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The identification of musculoskeletal impairments from gait analysis in children with
cerebral palsy is a complex task, as is formulating (surgical) recommendations. In
this paper, we present how we built a decision support system based on gait
kinematics, anthropometrics, and physical examination data. The decision support
system was trained to learn the association between these data and the list of
impairments and recommendations formulated historically by experienced clinicians.
Our aim was 2-fold, train a computational model that would be representative of
data-based clinical reasoning in our center, and support new or junior clinicians
by providing pre-processed impairments and recommendations with the associated
supportive evidence. We present some of the challenges we faced, such as the issues of
dimensionality reduction for kinematic data, missing data imputations, class imbalance
and choosing an appropriate model evaluation metric. Most models, i.e., one model
for each impairments and recommendations, achieved a weighted Brier score lower
than 0.20, and sensitivity and specificity greater than 0.70 and 0.80, respectively. The
results of the models are accessible through a web-based application which displays
the probability predictions as well as the (up to) 5 best predictors.

Keywords: decision support system, gait analysis, cerebral palsy, orthopaedics, random forest, peadiatrics

INTRODUCTION

Cerebral palsy (CP) refers to a group of disorders due to a brain lesion that
occurred shortly before or after birth (Graham et al., 2016). CP is the most common
cause of physical disability in children, with a prevalence of around 2.5 per 1000
births in developed countries (McIntyre, 2018). Due to the brain lesion, secondary
musculoskeletal impairments often develop and worsen during childhood and adolescence.
Clinical and physical examinations as well as three-dimensional gait analysis (3DGA)
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are utilized to determine how the musculoskeletal impairments
affect the capacity of an individual to walk (Wren et al., 2011a,b).

Identifying neuro-musculoskeletal problems that impact the
walking function of children with CP is a difficult process that
involves multiple components. The diagnostic matrix (Davids
et al., 2004) includes clinical history and diagnosis, classification
and functional scales, physical examination, such as passive
range of joint motion and muscle strength, and 3DGA which
provides the kinematics and kinetics of the lower limb joints
during walking as curves. In the latter analysis, the effects
of the musculoskeletal impairments on gait may be detected
from abnormal features present in the kinematic and kinetic
curves. Features that might be interpreted include the magnitude
and waveform of the different curves, the difference between
the patient’s curve and those from healthy individuals or the
differences between the left and right limb curves. The final
surgical recommendations also incorporate diagnostic imaging
and examination under anesthesia (Davids et al., 2004).

A clinician needs to invest significant time and energy into
assimilating all the available clinical information to determine
the impairments that affect a child’s capacity to walk. For
example, 3DGA feature interpretation is not straightforward
because: (i) one feature in one curve may relate to several
impairments, (ii) there may be several features corresponding to
several impairments, (iii) one impairment may lead to abnormal
features in several other curves, and (iv) kinematics features
may be primarily related to an impairment, compensatory or
obligatory because of an impairment. Interpretation therefore
requires analyzing the features observed simultaneously in the
24 kinematic and kinetic graphs in conjunction with results
from the physical examinations and information from the
other assessments.

We developed a decision support system to facilitate the
process of identifying musculoskeletal impairments from the
typical gait analysis assessments. Both the complexity of the
identification process and the necessity to support this process
using computerized tools has been recognized in the past, as
early as the 1990s (Weintraub et al., 1990; Johnson et al.,
1996; Simon, 2004), however, with limited uptake in practice by
the clinical gait analysis community. Work to design decision
support systems for gait analysis is continuing (Wagner et al.,
2019). Machine learning concepts and algorithms are now
applied to a range of tasks pertaining to gait analysis thanks
to advancement in computation power and widespread use of
databases to store clinical and gait analysis data. These tasks
range from automated classification (Lai et al., 2009; Rozumalski
and Schwartz, 2009; Sangeux et al., 2015) to predicting outcomes
(Schwartz et al., 2013) to data-driven optimal clinical decision
making (Ries et al., 2014).

The core of the decision support system we developed is
a group of predictive models which use physical examination
and kinematic data to identify impairments and surgical
recommendations. The models were trained on a historical
dataset to predict, based on the current clinical findings
for the current child, what the impairment list and surgical
recommendations would have been identified by the clinicians
in the past. In other words, the predictive models are concerned

about replicating the behaviors of clinicians in the past and may
be viewed as an objective and probabilistic storage of clinical
reasoning. Our objective was to develop models able to support
a clinician by providing an answer to the question: “What
my-past-self, or experienced predecessors in this center, would
have decided based on similar data?” As such, these models may
be particularly useful to clinicians with less clinical experience.

In our gait laboratory, the clinical decision-making process
is separated into two components. Firstly, we identify the
impairments, objectively from the clinical data. Secondly,
management options which may include orthopaedic surgery are
selected. We therefore developed this decision support system
for both components. However, instead of being sequential, we
developed these two decision support components independently
of each other. The surgical recommendation system depends on
the clinical data only not the (machine) identified impairments.
The reason for making these independent is so that the quality
of the surgical recommendation system will not be limited by
the quality of the impairment identification system. Thus, even
if the system fails to return a correct impairment list, there is still
a possibility for the second component of the system to make the
correct surgical recommendation.

This article explains how we developed and evaluated the
impairment identification and surgical recommendation decision
support systems. The decision support system was designed in
tight partnership with clinicians in our center, including how the
outputs are presented.

MATERIALS AND METHODS

Dataset for Impairment Modeling
Data
We collated 3DGA records from the Hugh Williamson
Gait Analysis Laboratory (HWGAL) with the following
inclusion criteria:

(1) A diagnosis of CP as determined by appropriate clinicians,
and registration on the state-wide CP Register.

(2) Data collected from 2008 onward (Prior to 2008, a
set of identified impairments was not a mandatory
reporting requirement).

(3) 3DGA data must contain at least one barefoot, unassisted
walk. No other condition (e.g., orthosis) was included.
Typical data collection includes six walking trials with at
least three with kinetics data, however, sometimes only
the most representative walking trial was uploaded
to the report. Representative trials were chosen
visually before 2015 and computationally after 2015
(Sangeux and Polak, 2015).

(4) Physical Examination data must be available.
(5) The 3DGA report must list a clear set of

identified impairments.

This procedure led to 689 3DGA records being used,
stemming from 423 children (mean (SD) age: 10 years (2.4 years),
range: 2–21 years). However, we modeled each side (left and
right) separately, hence doubling the data to 1378 records. We
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FIGURE 1 | Example of a dataset from gait analysis: 24 kinematic (3 columns from the left, angles in ◦) and kinetic (3 columns from the right, moments are internal
and in N.m/kg bodyweight, powers are in W/kg bodyweight) graphs for a child with CP. Kinematics and kinetics data are plotted along time t, in % of the gait cycle.
Data from 5 walks were superimposed, the left limb is in red, the right limb in blue, data from typically developed children displayed as a gray band. Vertical lines
denote the timing of the ipsilateral foot off.

initially attempted modeling on the individual level, but we found
the result to be worse than modeling on each side. We suspect
the main reason is that we do not have enough data points to
support accurate estimation of many predictors, so when we
model both sides together, which effectively doubles the number
of predictors, the final predictive accuracy drops. This has been
observed previously (Trunk, 1979).

Predictors
The predictors that we used can be grouped into two sets:
kinematics and physical examination data.

The kinematics were collected using the following protocol.
The children were equipped with the Plug-in-Gait marker set
(Vicon, Oxford Metrics Group) by registered physiotherapists.
During the 3DGA session, children walked barefoot at their
self-selected speed and chose their cadence freely. The three-
dimensional marker trajectories were obtained using Vicon
motion capture systems including 10 cameras (Oxford Metrics
Group, United Kingdom) recording at 100 Hz. The foot
strike events, and ground reaction force were captured from
2 (before 2009) to 6 (after 2009) AMTI force plates (AMTI
Inc, United States) embedded in the floor. Force plate signals
were sampled at 2000 Hz. Lower limb kinematics and kinetics
were calculated with Plug-in-Gait in Nexus software (VICON,
Oxford Metrics Group) after filtering marker trajectories

(Woltring, 1986). We used kinematic data from the lower limbs
only namely: Pelvis (sagittal, coronal, transverse), Hip (sagittal,
coronal, transverse), Knee (sagittal, coronal, transverse), Ankle
(sagittal, transverse), and Foot Progression angle (transverse). All
kinematics and kinetics data were normalized to the gait cycle,
each curve was described from 101 points, one every % of the gait
cycle (Figure 1).

Physical examination data was collected using standard
protocols published elsewhere (Keenan et al., 2004; Thomason
et al., 2014). Not all physical examination measurements were
collected for all children due to difficulty with compliance or
physical ability. In our model, we excluded any predictors that
were not collected for at least 90% of the children.

Table 1 lists the physical examination predictors that we
used in the model.

Impairments
We modeled frequently occurring impairments, with
impairments that were listed with at least 100 occurrences.
Impairments were extracted, tabulated, and added to the
database from the text available in the clinical reports. In 2007,
clinicians at our center agreed to follow a template to report
clinical interpretation of gait analysis. The reporting policy was
in line with the concept of impairment focused interpretation
which was first described by Baker (2013). Specifically, the
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TABLE 1 | Physical examination measurements which were used as predictors in the impairment model.

Category Measurements

Anthropometric Age, Height, Weight

Strength Knee extensors, Quadriceps lag, Abdominals, Knee flexors, Hip extensors, Hip abductors, Dorsiflexors, Plantarflexors, Invertors,
Hip flexors

ROM/Spasticity (Tardieu fast) True popliteal angle, Popliteal angle, Dynamic popliteal angle (fast), Dorsiflexion (knee flexed), Dorsiflexion (knee extended), Dynamic
dorsiflexion (fast), Hip abduction (knee extended), Hip extension, Duncan-Ely (slow), Duncan-Ely (fast), Hip Internal rotation, Hip
external rotation, Selective Motor Control at the ankle

Bone Femoral anteversion (trochanteric prominence test), Tibial torsion (Bimalleolar axis), Thigh heel angle, Foot posture - Midfoot,
Forefoot, Hindfoot sagittal, Hindfoot coronal

Spasticity measurements were according to Tardieu as the angle of arrest under fast passive range of movement (ROM).

TABLE 2 | List of impairments with at least 100 occurrences and number of
occurrences.

Impairments Number of occurrences

Hamstring spasticity 497

Gastrocnemius spasticity 434

Increased femoral neck anteversion 383

Soleus spasticity 358

Gastrocnemius contracture 342

Increased external tibial torsion 338

Rectus femoris spasticity 243

Soleus contracture 237

Knee fixed flexion deformity 177

Gluteal weakness 129

Soleus weakness 128

Hip fixed flexion deformity 125

Hamstring contracture 117

Gastrocnemius weakness 107

impairments listed in the reports were those deemed to impact
gait function by the clinician who conducted the 3DGA and
completed the interpretation.

Table 2 lists such impairments.

Dataset for Surgical Recommendations
Data
The inclusion criteria for data used for building the dataset for
surgery modeling was the same as for impairment modeling, (1
to 4 listed above) but without the requirement for an impairment
list and the addition of:

(6) The child must have undergone surgery within 2 years of
the recommendations from the 3DGA report.

This led to 384 3DGA analysis records, stemming from 309
children being included. Again, we modeled each side separately
which then doubled the data record number to 618.

Predictors
We went through a similar procedure of removing measurements
that were not collected for at least 90% of the children.
Table 3 lists the physical examination predictors that we
used in this model.

TABLE 3 | Physical examination measurements used for predicting surgical
recommendation in the model.

Category Measurements

Anthropometric Age, Height, Weight

Strength Nil

ROM/Spasticity Hip abduction (knee extended), Dorsiflexion (knee
extended), Duncan-Ely (fast), True popliteal angle, Popliteal
angle, Hip internal rotation, Hip external rotation

Bone Tibial torsion (Bimalleolar axis)

TABLE 4 | Surgical procedures conducted at least 100 times.

Surgeries Number of times conducted

Femoral derotation osteotomy 159

Semitendinosus transfer 143

Gastrocnemius lengthening (Strayer) 142

Adductor longus lengthening 128

Surgical Procedures
Table 4 lists the surgical procedures included in the model, each
of which were conducted at least 100 times.

Modeling
Kinematic Feature Extraction
Forty-nine kinematic binary features, all of the form “has X
or has not X,” were extracted from the raw kinematic curves.
We derived the feature definitions by first using a published
DELPHI consensus study (Nieuwenhuys et al., 2016) as a starting
point, and then we conducted our own discussion session
with clinicians to fine tune the features into the final form as
shown in Table 5.

Computationally, these features are detected by applying some
function to both the curve under consideration and a set of
standard kinematic curves measured from typically developing
children (Pinzone et al., 2014; Sangeux et al., 2016), and then
making some comparison using means and standard deviation
(SD). For example, the feature “Increased Hip extension at Mid
Stance” has a definition “Mean angle at t∈[20,45] < 1 SD of
typical mean.” This translates to a four-step procedure:

(1) Calculate the mean angle for the curve under consideration
at t∈[20,45].
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TABLE 5 | Features extracted from raw kinematic curves.

Structure Plane Features Definition

Pelvis Sagittal Increased ROM (double bump) • ROM > 2 SD of typical ROM, and

• period is 2, and • difference between L&R is <0.25 ROM, and

• Correlation with our reference double bump curves >0.8.

Decreased Pelvic Tilt • Mean angle < 1 SD of typical mean.

Decreased Pelvic Tilt + Increased ROM • Decreased Pelvic Tilt, and

• ROM > 2 SD of typical ROM.

Increased Pelvic Tilt • Mean angle > 1 SD from typical mean.

Increased Pelvic Tilt + Increased ROM • Increased Pelvic Tilt, and

• ROM > 2 SD of typical ROM.

Unilateral Bump • ROM > 2 SD of typical ROM, and

• Not double bump.

Coronal Increased Pelvic ROM • ROM > 2 SD of typical ROM

Pelvic Elevation/Depression • Mean difference between L&R > 1 SD of typical difference.

Transverse Increased Pelvic Rotation ROM • ROM > 2 SD of typical ROM

Pelvic Pro / Retraction • Mean difference between L&R > 1 SD of typical difference.

Reversed ROM • Correlation with reference reversed ROM curves >0.8.

Hip Sagittal Decreased Hip Flexion at Initial Contact • Angle at t = 0 < 2 SD of typical angle.

Hip Extension Deficit • Mean angle in stance > 1 SD of typical angle, and

• ROM < 2 SD of typical ROM.

Hip Hyper-Flexion • Mean angle in stance within 1 SD of typical range, and

• Peak angle in swing > 2 SD of typical peak.

Increased Hip extension at Mid Stance • Mean angle at t∈[20,45] < 1 SD of typical mean.

Increased Hip Flexion • Mean angle in stance > 1 SD of typical mean, and

• All angles > 0.

Increased Hip Flexion + Decreased ROM • Increased Hip Flexion, and • ROM < 2 SD of typical ROM.

Coronal Excessive Hip Abduction • Mean angle in stance < 1 SD of typical mean, and

• Mean angle in swing < 1 SD of typical mean.

Excessive Hip Abduction in Swing • Mean angle in swing < 1 SD of typical mean.

Excessive Hip Adduction • Mean angle in stance > 1 SD of typical mean, and

• Mean angle in swing > 1 SD of typical mean.

Hip Adduction in Stance • Mean angle in stance > 1 SD of typical mean.

Transverse Hip External Rotation • Mean angle < 1 SD of typical mean.

Hip Internal Rotation • Mean angle > 1 SD of typical mean.

Increased Hip Internal Rotation at Late Stance • mean angle in t∈[40,60] > 1 SD of typical mean, and

• peak occurs before t = 70, and

• no pit in t∈[20,80]

Knee Sagittal Reduced Flexion at Loading • Mean angle in t∈[0,20] < 1 SD of typical mean.

Decreased Peak Knee Flexion • Peak in swing < 2 SD of typical peak.

Delayed + Decreased Peak Knee Flexion • Peak occurs after t = 75, and

• Decreased Peak Knee Flexion.

Delayed + Increased Peak Knee Flexion • Peak occurs after t = 75, and • Peak in swing > 2 SD of typical peak

Delayed Peak Knee Flexion • Peak occurs after t = 75.

Knee Flexion in Mid Stance • Mean angle in t∈[20,45] > 1 SD of typical mean.

Knee Hyperextension • Mean angle in t∈[20,45] < 1 SD of typical mean.

Increased Flexion at Initial Contact • Angle at t = 0 > 2 SD of typical angle.

Increased flexion at Initial Contact+ Early Knee Extension • Increased flexion at initial contact, and

• Pit occurs before t = 25, and

• Difference between angle @ IC and at pit > 10, and

• Min angle in t∈[10,25] < mean+1 SD of typical angle

Increased Peak Knee Flexion • Peak angle in swing > 2 SD of typical peak.

Ankle Sagittal Reduced Dorsiflexion • Mean angle in t∈[0,50] < 1 SD of typical mean.

Descending 2nd Rocker • Angle at t = 45 minus the angle at t = 20 < −5, and • Angle at t = 45 < 0

(Continued)
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TABLE 5 | Continued

Structure Plane Features Definition

Dorsiflexion in Swing • Mean angle in swing > 1 SD of typical mean.

Foot Drop • Mean angle in t∈[80,100] < 1 SD of typical mean.

Horizontal 2nd Rocker • ROM in t∈[20,45] < 5, and

• Absolute slope of the same period <0.1, and

• Angle at t = 45 < 0.

Increased Dorsiflexion • Mean angle at t∈[20,45] > 1 SD of typical mean.

Increased Max. Dorsiflexion • Max angle in stance > 2 SD of typical stance.

Increased Plantarflexion • Mean angle in t∈[20,45] < 1 SD of typical mean.

Insufficient Pre-positioning • Angle at t = 100 (final) > 2 SD of typical angle.

No 1st Rocker • Angle at t = 1 > angle at t = 0.

Short 2nd Rocker • Peak exists in t∈[0,20], and

• Slope in t∈[20,45] < 0, and

• Correlation with reference short 2nd rocker curves >0.8.

Transverse Ankle Internal Rotation • Mean angle in stance > 1 SD of typical angle.

Foot Progression Transverse External Foot Progression (Wave) in Swing only • ROM in swing > 2 SD of typical ROM, and

• Correlation with referenced External foot progression curve >0.8.

In-toe • Mean angle in stance > 1 SD of typical mean.

Out-toe • Mean angle in stance < 1 SD of typical mean.

ROM, Range of motion; SD, Standard Deviation; R, Right; L, Left.

(2) Calculate the same for each individual curve in the
reference (typically developed) dataset.

(3) Calculate the mean and SD of the mean angles
calculated in step 2.

(4) If the statistics calculated in step 1 is less than the mean
minus 1 SD (as calculated in step 3), then the feature is
deemed present in the curve under consideration.

The R code to detect the default kinematic features and
create custom-designed feature detectors is available here: https:
//github.com/Morgan435/gaitFeature/.

Most features in Table 5 are defined over the entire gait
cycle or a sub-phase of gait, e.g., stance or swing phase, or
at t = 0. Markedly different walking speeds between the mean
of the typically developing reference dataset and that of the
subject under consideration may lead to some time-shift when
the features are considered over a specific time period, e.g.,
t∈[20,45] as above. In this case, it is possible to add a pre-
processing step that apply dynamic time warping to the curves
before features extraction. We did not deem necessary to include
such a pre-processing step in this instance.

Missing Data Imputation
Missing data were imputed just prior to the model training
step. Continuous variables were imputed by their median, and
categorical ones were imputed by the most frequently appearing
category. We acknowledge that such a simple imputation
scheme imposed certain assumptions to the data missing
mechanism, such as missing at random, which is unlikely
true in clinical practice. But we did check that variables
with high missing data did not rank highly in the variable
importance matrix.

Models
There are many different machine learning algorithms that could
be used. We have trained many different models (e.g., support
vector machine, linear discriminant model, partial least square,
naïve bayes), however, here we report the models with the best
overall balance between ease-of-use, computation speed, and
predictive performance.

For each impairment / surgical procedure, a standard random
forest (Breiman, 2001), a stratified random forest (Kuhn, 2008),
and a regularized logistic regression (with elastic net penalty,
a.k.a. “glmnet” (Friedman et al., 2010) were fitted. The stratified
random forest is like the standard one, except that each tree in
the forest is trained on a balanced resample. That is, a resample
where the number of instances in each class is equal. The reason
for using the stratified version is to tackle class imbalance.
However, such stratified resamples are essentially down sampling
techniques, that is, throwing away instances of the majority class.
Therefore, the cost of a balanced training is higher variance.
Hence, the other models were still retained as feasible candidates.

The hyper-parameters were tuned according to the weighted
Brier score as defined in the next section.

Model Evaluation Metric
One way to assess classification models is to see how well they
predict the class of new observations. Metrics such as accuracy,
precision, sensitivity, specificity are all designed to assess this
aspect of the prediction (Altman and Bland, 1994). However, we
advocate moving away from predicting the class to predicting
the probability of class membership. This is because, first,
unlike predicted class, the predicted probabilities also convey the
uncertainty of the prediction. Most of us would probably view
51 and 99% chance of something happening very differently, but
in the class prediction sense they would both be considered the
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same positive prediction, so the uncertainty is lost. Secondly,
unlike many artificial intelligence application (e.g., hand-written
postcode recognition by the post office), the machine (model)
in our clinical setting does not actually have to make any
decision, as this responsibility lies with the clinician. Therefore,
predicting class membership is in a sense one step more than
what is required.

Hence, we decided to use the Brier score (Brier, 1950)
as our model evaluation metric. The Brier score is defined
as
∑

i
(
P̂i − Oi

)2
/N, where P̂i denotes the predicted probability

that child i had the impairment / surgery, Oi is 1 if the child
i had the impairment / surgery and 0 otherwise, and N is
the total number of children. Therefore, Brier score is the
mean-squared-error equivalent for binary classification. Another
advantage of using Brier score is that it is a proper scoring metric
(Harrell, 2015), meaning its expectation is minimized by the true,
unknown, probability.

The weighted Brier score is the weighted version where each
term in the summation is weighted by the reciprocal of their true
class frequency. The reason we used the weighted Brier score is to
tackle the issue of class imbalance. By setting the weight to be the
reciprocal of the class frequency, error in the minority class would
be penalized more heavily, thus forcing us to choose a model that
has a more balanced performance in both classes.

A null model which predicts a constant 50% regardless
of predictors will achieve a Brier score (weighted or not) of
0.25. Therefore, any admissible model should achieve a score
of less than 0.25.

Training and Validation
Training and validation were done using 25 out-of-bag bootstrap
resample. That is, the entire dataset was used to recreate 25
bootstrap resamples, and the models were trained on each
resample, and validated on the portion that did not appear in the
corresponding training sample.

Probability Calibration
Because the predicted probability is our primary output, we
carried out a further step of calibrating the prediction probability,
using an isotonic regression. The procedure is as followed:

(1) From the previous steps (i.e., model training) collect the
prediction made on the out-of-bag (i.e., validation) data,
treat this as our new training dataset.

(2) Train an isotonic regression using the predicted probability
as predictor, and the observed class as response variable.
Such training is also done using the out-of-bag bootstrap
resampling scheme.

(3) Using the predicted probability from the trained isotonic
regression model as the final predicted probability that we
report to the end user.

Probability calibration can sometimes improve the accuracy
of the predicted probability, but sometimes impairs it. To ensure
this step is beneficial, we once again computed the weighted Brier
score and other secondary evaluation metrics and compare them
with those from the uncalibrated models.

Explanation
We tried to make the model’s prediction as transparent as
possible, reasoning that the more transparent the model is, the
more informative, and thus helpful, it will be to the end-user
clinician. A clinician may not trust a black box that simply
declares a certain child has impairment X without providing
reason. But the same clinician will likely find a system which
suggests a child might have impairment X with Y% certainty
because of Z reason(s) more helpful and credible. The reasons
for a decision support tool are at least 2-fold. Firstly, the clinician
can compare and combine the model’s confidence with their own.
If a clinician already has strong belief that impairment X exists,
then a model prediction of 60% confidence is most likely enough
to reinforce that belief. On the contrary, if the clinician’s prior
belief was “highly unlikely,” then even a 60% model confidence
may not sway them in their belief. If, however, the model
output is 90% confidence, then it might prompt the clinician
to further investigate the issue. Secondly, the clinician has the
information to examine the reason underlying the prediction,
which empowers them to agree with or overrule the prediction.
This makes a transparent and trustworthy computer system that
has been the subject of many research papers (Ferri et al., 2002;
Allahyari and Lavesson, 2011; Freitas, 2013; Castelvecchi, 2016;
Lipton, 2016; Ribeiro et al., 2016).

We explain our prediction by firstly, outputting the predicted
probability instead of predicted class. Secondly, we display the
measurement values of the (up to) 5 most important predictors,
where the importance of the predictors is judged by the trained
models. In a typical random forest model, the importance metric
is related to how much node impurity is reduced by a split on that
variable, whereas in a regularized regression, it is related to the
absolute magnitude of the coefficients. We say “up to” 5 because
for some impairments (e.g., hip fixed flexion deformity), most
of the result is explained by less than five predictors (e.g., hip
extension ROM). In these cases, it is only meaningful to retain
the predictors that have enough weight. Thirdly, we constructed
a partial dependence plot, which shows how the models react
to changes in each individual predictor, while holding all other
predictors constant (or averaging over them). If our models
were simply linear regression, these plots would simply be a
straight line with the slope being to the estimated coefficient.
But for algorithms such as random forest, the dependency
can be non-linear.

RESULTS

Impairment Diagnosis Model
Table 6 reports the weighted Brier score of the various
impairment diagnosis models on the validation sample. Recall
that a Brier score can be loosely thought of as the mean squared
error of the predicted probability (thus lower equals better), and
a null model has a score of 0.25. For the calibrated random forest,
we have also reported the mis-classification rate, sensitivity, and
specificity. We have placed the models which fail to give a
weighted Brier score or less than 0.25 at the bottom of the Table.
Overall, the calibrated (standard) random forest is usually the
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TABLE 6 | Weighted (out-of-bag/validation) Brier score for impairment diagnosis model, and the associated important variables.

Impairments Glmnet Stratified R.F. Random Forest Important Predictors

Raw Calibrated Raw Calibrated Raw Calibrated By Random Forest

Hamstring Spasticity 0.186 0.187 0.174 0.169 0.172 0.166
Mis:0.21
Sens:0.71
Spec:0.83

1. Dynamic Popliteal Angle
2. Height
3. Weight
4. Popliteal Angle
5. True Popliteal Angle

Gastrocnemius Spasticity 0.216 0.219 0.198 0.200 0.196 0.195
Mis:0.23
Sens:0.68
Spec:0.80

1. Dynamic Dorsiflexion
2. Height
3. Weight
4. Increased Plantarflexion
5. Dorsiflexion (Knee Flexed)

Increased Femoral-Neck Anteversion 0.176 0.174 0.165 0.168 0.163 0.163
Mis:0.17
Sens:0.70
Spec:0.89

1. Hip Internal Rotation
2. Anteversion
3. Feature: Hip Internal Rotation
4. Weight
5. Hip External Rotation

Soleus Spasticity 0.245 0.246 0.223 0.226 0.220 0.218
Mis:0.22
Sens:0.60
Spec:0.82

1. Dynamic Dorsiflexion
2. Height
3. Weight
4. Dorsiflexion (Knee Extended)
5. Feature: Increased Plantarflexion

Gastrocnemius Contracture 0.140 0.152 0.132 0.147 0.132 0.144
Mis:0.13
Sens:0.74
Spec:0.91

1. Dorsiflexion (Knee Extended)
2. Dorsiflexion (Knee Flexed)
3. Dynamic Dorsiflexion

Increased External Tibial Torsion 0.194 0.197 0.183 0.188 0.183 0.181
Mis:0.17
Sens:0.71
Spec:0.86

1. Tibial Torsion
2. Thigh Heel Angle

Rectus Femoris Spasticity 0.192 0.194 0.176 0.179 0.166 0.158
Mis:0.09
Sens:0.83
Spec:0.92

1. Feature: Increased ROM (Pelvis)
2. Duncan-Ely (Fast)
3. Duncan-Ely (Slow)
4. Weight
5. Height

Soleus Contracture 0.165 0.179 0.158 0.174 0.161 0.174
Mis:0.11
Sens:0.71
Spec:0.92

1. Dorsiflexion (Knee Flexed)
2. Dorsiflexion (Knee Extended)
3. Dynamic Dorsiflexion

Hip Fixed Flexion Deformity 0.184 0.191 0.148 0.186 0.148 0.172
Mis:0.07
Sens:0.71
Spec:0.95

1. Hip Extension ROM

Models Which Are Not Better Than The Null Model (In Terms Of Weighted Brier Score)

Hamstring Contracture 0.296 0.310 0.262 0.291 0.249 0.245
Mis:0.08
Sens:0.62
Spec:0.94

1. Popliteal Angle
2. Dynamic Popliteal Angle
3. Weight
4. True Popliteal Angle
5. Height

Knee Fixed Flexion Deformity 0.277 0.292 0.276 0.298 0.276 0.281
Mis:0.12
Sens:0.64
Spec:0.90

1. Quadriceps Strength
2. True Popliteal Angle
3. Hip Abduction (Knee Extended)
4. Hip External Rotation
5. Popliteal Angle

(Continued)
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TABLE 6 | Continued

Impairments Glmnet Stratified R.F. Random Forest Important Predictors

Raw Calibrated Raw Calibrated Raw Calibrated By Random Forest

Gluteal Weakness 0.307 0.324 0.310 0.333 0.302 0.280
Mis:0.08
Sens:0.71
Spec:0.93

1. Dynamic Popliteal
2. Height
3. Weight
4. Popliteal Angle
5. True Popliteal Angle

Soleus Weakness 0.303 0.315 0.304 0.330 0.297 0.272
Mis:0.08
Sens:0.59
Spec:0.94

1. True Popliteal Angle
2. Hip Abduction (Knee Extended)
3. Hip Extension ROM
4. Weight
5. Anteversion

Gastrocnemius Weakness 0.331 0.342 0.335 0.361 0.325 0.298
Mis:0.07
Sens:0.59
Spec:0.94

1. True Popliteal Angle
2. Popliteal Angle
3. Dorsiflexion (Knee Extended)
4. Hip Extension ROM
5. Hip Abduction (Knee Extended)

For calibrated random forest, the mis-classification rate, sensitivity, and specificity are also reported. RF, random forest; ROM, Range of motion; Mis, mis-classification
rate; Sen, sensitivity; and Spec, specificity.

best model in terms of having the lowest weighted Brier score.
However, for all the muscle weakness impairments, all models
failed to be better than the null model in the weighted Brier score.

Figure 2 shows the partial dependence plot for the
impairment model (Friedman, 2001). The vertical axis is
predicted probability that the impairment is present on the
log scale. Some plots only show a straight line, as the
predictors are binary (most likely one of the kinematic
feature variables).

Surgical Recommendation Model
Table 7 presents the weighted Brier score for the surgical
recommendation prediction model. Similarly, for the calibrated
random forest, the mis-classification rate, sensitivity, and
specificity are also provided. Overall, the two flavors of random
forest perform very similarly, with the standard version being
marginally better.

Figure 3 shows the partial dependence plot for
the surgery model.

System Output
In order to give readers a sense of the decision support system,
Figure 4 shows the output from the impairment model. The
green reflects the predicted probability that the impairment
is present, and the orange is the complement to that. As
can be seen, the predicted probability rather than predicted
class is the primary output, and the explanation behind the
prediction is reported.

DISCUSSION

We have developed two sets of models to facilitate
identification of musculoskeletal impairments and surgical

recommendations. These models are meant to reproduce
the essence of past clinical reasoning to new data. The
models were trained to associate kinematic features and
physical examination data with the list of impairments from
the clinical interpretation report and the list of surgical
treatments. Our approach is original because it proposes
an intermediate step, between the use of computerized
tools using explicit knowledge, e.g., (Wagner et al., 2019),
and data-driven approach to determine which treatment
should be recommended (or should a particular treatment
be recommended) by maximizing the likelihood of good
outcome measures, e.g., (Ries et al., 2014). The primary
output was the calibrated confidence that a certain
impairment is present/absent, together with the values of
the five most important predictors. Partial dependence plots
were also supplied to assist understanding of the general
reasoning of the models.

Physical examination measurements were the most important
predictors for impairments, listed as impacting gait in the
interpretation report, and surgical recommendations. The
partial dependence plots in Figures 2, 3 provide some
indications about the soft threshold values linking certain
physical examination measurements with impairments.
For many impairments and surgeries, these were the only
predictors deemed important by the models. Of note,
only a reduced set of physical examination measurements
could be used for surgical recommendation models
because of missing data. Only three impairments: increased
femoral neck anteversion (feature: increased hip internal
rotation), soleus spasticity (feature: increased plantarflexion)
and rectus femoris spasticity (feature: double bump)
included a kinematic feature as an important predictor.
For models to predict surgical recommendations, only
the femoral derotation osteotomy surgery included a
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FIGURE 2 | Partial dependence plot for the impairment prediction model (black line, 30). The vertical axis is the predicted probability (between 0 and 1) that the
impairment is present, on a log scale. The horizontal axis is the measurement for the predictor. The (blue) smooth line is added for visual aid. For some impairments,
there are less than five important predictors, resulting in blank panels. Finally, the number in parenthesis indicates the importance of that predictor, relative to the
most important predictor (so it always starts from 100 and decreases).
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FIGURE 3 | Partial dependence plot for surgery prediction model (black line, 30). The vertical axis shows the predicted probability (between 0 and 1) that the surgery
is needed, on a log scale. The horizontal axis is the measurement for the predictor. The (blue) smooth line is added for visual aid. For some surgeries, there are less
than five important predictors, resulting in blank panels. Finally, the number in parenthesis indicates the importance of that predictor, relative to the most important
predictor (so it always starts from 100 and decreases).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 November 2020 | Volume 8 | Article 529415

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-529415 November 23, 2020 Time: 15:12 # 12

Chia et al. A Decision-Support-System for Gait Analysis

TABLE 7 | Weighted Brier score surgery recommendation models.

Surgery Glmnet Stratified R.F. Random Forest Important predictors

raw calibrated Raw calibrated raw calibrated by random forest

Femur derotation osteotomy 0.173 0.172 0.163 0.163 0.163 0.164
mis:0.22
sens:0.78
spec:0.78

1. Internal Rotation
2. Feature: Hip internal Rotation
3. External Rotation
4. Weight
5. Abduction (knee extended)

Gastrocnemius lengthening (Strayer) 0.226 0.227 0.202 0.207 0.201 0.204
mis:0.24
sens:0.67
spec:0.80

1. Dorsiflexion (Knee extended)
2. Height
3. Internal Rotation
4. Abduction (knee extended)
5. Dorsiflexion (Knee flexed)

Semitendinosus transfer 0.196 0.197 0.177 0.176 0.175 0.172
mis:0.20
sens:0.73
spec:0.83

1. Popliteal
2. Abduction (knee extended)
3. True Popliteal
4. Height
5. Weight

Adductor longus lengthening 0.240 0.241 0.223 0.226 0.226 0.223
mis:0.24
sens:0.64
spec:0.79

1. Abduction (knee extended)
2. Internal Rotation
3. External Rotation
4. Weight
5. Height

Tibial derotation osteotomy 0.233 0.235 0.209 0.224 0.208 0.215
mis:0.14
sens:0.67
spec:0.89

1. Tibial Torsion
2. Dorsiflexion (Knee flexed)

Rectus transfer 0.255 0.257 0.226 0.250 0.220 0.219
mis:0.13
sens:0.75
spec:0.88

1. Popliteal
2. Tibial Torsion
3. Weight
4. Abduction (knee extended)
5. Height

For the calibrated random forest, mis-classification rate, sensitivity, and specificity are also provided. The right most column lists the top five important predictors as
judged by the random forest. RF, random forest; ROM, Range of motion; Mis, mis-classification rate; Sen, sensitivity; and Spec, specificity.

kinematic feature (increased hip internal rotation) as an
important predictor.

These results were unexpected and somewhat contrary to
our opinion about the influence of lower limb kinematics
on clinical decision making. One explanation may be that
kinematic data, as curves, are difficult to include in a predictive
statistical model because of their high dimensionality (101
points times 15 curves). We proposed a dimension reduction
process that summarizes the kinematics curves into a set
of kinematic features. We may have lost some important
information during this process. However, we initially also
treated the curves directly and obtained worse weighted Brier
scores for the various models (Chia et al., 2017). Another
explanation may be that kinematic data are essential to confirm
the impact of a physical examination measurement on the
gait pattern, but that decisions ultimately hinge upon physical
examination measurements.

There are arguably more advanced methods to achieve
transparent predictions than those we implemented. For
example, one approach may be to use a comprehensible
model, such as a (single) decision tree to approximate the

behavior of the models, either globally (Domingos, 1998;
Martens et al., 2007) or locally (Ribeiro et al., 2016). The
advantage of this approach is that the full decision pathway
is explained, instead of our current approach which simply
returns the values of some predictors which are deemed
important. However, the problem of all approximation is that
it loses predictive power. In addition, the fact that we calibrate
our model further complicates the process of explaining the
prediction. Another area of challenge is the class imbalance
problem. The class imbalance is both in terms of occurrence,
as well as cost of error. For imbalance in occurrence, we
tried to tackle them with stratified random forest, but the
overall performance was not better than the standard version.
For imbalance in cost, we could have trained cost-sensitive
models, which penalize error in both classes differently, and
according to a pre-specified cost. Eliciting such cost structure
is non-trivial (e.g., what is the cost of missing an impairment
or recommending an unnecessary surgery?) but would be a
worthwhile pursuit.

Our predictive models seek to imitate the past behavior of
the clinicians at our center. The limitation of this approach
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FIGURE 4 | Sample output from the decision support system for a specific patient.

is that past errors will also be learnt by the model, which
is why it is important to constantly refresh and update
the model with new data, which will dilute the influence
of past decisions.

Another limitation is that these predictive models are, by
intent and because the models were trained on data and clinical
reasoning from a single center, not generalizable to other centers.
However, there is also a benefit to this approach. In our gait
laboratory, data are discussed at a team reporting meeting
where recommendations are made. The models capture the
collective, therefore representative, reasoning of the clinical
team. If each center trains their own set of models, the
comparison of these models would highlight the similarities
and differences between the clinical practices objectively. For
example, it would be possible to perform virtual visit(s), whereby
the same clinical and gait analysis data would be fed to
the models from different centers, likely leading to different
conclusions (Noonan et al., 2003). This would initiate fruitful
discussion about the rationale behind the differences in reasoning
and would allow the comparison of outcomes drawn from
independent samples. This could be a key element in making

progress toward the search for evidence-based optimal treatment
recommendations.

CONCLUSION

We presented a decision-support system able to propose a
list of impairments and surgical recommendations based on
past decisions and gait analysis datasets. Machine learning
models were trained and validated to predict the probability
that clinicians, experienced in the interpretation of gait analysis
data in children with CP, recommend an impairment or a
surgical procedure. The random forest algorithm provided the
best evaluation metrics (weighted Brier score) in most cases.
Overall, the models achieved a weighted Brier score lower than
0.20, and sensitivity and specificity greater than 0.70 and 0.80,
respectively. Once trained, these models collectively store the
relationship between clinical decisions and gait data at our centre.
The implementation of similar models in other center would
facilitate objective comparison of clinical decision making, or
“philosophy,” between centers.
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