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Purpose: Pulmonary vascular endothelial cell (EC) injury is recognized as one of the 
pathological factors of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). 
Bone marrow mesenchymal stem cell (BMSC)-based cytotherapy has attracted substantial 
attention over recent years as a promising therapeutic approach for ALI/ARDS; however, its 
use remains limited due to inconsistent efficacy. Currently, gene modification techniques are 
widely applied to MSCs. In the present study, we aimed to investigate the effect of BMSCs 
overexpressing Homeobox B4 (HOXB4) on lipopolysaccharide (LPS)-induced EC injury.
Methods: We used LPS to induce EC injury and established EC-BMSC coculture system 
using transwell chambers. The effect of BMSCs on ECs was explored by detecting EC 
proliferation, apoptosis, migration, tube formation, and permeability, and determining 
whether the Wnt/β-catenin pathway is involved in the regulatory mechanism using XAV- 
939, inhibitor of Wnt/ β-catenin.
Results: As compared to BMSCWT, BMSCHOXB4 coculture promoted EC proliferation, 
migration, and tube formation after LPS stimulation and attenuated LPS-induced EC apop-
tosis and vascular permeability. Mechanistically, BMSCHOXB4 coculture prevented LPS- 
induced EC injury by activating the Wnt/β-catenin pathway, which is partially reversible 
by XAV-939. When cocultured with BMSCHOXB4, pro-inflammatory factors were dramati-
cally decreased and anti-inflammatory factors were greatly increased in the EC medium 
compared to those in the LPS group (P<0.05). Additionally, when compared to BMSCWT 

coculture, the BMSCHOXB4 coculture showed an enhanced modulation of IL-6, TNF-α, and 
IL-10, but there was no statistically significant effect on IL-1β and IL-4.
Conclusion: Coculturing of BMSCHOXB4 prevented LPS-induced EC injury by reversing 
the inactivation of the Wnt/β-catenin signaling pathway. An in vivo study remains warranted 
to ascertain whether engraftment of BMSCHOXB4 can be an attractive strategy for the 
treatment of ALI/ARDS.
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Background
Sepsis is a complex clinical syndrome with physiological, biological, and biochem-
ical abnormalities.1 It develops from a dysregulated host response to infection.1 The 
accumulated understanding of the pathophysiological mechanisms of sepsis reveal 
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that it involves host immune imbalance, inflammatory 
mediator outbreaks, coagulation abnormalities, and apop-
tosis. The lung is the most susceptible organ to suffer from 
sepsis and can develop acute respiratory distress syndrome 
(ARDS).2–5 Alveolar type II epithelial cell and capillary 
endothelial cell (EC) injury are the primary underlying 
causes in the development of acute lung injury (ALI)/ 
ARDS.5 Previously, studies focused on alveolar type II 
epithelial cells, but increasing evidence suggests that 
alveolar capillary EC damage may play a more critical 
role in promoting the progression of ALI/ARDS.6,7 

Alveolar capillary EC destruction that results from sepsis, 
trauma, and severe infections leads to impaired structural 
integrity and function. This subsequently causes the loss of 
permeability and consequent fluid accumulation in the 
interstitial and alveolar spaces of the lungs.7–9 Therefore, 
the contribution of alveolar capillary EC damage in the 
progression of ARDS cannot be underestimated.

Mesenchymal stem cells (MSCs) are an important 
family of stem cells with great therapeutic potential.10 

MSC-based cell therapy has been attractive as a potential 
treatment for ARDS due to multiple aspects, including the 
secretion of several paracrine factors, assistance in tissue 
repair, immunomodulation, and reduction in the severity of 
bacterial infections.11–13 To date, some clinical studies 
have confirmed the therapeutic effects of MSCs in 
ARDS, including that caused by coronavirus disease 
2019 (COVID-19).14–19 In the pre-experiment, we found 
that pre-treatment of bone marrow MSCs (BMSCs) with 
Ghrelin (growth hormone-releasing peptide, an endogen-
ous ligand for the growth hormone-releasing hormone 
receptor) markedly strengthened the therapeutic effect of 
BMSCs in an animal model of lipopolysaccharide (LPS)- 
associated ALI/ARDS. This was evidenced by 
a significant reduction in alveolar lumen exudate, we 
found a significant upregulation of Homeobox B4 
(HOXB4) by transcriptome sequencing of Ghrelin- 
pretreated BMSCs supernatants. HOXB4 is a member of 
the homeobox (HOX) gene family with essential roles in 
the regulation of cell renewal and differentiation.20 

However, there are only a few studies on the interaction 
between HOXB4 and BMSCs in ALI/ARDS. Moreover, it 
is unclear whether HOXB4 can strengthen the therapeutic 
effect of BMSCs in ALI/ARDS; the underlying molecular 
mechanism deserves to be investigated. Therefore, in the 
present study, we aimed to investigate the role of HOXB4 
in the protection of BMSCs against ALI/ARDS.

Materials and Methods
Cell Culture and Preparation
The study was approved by the Ethical Review 
Committee of the First Affiliated Hospital of Sun Yat- 
sen University. The animal part of this study was per-
formed in accordance with the guidelines of the Animal 
Care and Use Committee of the First Affiliated Hospital 
of Sun Yat-sen University and the China Laboratory 
Animal Welfare Guidelines [GB/T 35892-2018]. The 
method of isolation and culture of rat BMSCs was per-
formed in accordance with our previous studies and the 
protocol of Grässel et al.21–23 When adherent cell cultures 
reached 80–90% confluence, BMSCs were recovered for 
subculture using 0.25% trypsin EDTA (Gibco, Carlsbad, 
CA, USA).

Recombinant lentiviral vectors overexpressing HOXB4 
and empty vectors were constructed by Shanghai 
Genechem (China). All vectors carried the anti-purine 
bacteriocin gene and green fluorescent protein. We per-
formed the corresponding pre-experiments before lenti-
viral transfection by inoculating 100 µL of complete 
medium (containing 5000 cells) in a 96-well plate and 
replacing the new complete medium after 24 h of incuba-
tion. Then, BMSCs were transfected with a multiplicity of 
infection (MOI) of 1, 10, 50, and 100, respectively, and 
transfection enhancement solution HitransG A (Shanghai 
Genechem, China) was added. The new medium was 
replaced after 16 h of incubation followed by subsequent 
changes according to cell growth. After 72 h, the fluores-
cence expression abundance was observed under 
a fluorescence microscope (Olympus, Japan), and the 
group with 80% infection efficiency with well-grown 
cells was selected for subsequent experiments. The final 
MOI per cell was used as 100, and the transfected cells 
were selected after 96 h using 2 µg/mL of puromycin.

EA.hy926 human umbilical vein ECs were purchased 
from Procell (Wuhan, China) and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) containing 10% fetal 
bovine serum (FBS) and 1% penicillin-streptomycin (all 
from Gibco) under standard conditions of 5% CO2 

at 37°C.
The co-culture regime was established in transwell 

chambers with a pore size of 0.4 μm (Corning, NY, 
USA). The upper chamber was incubated with wild-type 
(WT) BMSCs (1×105 cells/mL), vector BMSCs (1×105 

cells/mL), and HOXB4 overexpressing BMSCs (1×105 

cells/mL) respectively, and the lower chamber was 
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incubated with ECs (1×105 cells/mL). On the basis of our 
preliminary experiments and previous study, we used LPS 
(O127:B8, Sigma, St. Louis, MO, USA) at a concentration 
of 150 μg/mL to act on ECs cocultured with different 
BMSCs for 24 h simultaneously.24 Overall, there were 
five groups: control, EC+LPS (150 μg/mL), BMSCWT 

+EC+LPS (150 μg/mL), BMSCVector+EC+LPS (150 μg/ 
mL), and BMSCHOXB4+EC+LPS (150 μg/mL).

To verify the protective effect of BMSCHOXB4 on LPS- 
induced EC injury via the Wnt/β-catenin pathway, we also 
evaluated ECs pretreated for 12 h with XAV-939 (APExBIO, 
Houston, TX, USA), a specific inhibitor of the Wnt/β-catenin 
pathway. Together with the pre-experiments and previous 
study, XAV-939 acted on ECs at a concentration of 10 µM 
dissolved in dimethyl sulfoxide.23

5-Ethynyl-20-Deoxyuridine (EdU) Assay
The EdU kit (Ribobio, China) was used to detect cell 
proliferation. Briefly, after 2 h of incubation with EdU, the 
cells were fixed with 4% paraformaldehyde and permeabi-
lized with 0.5% Triton X-100. Apollo® staining reaction 
solution was subsequently added followed by incubation for 
30 min in the dark. Next, the cells were washed three times 
with phosphate-buffered saline (PBS) followed by incuba-
tion for 30 min with Hoechst 33342 reaction solution. The 
cells were then washed and kept moist with PBS, and they 
were observed using fluorescence microscopy. The proce-
dure of the assay is detailed in the instructions provided 
with the kit, and the cell proliferation capacity is reflected 
by calculating the ratio of EdU-positive cells to the total 
number of DAPI-positive cells.

Wound Scratch Assay
ECs were inoculated at a density of 1×106 cells per well in 
6-well culture plates and grown to confluence. Cell mono-
layers were scraped off using a 200 μL pipette tip, then 
washed twice with PBS, and cultured for 24 h with fresh 
serum-free medium and the different co-culture regimes 
described above. Photographs were taken after cell scrap-
ing and 24 h after co-culture to observe cell migration, and 
wound healing percentage was determined using the 
ImageJ software, ie (0 h scratch area – 24 h scratch 
area)/0 h scratch area × 100%.

Tube Formation Assay
The growth factor reduced Matrigel (Corning) was plated 
at 300 μL per well in 24-well plates for 30 min at 37°C. 
ECs (2×105) were cultured in 300 μL DMEM 

supplemented with 10% FBS (all from Gibco). Calcein 
AM fluorescent dye (5 µL) (KeyGen, China) was added 
5 to 10 min prior to fluorescence microscopy visualization 
to enhance the visibility of tube and network formation in 
Matrigel. Tubular structures were examined under 
a fluorescence microscope 3 h after cell inoculation, and 
the extent of tubule formation was quantified by counting 
vascular crossings in three randomly selected fields of 
view in each well. The results were analyzed using the 
ImageJ software.

Apoptosis Assays
TdT-mediated dUTP Nick-End Labeling (TUNEL) 
(Beyotime, China) and Annexin V-fluorescein isothiocya-
nate (AV-FITC)/propidium iodide (PI) (BD Biosciences, 
San Jose, CA, USA) were used to evaluate cell apoptosis. 
Among these assays, the TUNEL positive cells to total 
cells ratio was calculated to assess the level of apoptosis, 
and the Annexin V-FITC/PI assay was performed to ana-
lyze the percentage of early apoptotic as well as late 
apoptotic cells. The above assays were performed by 
referring to the manufacturers’ instructions and our pre-
vious studies.22,24

Endothelial Cell Permeability Assay
Transwell permeability assay was used to study the per-
meability of ECs.25 We seeded 2×105 ECs in 300 μL 
medium in 6.5 mm transwell chambers (Corning) and 
cultured the cells until the formation of a confluent mono-
layer. Then, the ECs were co-cultured in a 24-well plate 
inoculated with BMSCWT, BMSCVector, and BMSCHOXB4 

and simultaneously administered with LPS. After 24 h, 
the chambers inoculated with ECs were transferred to 
a 24-well plate, the top medium of the chambers was 
removed and refilled with medium containing streptavi-
din-horseradish peroxidase. After 5 min of incubation, 
20 μL of medium was collected from the lower chamber 
and moved to a new 96-well plate. Next, 50 µL of TMB 
substrate was added to each well of the 96-well plate and 
allowed to react for 5–20 min at room temperature, fol-
lowed by the addition of 25 µL of stop solution (Sigma) to 
each well. Absorbance was detected at 450 nm using an 
enzyme linked immunosorbent assay (ELISA) reader.

Western Blotting
The proteins were extracted from ECs using RIPA lysis 
buffer (Beyotime, China) containing protease inhibitors. 
The protein extracts were separated by sodium dodecyl 
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sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred onto polyvinylidene fluoride (PVDF) 
membranes. The membranes were then blocked with 
quick-blocking buffer (Beyotime, China) for 15 min at 
room temperature and incubated overnight at 4°C with 
the corresponding primary antibody concentration of 1 to 
1000 (anti-β-catenin, anti-VE-cadherin, anti-Bcl-2, anti- 
BAX and anti-GAPDH) (Cell Signaling Technology, 
Beverly, MA, USA). After incubation with the secondary 
antibody (Cell Signaling Technology, Beverly, MA, USA) 
for 1 h, the bands were visualized by chemiluminescence 
using the Image Quant LAS 4000 system.

ELISA
The concentration of inflammatory factors in the culture 
medium, including the pro-inflammatory factors interleu-
kin (IL)-1, IL-6, and TNF-α as well as the anti- 
inflammatory factors IL-4 and IL-10, was determined 
using ELISA kits (NeoBioscience, China) according to 
the manufacturer’s instructions.

Statistical Analysis
All variables were expressed as mean ± standard deviation 
(SD). One-way ANOVA and post hoc tests were used for 
comparison between multiple groups. All statistical ana-
lyses were performed using R (http://www.R-project.org, 
version 3.6.1) and GraphPad Prism 8. P values of less than 
0.05 were considered to be statistically significant.

Results
Validation of BMSCHOXB4

The efficiency of lentivirus-transfected rat BMSCs overex-
pressing HOXB4 was analyzed by Western blotting. As 
shown in Figure 1A and B, the expression of HOXB4 was 
significantly increased in BMSCHOXB4 group compared to 
that in BMSCWT group; there was no difference in HOXB4 
expression between the BMSCWT and BMSCVector groups.

BMSCHOXB4 Coculture Promotes the 
Proliferation, Migration, and Tube 
Formation Ability of ECs
The EdU proliferation assay results showed that the prolif-
eration capacity of ECs was remarkably reduced after LPS 
stimulation compared to that in the control group (P <0.01). 
After co-culturing with different groups of BMSCs, EC pro-
liferation capacity was differentially increased, and 
BMSCHOXB4 coculture dramatically promoted EC 

proliferation capacity after LPS-induced injury compared to 
BMSCWT and BMSCVector coculture groups (P <0.01) 
(Figure 2A and B). The scratch assay results revealed that 
the migration ability of ECs decreased after LPS stimulation 
and increased after co-culturing with different groups of 
BMSCs. Compared to BMSCWT and BMSCVector coculture 
groups, the migration ability of ECs was significantly 
increased in the BMSCHOXB4 coculture group (P <0.01) 
(Figure 2C and D). Finally, to assess the role of 
BMSCHOXB4 in angiogenesis in vitro, EC tube-formation 
assay was performed. As seen in Figure 2E, there was almost 
no tube formation in the LPS group. However, coculture with 
BMSCHOXB4 significantly promoted the EC tube formation 
ability compared to that in BMSCWT and BMSCVector cocul-
ture groups (P <0.01) (Figure 2F).

BMSCHOXB4 Coculture Attenuates the 
Apoptosis and Vascular Permeability of ECs
TUNEL and AV-FITC/PI assays were used to assess the role 
of BMSCHOXB4 in LPS-induced EC apoptosis. EC apoptosis 
was significantly increased upon LPS stimulation, as 

Figure 1 Validation of BMSCHOXB4. (A) Expression of HOXB4 in BMSCs was 
analyzed by Western blotting. (B) Quantitative analysis indicated that the expres-
sion of HOXB4 was significantly increased in BMSCHOXB4 group compared to that 
in BMSCWT group; there was no difference in HOXB4 expression between the 
BMSCWT and BMSCVector groups. Data were expressed as mean±SD (n=3), 
***P <0.001. 
Abbreviations: WT, wild-type; HOXB4, homeobox B4; BMSC, bone marrow 
mesenchymal stem cell; SD, standard deviation.

https://doi.org/10.2147/JIR.S319416                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 3640

Lin et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.R-project.org
https://www.dovepress.com
https://www.dovepress.com


Figure 2 BMSCHOXB4 coculture promotes the proliferation, migration, and tube formation ability of ECs. (A) EdU was measured for EC proliferative capacity, of which the 
blue color indicated the nuclear localization and the red color indicated the proliferation-active cells (magnification 100×). (B) Quantitative analysis was conducted by 
calculating the percentage of proliferation-active cells, and the results suggested that BMSCHOXB4 coculture dramatically promoted EC proliferation capacity after LPS- 
induced injury compared to BMSCWT and BMSCVector coculture groups. (C) The scratch assay was conducted to assess the migration capability of EC, and representative 
images of the scratches at different time points at 0 h and 24 h are shown (magnification 40×). (D) Quantitative analysis of the changes in the scratched areas was performed 
using Image J software, and results suggested that the migration ability of ECs was significantly increased in the BMSCHOXB4 coculture group compared to BMSCWT and 
BMSCVector coculture groups. (E) Tube formation assay was performed to detect EC angiogenic capacity, and Calcein AM fluorescent dye was used to enhance the visibility of 
tube and network formation in Matrigel (magnification 100×), along with the trajectories of tubes and networks were also depicted accordingly. (F) Quantitative analysis 
suggested that coculture with BMSCHOXB4 significantly promoted the EC tube formation ability compared to that in BMSCWT and BMSCVector coculture groups. Data were 
expressed as mean±SD (n=3). a)Compared to control group, P <0.01; b)compared to LPS group, P <0.01; c)compared to BMSCWT+LPS group, P <0.01. 
Abbreviations: WT, wild-type; HOXB4, homeobox B4; BMSC, bone marrow mesenchymal stem cell; SD, standard deviation; EC, endothelial cell; EdU, 5-ethynyl-20- 
deoxyuridine.

Journal of Inflammation Research 2021:14                                                                                          https://doi.org/10.2147/JIR.S319416                                                                                                                                                                                                                       

DovePress                                                                                                                       
3641

Dovepress                                                                                                                                                               Lin et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


evidenced by an increase in TUNEL-positive cells; BMSC 
coculture demonstrated varying degrees of anti-EC apopto-
sis; as compared to BMSCWT and BMSCVector coculture 
groups, BMSCHOXB4 remarkably attenuated EC apoptosis 
(P <0.01) (Figure 3A and B). Similarly, the AV-FITC/PI 
assay results showed a remarkable reduction in the apoptosis 
rate in BMSCHOXB4 coculture group (apoptosis rate: 
28.62%) compared to that in BMSCWT (apoptosis rate: 
44.31%) and BMSCVector (apoptosis rate: 43.10%) coculture 
groups (P <0.01) (Figure 3C and D). Vascular permeability is 
one of the indicators referring to the barrier function of ECs. 
Hence, we measured the vascular permeability by endothelial 
cell leakage assay (Figure 3E), and found that the perme-
ability of ECs was significantly increased after LPS treatment 
and greatly decreased after coculture with BMSCs, where the 
vascular permeability of BMSCHOXB4 coculture group was 
markedly lower than that of BMSCWT and BMSCVector 

coculture groups (P <0.01) (Figure 3F).

BMSCHOXB4 Coculture Protects Against 
LPS-Induced EC Injury by Activating the 
Wnt/β-Catenin Pathway
To investigate the molecular mechanism underlying the 
protective effect of HOXB4 on ECs, we assessed the 
expression of β-catenin, VE-cadherin, BAX, and BCL-2 
using Western blotting (Figure 4A). Compared to LPS and 
BMSCWT coculture group, the expression of β-catenin and 
VE-cadherin in ECs was significantly increased in the 
BMSCHOXB4 coculture group; the expression of anti- 
apoptotic protein BCL-2 was considerably increased, 
while the expression of the apoptotic protein BAX was 
remarkably decreased (Figure 4B–E). Notably, a reduced 
expression level of β-catenin was observed in LPS group 
compared to that in the control group (Figure 4B), imply-
ing that LPS-induced EC injury is closely associated with 
the inhibition of Wnt/β-catenin pathway. Collectively, 
these findings prompted us to investigate whether 
BMSCHOXB4 coculture regulates the Wnt/β-catenin path-
way in LPS-induced EC injury (Figure 5A). Interestingly, 
our study showed that LPS-induced inhibition of the Wnt/ 
β-catenin pathway was blunted by BMSCHOXB4 coculture, 
resulting in substantially higher β-catenin levels than those 
in the LPS group (P <0.01) (Figure 5B). Conversely, the 
protective effect was reverted by XAV-939, a specific 
inhibitor of the Wnt/β-catenin pathway, accompanied by 
an upregulation of BAX, along with a downregulation of 
BCL-2 and VE-cadherin (Figure 5C–E).

Measurement of Inflammatory Factors
The levels of inflammatory factors in the cell culture 
medium were measured by ELISA (Figure 6). After LPS 
administration, the pro-inflammatory factors (IL-1β, IL-6, 
and TNF-α) were elevated, and after coculturing with 
BMSCs, the levels of IL-1β, IL-6, and TNF-α were differ-
entially decreased (Figure 6A–C). When compared to 
BMSCWT, the levels of IL-6 (P <0.001) and TNF-α 
(P <0.01) were dramatically lower in the BMSCHOXB4 

coculture group, while the levels of IL-1β did not differ 
in BMSCHOXB4 and BMSCWT coculture groups (P >0.05). 
Similarly, the anti-inflammatory factors IL-4 and IL-10 
were significantly reduced after LPS stimulation 
(Figure 6D and E), and BMSCHOXB4 coculture signifi-
cantly increased IL-10 levels compared to BMSCWT 

coculture group (P <0.001), but IL-4 levels were not 
statistically different in BMSCHOXB4 and BMSCWT cocul-
ture groups (P >0.05).

Discussion
Throughout the last two decades, significant advances 
have been made in elucidating the molecular mechanisms 
involved in ALI/ARDS. Nonetheless, the pathways that 
regulate vascular stability have been relatively poorly 
characterized. In this study, we determined the protective 
effects of BMSCHOXB4 coculture on LPS-induced ECs via 
the Wnt/β-catenin pathway, including antiapoptosis, pro-
moting proliferation, boosting tube formation, as well as 
maintaining permeability and immunomodulatory effects.

Over the recent years, the therapeutic effects of BMSCs 
have been observed in a wide variety of diseases, such as 
sepsis, myocardial infarction, and trauma, all of which have 
led to advances in cellular therapies that have attracted an 
interest in the therapeutic use of BMSCs.26–28 Originally, 
the therapeutic effects of BMSCs were primarily focused on 
direct restorative effects on impaired cells and tissues.29,30 

With the progress of cellular technology, it was identified 
that the beneficial effects of BMSCs do not require direct 
cellular contact. BMSCs are predominantly engaged in 
the repair of cellular damage through the paracrine mechan-
ism, in which contents contain, but not limited to, 
exosomes.31–33 In our study, the non-direct contact benefi-
cial effects of BMSCs were also observed through the 
transwell coculture regime. Notably, we first overexpressed 
HOXB4 in BMSCs and observed a potentially greater pro-
tective effect compared to that in wild-type BMSCs, this 
finding may aid in strengthening and optimizing the 
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Figure 3 BMSCHOXB4 coculture attenuates the apoptosis and vascular permeability of ECs. (A) TUNEL was applied to detect the EC apoptosis, of which the blue color 
indicated the nuclear localization and the red color indicated the apoptotic cells (magnification 200×). (B) Quantitative analysis was conducted by calculating the percentage 
of apoptotic cells, and the results suggested that BMSCHOXB4 remarkably attenuated EC apoptosis compared to BMSCWT and BMSCVector coculture groups. (C) Annexin 
V-FITC/PI was used to detect EC apoptosis. (D) Quantitative analysis was performed by calculating the percentage of apoptotic cells in early (lower right) and late (upper 
right) stages, and the results also showed that BMSCHOXB4 coculture significantly inhibited LPS-induced EC apoptosis compared to BMSCWT and BMSCVector coculture 
groups. (E) Transwell permeability assay was used to investigate the permeability of ECs. (F) The results showed that the vascular permeability of BMSCHOXB4 coculture 
group was markedly lower than that of BMSCWT and BMSCVector coculture groups (control group as reference). All data were expressed as mean±SD (n=3). a)Compared to 
control group, P <0.01; b)compared to LPS group, P <0.01; c)compared to BMSCWT+LPS group, P <0.01. 
Abbreviations: WT, wild-type; HOXB4, homeobox B4; BMSC, bone marrow mesenchymal stem cell; SD, standard deviation; EC, endothelial cell; LPS, lipopolysaccharide; 
TUNEL, TdT mediated dUTP Nick-End Labeling; LPS, lipopolysaccharide; AV-FITC/PI, Annexin V-fluorescein isothiocyanate/propidium iodide.
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therapeutic effect of BMSCs. Otherwise, the most recent 
research on HOXB4 is related to embryonic stem cells and 
hematopoietic stem cells, whereas the studies on HOXB4 
and BMSCs were rarely available.34–36 Our study revealed 
that HOXB4 positively modulated the Wnt/β-catenin path-
way, which is a canonical signaling pathway with pivotal 
functions in cell growth and differentiation.37 In particular, 
β-catenin is a polyfunctional protein that interacts with VE- 
cadherin at the cell junctions and contributes to the con-
struction of intercellular barriers. The free-form β-catenin is 
accessible to the nucleus for the modulation of gene expres-
sion, and abnormal expression or activation of this free- 
form β-catenin causally triggers tumors.38–40 Among the 
previous studies, the biological functions of β-catenin in 
cellular and animal models of LPS-induced injury have 

yielded controversial results. Some studies found that β- 
catenin expression was decreased following LPS exposure 
and then increased by interventions that exerted a range of 
beneficial effects, indicating that β-catenin has a positive 
regulatory effect on cell viability;41–43 similarly, in animal 
experiments, substantial evidence suggested that activation 
of the Wnt pathway protects against LPS-induced ALI, as 
evidenced by Cai et al who found that activation of the 
Wnt/β-catenin pathway increased preservation of MSCs in 
the lungs, promoted differentiation of MSCs to AT II cells, 
and reduced lung inflammation, as well as inhibited lung 
fibrosis, compared to that in wild-type MSCs.44 Likewise, 
Zhang et al and Villar et al found a beneficial therapeutic 
effect of Wnt/β-catenin activation on ALI.45,46 

Alternatively, other studies held opposite opinions, as they 

Figure 4 BMSCHOXB4 coculture protects against LPS-induced EC injury by activating the Wnt/β-catenin pathway. (A) Exploring the molecular mechanism of BMSCHOXB4 

coculture protection against LPS-induced EC injury using Western blotting. (B–E) Compared to LPS and BMSCWT coculture group, the expression of β-catenin and VE- 
cadherin in ECs was significantly increased in the BMSCHOXB4 coculture group; the expression of anti-apoptotic protein BCL-2 was considerably increased, while the 
expression of the apoptotic protein BAX was remarkably decreased. Data were expressed as mean±SD (n=3). a)Compared to control group, P <0.01; b)compared to LPS 
group, P <0.01; c)compared to BMSCWT+LPS group, P <0.01. 
Abbreviations: WT, wild-type; HOXB4, homeobox B4; BMSC, bone marrow mesenchymal stem cell; SD, standard deviation; EC, endothelial cell; LPS, lipopolysaccharide.

https://doi.org/10.2147/JIR.S319416                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 3644

Lin et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


found that β-catenin expression is increased after LPS treat-
ment and the therapeutic effects are mediated via interven-
tions that reduce β-catenin expression, suggesting that β- 
catenin is a comparatively detrimental agent for cell 
survival.47–49 For example, Cheng et al found that activation 
of β-catenin promotes LPS-induced ALI by driving the 
Th17 response in mice, whereas LPS-induced ALI and 
lung inflammation were somewhat ameliorated by the use 
of the Wnt/β-catenin pathway inhibitor, dickkopf1.50 Sun 
et al also revealed that the inhibition of aberrantly activated 
Wnt/β-catenin signaling in rats would promote epithelial 
differentiation of MSCs, thereby repairing lung injury and 

reducing lung fibrosis.51 Villar et al similarly found that 
Wnt/β-catenin was abnormally activated in patients with 
early sepsis-related ARDS and was associated with lung 
inflammation and pro-fibrosis.52 In our study, we found that 
β-catenin expression decreased after LPS treatment and 
increased after coculturing with BMSCs, which in turn 
exhibited a therapeutic effect on the cells. In fact, the 
contradictory findings in the studies on β-catenin are mostly 
dependent on the cell type and the experimental approach. 
Furthermore, there is some interaction between the Wnt/β- 
catenin pathway and other signaling pathways, which 
allows for more accurate modulation of cellular responses 

Figure 5 The effect of XAV-939 on BMSCHOXB4 coculture-induced changes in the Wnt/β-catenin pathway. (A) Exploring the effect of XAV-939 on BMSCHOXB4 coculture- 
induced changes in the Wnt/β-catenin pathway using Western blotting. (B–E) The protective effect of BMSCHOXB4 coculture was reverted by XAV-939, a specific inhibitor of 
the Wnt/β-catenin pathway, accompanied by an upregulation of BAX, along with a downregulation of BCL-2 and VE-cadherin. Data were expressed as mean±SD (n=3). a) 

Compared to LPS group, P <0.01; b)compared to BMSCHOXB4+LPS group, P <0.01; c)compared to BMSCHOXB4+LPS+XAV-939 group, P <0.01. 
Abbreviations: HOXB4, homeobox B4; BMSC, bone marrow mesenchymal stem cell; SD, standard deviation; EC, endothelial cell; LPS, lipopolysaccharide.
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in response to injury stimuli.53,54 As for example, in the 
case of inflammatory responses, the balancing of Wnt/β- 
catenin activity and inflammatory pathways plays 
a fundamental role in the maintenance of intracellular 
homeostasis in the face of LPS provocation, where active 
Wnt/β-catenin signaling inhibits pro-inflammatory 
responses and protects cells from devastating effects of 
inflammation; insufficient inflammatory responses may 
lead to downregulation of Wnt/β-catenin signaling, which 
enhances the immune response.55

In terms of clinical trials, from the first MSC clinical 
trials on ARDS to the COVID-19 pandemic, it appears 
from the published data that MSCs-based cell therapy for 
ARDS has an exciting and alluring prospect.16,19 The 
properties of MSCs, whether direct repair or paracrine 
effects, are beneficial effects that permeate the pathogen-
esis of ALI/ARDS. The therapeutic effect of MSCs is 
highly variable among individuals, and the species source, 
the mode of input, and the dose of MSCs can lead to 
erratic efficacy.56 The dose of MSCs is one of the factors 

Figure 6 Detection of inflammatory factors in the ECs culture medium by ELISA. (A–C) After LPS administration, the pro-inflammatory factors (IL-1β, IL-6, and TNF-α) 
were elevated, and after coculturing with BMSCs, the levels of IL-1β, IL-6, and TNF-α were differentially decreased. When compared to BMSCWT, the levels of IL-6 and TNF- 
α were dramatically lower in the BMSCHOXB4 coculture group, while the levels of IL-1β did not differ in BMSCHOXB4 and BMSCWT coculture groups. (D and E) The anti- 
inflammatory factors IL-4 and IL-10 were significantly reduced after LPS stimulation, and BMSCHOXB4 coculture significantly increased IL-10 levels compared to BMSCWT 

coculture group, but IL-4 levels were not statistically different in BMSCHOXB4 and BMSCWT coculture groups. Data were expressed as mean±SD (n=3). ***P <0.001, 
**P <0.01, *P <0.05, ns P >0.05. 
Abbreviations: ELISA, enzyme linked immunosorbent assay; HOXB4, homeobox B4; BMSC, bone marrow mesenchymal stem cell; SD, standard deviation; EC, endothelial 
cell; LPS, lipopolysaccharide; IL, interleukin; TNF-α, tumor necrosis factor-α.
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affecting the efficacy, and the optimal dose depends on 
different diseases and severity as well as the route of input, 
which needs to be explored by clinical studies and dose 
escalation trials. In addition, the inherent properties of 
MSCs are equally fundamental to their therapeutic effects, 
and currently it is suggested that optimizing the therapeu-
tic effects of MSCs by gene modification techniques has 
good prospects for clinical applications.57 In our study, we 
revealed for the first time that HOXB4 gene-modified 
MSCs could enhance protection against LPS-induced EC 
injury, which may contribute to the optimization of MSC- 
based therapies. However, animal-level studies are war-
ranted to further confirm the therapeutic effects of HOXB4 
gene-modified MSCs.

The existence of limitations in our study should not be 
overlooked. First, we could not determine whether the 
therapeutic effect was exosomally exerted, but only further 
revealed the non-contact therapeutic effect of BMSCs by 
using the transwell system. Nevertheless, we believe that 
HOXB4 plays a predominant role in this study mainly by 
way of extracellular vesicles carrying HOXB4 since we 
used transwell chambers with a pore size of 0.4 μm, where 
exosomes are 30 to 100 nm in diameter and microvesicles 
are 100 nm to 1 μm.58 Additionally, we did not perform 
RNA sequencing of exosomes in the BMSCHOXB4 group 
as well as in the BMSCWT group, so we were unable to 
ascertain whether there are any remaining potential para-
crine substances that play a role in the BMSCHOXB4 group 
other than HOXB4. In a recent study, a significant reduc-
tion in the therapeutic effect of dental pulp stem cells on 
ECs was found after the use of the exosome secretion 
inhibitor, GW4869; however, the effect was still higher 
than that in the control group, even though the authors did 
not give a statistical analysis of the relevant data on this 
aspect. This could suggest that exosomes play a key role in 
the treatment, but not entirely.59 Second, we found that the 
therapeutic effect of the BMSCHOXB4 was better than that 
of BMSCWT only at the cellular stage; the effects in 
animals are yet to be elucidated. Third, as is well known, 
ALI/ARDS is not solely an incident of gram-negative 
bacterial infection, but a complex condition featured by 
gram-negative and gram-positive bacterial infections with 
systemic issues concerning the respiratory system, urinary 
system, gastrointestinal tract, and central nervous system.1 

Consequently, the cellular model used in our study cannot 
thoroughly address the potential mechanisms of endothe-
lial barrier dysfunction and cellular damage associated 
with ALI/ARDS. Nevertheless, at least, we were able to 

obtain a better insight into the effect exerted by gram- 
negative infections. Fourth, we could not ascertain the 
interaction between HOXB4 and Wnt/β-catenin pathway; 
whether it is a direct or indirect action is something that 
needs to be explored in future studies. However, previous 
research showed that HOXB4 directly acts on the Wnt/β- 
catenin pathway and exerts its anti-tumor effects by redu-
cing Wnt/β-catenin activity.60

Conclusion
In summary, our study findings showed that LPS-induced 
EC injury is attributed to a reduction in β-catenin, whereas 
co-culturing with BMSCHOXB4 apparently reverses the 
inactivation of the Wnt/β-catenin signaling pathway. This 
suggests that BMSCs can protect ECs from LPS-induced 
cell injury by altering the Wnt/β-catenin signaling path-
way. Ultimately, further in vivo studies are warranted to 
establish whether engraftment of BMSCHOXB4 can be an 
attractive strategy for the treatment of ALI/ARDS.
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