in the

total (p < 0.001), negative (p = 0.01), and general (p < 0.001)

scales of PANSS. Like the analyses for other stimulation

parameters, the significant differences between the two groups

of the different numbers of total sessions and the different

number of daily sessions were found in the improvement of

general psychopathology.

3.4.5.3 Stimulation pulses

Dose-dependent effects of iTBS were indirectly demonstrated

in the stratified meta-analysis based on the number of

stimulation pulses delivered per day. Patients with

schizophrenia who received more than 1800 pulses in a day

exhibited greater improvements in total PANSS scores (p <
0.001), negative symptoms (p = 0.001), and general

psychopathology (p < 0.001) compared with those who
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received fewer than 1800 pulses per session. Also, those patients

who received a total number of more than 24000 pulses showed

more prominent improvement in total PANSS scores (p < 0.001),

negative symptoms (p = 0.001), and general psychopathology (p <
0.001) as compared with those who received fewer pulses. The

between-groups difference in dose-dependent effects of iTBS was

statistically significant in the reduction of general psychopathology.

3.4.5.4 Stimulation strength

Among all included studies, most of the studies applied the

stimulation strength at 80% of the resting motor threshold (rMT)

whilst only three studies delivered stimulation at 100% rMT. In

the subgroup analysis of stimulation strength, classified

according to the targeted brain area, all studies that targeted

DLPFC delivered 80% rMT stimulation strength. To avoid

underpowered results, there was an inadequate number of

studies to perform subgroup analysis.

3.4.5.5 Type of sham control

Both inactive sham coil and coil angled away from the scalp were

used in the included studies as sham controls. The use of an inactive

sham coil resulted in a more robust effect on the reduction of total

PANSS scores (p < 0.001), negative subscale scores (p < 0.001), and

general subscale (p < 0.001) compared with the application of an

angled coil, although none of the subgroup differences between these

two methods were significant.

3.5 Safety profile

3.5.1 Discontinuation

No differences were observed between the iTBS and sham

control groups in terms of all-cause discontinuation of treatment

[trials = 12, n = 494, RR = 0.80, 95% CI (0.46, 1.37), p = 0.42, I2 =

0%] or discontinuation due to adverse events (trials = 9, n = 370,

FIGURE 2
Standardized mean differences for changes in the psychopathology of patients with schizophrenia who received intermittent theta-burst
stimulation on the left dorsolateral prefrontal cortex.
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RR = 0.36, 95% CI [0.08, 1.59], p = 0.18, I2 = 0%). In total, one

patient from the iTBS group (1 headache) and four patients from

the sham control group (1 headache, 3 psychosis exacerbation) in

the included studies withdrew because of adverse events.

3.5.2 Adverse events
Overall, iTBS was well tolerated in patients with

schizophrenia. No significant difference in the reported adverse

events was observed between the iTBS and sham control groups,

although the incidences of headache, pain, dizziness, and nausea were

slightly marked. Two patients with schizophrenia emergent

hypomania/mania symptoms while receiving iTBS of cerebellar

vermis were worth noticing (Basavaraju et al., 2020). The reported

adverse events are summarized in Table 2.

3.6 Sensitivity analysis

Multiple sensitivity analysis was conducted using an a priori

protocol to examine the heterogeneity of the included studies.

Overall, most of the outcomes measured in this study remained

unchanged, and none of the significant effects of iTBS on total

PANSS scores and negative symptoms in patients with

schizophrenia disappeared. The results are summarized in

Supplementary Table S5. The benefit of the iTBS on the

general psychopathology in patients with schizophrenia was

diminished after excluding studies with a high risk of bias and

studies that designated non-psychopathology as the primary

outcome, therefore the results of general psychopathology

should be interpreted cautiously with the consideration of the

unobserved heterogeneity in those included studies.

3.7 Publication bias

Publication bias was assessed both qualitatively (through

funnel-plot asymmetry) and quantitatively (through Begg and

Mazumdar rank correlation, Egger’s regression, the Fail-safe N

test, and the trim and fill method). Details of the publication bias

analysis are summarized in Supplementary Table S6. Results of

Duval and Tweedie’s trim and fill method revealed no evidence of

publication bias for the primary or secondary outcomes.

4 Discussion

This meta-analysis evaluated recent RCTs on the efficacy and

safety of iTBS augmentation in patients with schizophrenia. iTBS

adjunct to antipsychotics was associated with significant

improvements in the psychopathology in patients with

FIGURE 3
Standardized mean differences for changes in the psychopathology of patients with schizophrenia who received intermittent theta-burst
stimulation on the cerebellar vermis.
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FIGURE 4
Standardized mean differences for subgroup analyses of therapeutic efficacy of different stimulation parameters of intermittent theta-burst
stimulation on the dorsolateral prefrontal cortex.
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schizophrenia, particularly for negative symptoms and general

psychopathology, but not for positive symptoms or cognitive

function. This result was consistent with the studies that revealed

the efficacy of rTMS for alleviating negative symptoms in patients

with schizophrenia (Osoegawa et al., 2018; Tseng et al., 2022). In

addition, our findings are in line with a meta-analysis on the efficacy

of TBS for the treatment of patients with depression (Chu et al., 2021);

the close relationships between depressive symptoms and negative

symptoms in schizophrenia sometimes make them hardly

distinguishable (Krynicki et al., 2018). More specifically, delivering

iTBS with 1800 pulses over left DLPFC is proven to be effective in the

treatment of depression (Li et al., 2018; Li C. T et al., 2020). Shared

pathophysiology in brain circuits, for example, DLPFC, between

schizophrenia and depression may suggest the same iTBS

paradigm work for both patient populations (Hui et al., 2021;

Rolls, 2021). Furthermore, in the evaluation using PANSS, items of

general psychopathology are comprised of and overlapped with

several depressive symptoms, for example, depression, guilt

feelings, poor attention, and active social avoidance. In the present

study, the improvement in depressive symptoms in patients with

schizophrenia who received iTBS augmentation was represented by a

reduction in the PANSS negative subscale score and general

psychopathology. It is believed that these improvements might be

a combination of the direct effects on negative symptoms and

antidepressant effects.

The present results showed that iTBS augmentation did not

improve positive symptoms in patients with schizophrenia.

Consistent with our findings, a meta-analysis of 11 RCTs

reported that rTMS improved auditory hallucinations in

patients with schizophrenia; however, this result was not

stable after a sensitivity analysis (Li J et al., 2020). iTBS

delivered to the DLPFC and cerebellar vermis may not be the

effective brain targets, as other brain regions, for example, the

temporoparietal cortex, should be considered. Therefore,

additional studies of iTBS efficacy in alleviating positive

symptoms in schizophrenia are warranted.

Consistent with the result of a meta-analysis of rTMS effect on

cognitive function in patients with schizophrenia (Sciortino et al.,

2021), we found that adjunctive iTBS did not improve cognitive

function. Nevertheless, due to the limited evidence and relatively

small number of studies examining cognitive function, it cannot

exclude that specific dimensions of cognitive functions may respond

differently to iTBS.

The optimal protocol of iTBS for schizophrenia (e.g., targeted

brain area, stimulation duration, stimulation sessions, and

stimulation pulses) remains to be determined. Preliminary,

our results may provide a shred of evidence to find the ideal

iTBS paradigm. Our results revealed that iTBS targeted on the left

DLPFC could ameliorate the psychopathology in patients with

schizophrenia. Dysfunctional activations of the ventrolateral

prefrontal cortex and medial prefrontal cortex are associated with

negative and positive symptoms, respectively, whereas abnormalities

in the DLPFC have been associated with disorganized symptoms

and social perception (Goghari et al., 2010; Shin et al., 2015).

Normalization of excitability in the frontal cortex is one of the

main positive effects of schizophrenia treatments, including

antipsychotics and noninvasive brain stimulations (Kani et al.,

2017). More specifically, increased resting functional connectivity

between the left DLPFC and brain regions that encompass

dopamine neuron cell bodies after stimulation are indicating

significant modulation of dopamine transmission by iTBS

(Bation et al., 2021). The restoration of abnormal connectivity of

mesocorticolimbic dopamine pathways may partly answer the

improvement of negative symptoms and general psychopathology

of patients with schizophrenia who received iTBS that was observed

in this meta-analysis (McCutcheon et al., 2019; Xu et al., 2019).

Our results revealed that patients who received more than

20 iTBS sessions, at least 1200 s of iTBS, at least 24000 pulses, for

at least 14 days exhibited greater improvements in

psychopathology. For the intensity of the iTBS, patients who

received at least 1800 pulses with 3–4 sessions a day showed

better psychopathology outcomes. Similarly, a study reported

that iTBS (600 vs. 1800 pulses) dose-dependently enhanced

cortical excitability and functional connectivity in the motor

cortex of healthy subjects (Nettekoven et al., 2014). However,

another study reported that iTBS-induced neuroplasticity was

TABLE 2 Adverse events reported in patients with schizophrenia treated with intermittent theta-burst stimulation.

Trials Intervention Placebo RR
(95%CI)

p

Events Total % Events Total %

Dizziness 1 3 32 9.38 0 32 0.00 7.00 [0.38, 130.26] 0.19

Fatigue 1 5 30 16.67 4 20 20.0 1.25 [0.39, 3.99] 0.71

Headache 4 9 86 10.47 5 78 6.41 1.61 [0.59, 4.37] 0.35

Mania 1 2 30 6.67 0 30 0.00 5.00 [0.25, 99.95] 0.29

Nausea 2 7 52 13.46 1 52 1.92 5.00 [0.92, 27.24] 0.06

Pain 2 6 52 11.54 2 52 3.85 2.20 [0.51, 9.42] 0.29

Psychosis 2 0 35 0.00 3 29 10.34 0.21 [0.02, 1.82] 0.16
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reversed with prolonged stimulation (600 vs. 1200 pulses)

(Gamboa et al., 2010). An animal study revealed that iTBS-

induced cortical protein expression was not an accumulative

dose-dependent effect, but distinct profiles with threshold

characteristics and a waxing-and-waning effect were observed

(Volz et al., 2013). This effect pattern was observed in the

subgroup analysis of negative symptoms of patients with

schizophrenia who received iTBS on DLPFC. In contrast to

what has been observed in analyses for total PANSS score and

general psychopathology, the effect sizes in the improvement

of negative symptoms were more robust in those

parameters of lower intensity (< 1800 pulses and only 1 to

2 sessions a day) and shorter period (≤20 sessions, <1200s of

iTBS, <24000 pulses, <14 days), although the between-groups

differences were not statistically significant and patients in both

subgroups are all showed a reduction in PANSS negative score.

The small number of included studies limited further exploratory

analysis but future investigations on the heterogeneity of

treatment response is warranted.

Studies using an inactive sham coil reported a significant

improvement in the psychopathology compared with those

flipped coils to realize the effect of sham stimulation. Broadbent

et al. (2011) reported that people randomized to active rTMS were

more likely to correctly guess group randomization than those

allocated to sham stimulation. People receiving inactive sham coil

stimulation may have an inadequate placebo effect due to the lack

of sensation on the skull in contrast to active iTBS. In the angled-

coil method, substantial cortical stimulation may occur, especially

in 45° coil arrangements, with approximately half the potential for

inducing motor-evoked potentials over the motor cortex as active

rTMS (Lisanby et al., 2001). Thus, the angled-coil method may

induce a partially active placebo that could bias the results (Loo

et al., 2000). These shortcomings of both sham methods could

cause partial blinding success and bias the estimations of treatment

efficacy.

In addition, iTBS seems to be safe and well-tolerated for

patients with schizophrenia. No differences in terms of

discontinuation or adverse events were found between the

iTBS and sham control groups.

This meta-analysis had some limitations. First, the uneven

sample size and population distribution of the included

studies may have affected the validity and generalizability

of the outcomes. Furthermore, differences in baseline

characteristics, diagnostic tools, stages of illness, and the

adjunctive antipsychotics used may have influenced the

results. Second, the treatment duration and endpoints varied

among the included studies. Knowledge concerning the

timepoints at which the after-effect of iTBS occurs and the

duration of the effect is lacking. Most of the included studies

reported acute treatment effects of iTBS on schizophrenia; thus, the

optimal maintenance duration of iTBS remains unclear. Therefore,

long-term iTBS studies on schizophrenia are required in the future.

Third, all the studies included iTBS adjunct to antipsychotics for

treating patients with schizophrenia. This limited the interpretation

of the efficacy of iTBS as a monotherapy.

Conclusion

Based on the evidence obtained in this meta-analysis, iTBS

adjunct to antipsychotic treatment is associated with a significant

improvement in negative symptoms in patients with schizophrenia

and has favorable tolerability. iTBS targeting the left DLPFC with

more than 1800 pulses per day andmore than 20 sessionsmight be

the optimal protocol. The results of this meta-analysis may provide

insights into the use of iTBS as an additional treatment for

schizophrenia for alleviating negative symptoms.
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