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Transcranial neuromodulation methods have the potential to diagnose and treat brain disorders 
at their neural source in a personalized manner. However, it has been difficult to investigate 
the direct effects of transcranial neuromodulation on neurons in human brain tissue. Here, 
we show that human brain organoids provide a detailed and artifact-free window into 
neuromodulation-evoked electrophysiological effects. We derived human cortical organoids from 
induced pluripotent stem cells and implanted 32-channel electrode arrays. Each organoid was 
positioned in the center of the human skull and subjected to low-intensity transcranial focused 
ultrasound. We found that ultrasonic stimuli modulated network activity in the gamma and delta 
ranges of the frequency spectrum. The effects on the neural networks were a function of the 
ultrasound stimulation frequency. High gamma activity remained elevated for at least 20 minutes 
following stimulation offset. This approach is expected to provide controlled studies of the effects 
of ultrasound and other transcranial neuromodulation modalities on human brain tissue.

1. Introduction

One in three patients with a neurological or mental disorder does not respond to drugs or other forms of treatment [6,1,25,39,64,

14,15,17,26,38]. Neuromodulation provides these patients with new treatment options, promising to treat brain disorders at their 
neural sources [33,47,62,4,32,11,53].

Nonetheless, current neuromodulation approaches have significant limitations, which make them applicable only to certain in-

dications and patients. In particular, invasive approaches such as deep brain stimulation have been used for treatment-resistant 
movement disorders, such as Parkinson’s disease [33], for which there are established implantation targets. On the other hand, the 
more flexible, transcranial neuromodulation approaches, including electrical [43,36,22], magnetic [21,58], electromagnetic [40,8], 
or ultrasonic (see [42,31,3]) neuromodulation, currently suffer from limited effectiveness. This limitation is, at least partially, due to 
our incomplete understanding of the neuromodulatory effects on the neural tissue inside the skull.

To address this issue, we developed a model that can elucidate the effects of transcranial neuromodulation at a detailed, circuit 
level. Specifically, we investigated the effects of transcranial focused ultrasound on neural activity of human stem-cell derived 
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telenecephalic organoids [29,61]. The organoids model key three-dimensional electrical and mechanical ties between cells [24,12,9]. 
Compared with recordings from live animals or humans, the organoids are free from peripheral artifacts that commonly arise during 
neuromodulation, such as auditory or tactile artifacts [23,52,5,37]. The inclusion of the human skull takes into account critical 
geometrical constraints and field aberration properties of transcranial neuromodulation [50].

2. Materials and methods

2.1. Human brain organoids

We have developed a system that enables electrophysiological recordings from human brain organoids. The organoids were 
induced using single induced pluripotent stem cell (iPSC)-derived neural rosettes [61]. We specifically used a dual SMAD inhibition 
protocol (see [7]) to efficiently differentiate iPSCs into dorsal anterior forebrain neural progenitors that express Pax6 and FoxG1 and 
that are organized into stereotypical structures called neural rosettes [61]. Under a stereoscope, the single rosettes were isolated for 
growth in suspension culture for another four to five months. The single-rosette cortical organoids (SRCOs) grow large in suspension 
culture, reaching 4–5 mm in diameter by four months (Fig. 1A), and maintain a single ventricle-like internal lumen throughout 
the differentiation [61]. Immunohistochemistry revealed (see [61]) that the SRCOs consisted of Pax6-expressing cortical neural 
progenitors, GFAP-expressing astrocytes, and different subtypes of cortical excitatory neurons expressing Satb2 (upper layer neurons) 
and Ctip2 and Tbr1 (lower layer neurons). The SRCOs also contain inhibitory neurons expressing GABA that are properly organized 
around the internal lumen [61]. The single-rosette method reduces the experimental variability associated with the presence of 
multiple internal lumens and corresponding germinal zones per organoid, which has been reported in previous studies, and provided 
us with a predictably organized human cortical tissue suitable for electrophysiological recordings [61].

2.2. Apparatus

To allow efficient implantation of organoids with multi-electrode array probes for monitoring electrical activity, we manufactured 
a recording chamber, in which a C-shaped rubber tubing was glued to the surface of a 6 cm Petri dish (Fig. 1A-B). This feature has 
helped to keep organoids in place during the implantation and recording. We used one organoid per dish. For implantation, an 
organoid was immersed in Neurobasal medium (ThermoFisher). An ultrasound transducer (H-115, Sonic Concepts) was placed at the 
bottom of a tank filled with deionized and degassed water (Fig. 1C). A degassed human ex-vivo skull was positioned, upside down, 
over the transducer and secured to the tank (Fig. 1D). The Petri dish containing each organoid was placed on a plastic stand with 4 
x 4 cm opening for the ultrasound beam. The stand was 6 cm above the transducer face and thus coincided with the focal distance of 
the ultrasonic transducer. Before each experiment, we used a hydrophone (HGL-200, Onda) to validate the focus of the ultrasound 
along the lateral x and y coordinates. To do so, we gradually moved the hydrophone with a 3D manipulator until detecting the 
peak of the field. We then placed the dish such that the hydrophone tip pointed at the organoid. In addition to the positioning, the 
hydrophone was used to maintain the same stimulation amplitude (0.65 MPa) across experiments.

2.3. Experimental timeline

We first recorded 5-minute baseline during which no ultrasound was applied. Following this period, ultrasound was delivered 
into the organoid for 15 minutes. This period was followed by a 20-minute off period during which there was no ultrasound.

2.4. Ultrasonic stimuli

Besides the ultrasound frequency (270 kHz or 885 kHz), all other parameters were fixed. The pressure amplitude was 0.65 MPa 
at target in all cases. The amplitude was chosen to lie safely below the FDA 510(k) Track 3 guidelines for safe ultrasound exposure 
[16]. The ultrasound was pulsed at 60 Hz pulse repetition frequency. This frequency was chosen to coincide with the frequency of 
line noise, which was filtered out using a notch filter. The ultrasound was pulsed at 5% duty to stay below the FDA 510(k) 𝐼SPTA

average intensity level (see [16]) and therefore to prevent heating. For this value of duty cycle, 𝐼SPTA = 682 mW/cm2, given the 
acoustic impedance of 1.55 MRayl. The stimuli were generated by a function generator (KeySight) and amplified using a broadband 
(250 kHz to 30 MHz) amplifier (A150, ENI). Sham stimulation was delivered 20 mm off of each organoid (dashed outline in Fig. 1B). 
The sham was performed at the higher frequency as that frequency showed the more prominent effects of stimulation.

2.5. Electrophysiological recordings

We implanted 32-electrode recording arrays (A1x32-6mm-100-177, NeuroNexus) into each organoid 6-months post induction 
(5-month post-fusion). The arrays were inserted manually into the tissue until only the last reference electrode was outside. The con-

nector (Omnetics) of each array was attached to the scalable dish (Fig. 1A) and connected to a head stage and a stimulation/recording 
controller (RHS2000, Intan Technologies). Signals were low-pass filtered at 7 kHz and sampled at 30 kHz to avoid aliasing. For main-

tenance of a stable 37 ◦C recording environment, a precision thermistor (3950 NTC, Dikavs) was permanently attached to each bath. 
The thermistor reading was calibrated to correspond to 37 ◦C inside the bath. The temperature was maintained at 37 ◦C using an 
2

Arduino control system attached to Titanium Aquarium Heater (H2Pro). Data were collected on an air table inside a Faraday cage to 
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Fig. 1. Recordings from human brain organoids during transcranial neuromodulation. A) Human cortical organoids were derived from induced pluripotent 
stem cells (H9, 6 months old), and implanted with a linear 32-channel electrode array. B) The organoids were maintained in a Petri dish and held in place using a 
C-shaped plastic boundary. The connectors of the recording arrays were secured to the dish. A thermistor measured the temperature of the nourishing media. The 
white dashed oval outlines the off-target stimulation location. C) The dish with each organoid was placed in the geometric center of a human skull. An immersible 
ultrasound transducer was positioned beneath the skull. D) The setup was housed in a water container to ensure reliable propagation of the ultrasound into the target. 
The dish with the organoid was placed into the location of the maximal ultrasound intensity, 6 cm above the transducer face. The target intensity was validated using 
a hydrophone. The stimulation and recordings were performed on an air table inside a Faraday cage. A grounding cable (thick red) was immersed in the water to 
provide the reference and the ground for the recordings.

curb the impact of external vibrations or electromagnetic noise. The recorded data were visually inspected for artifacts. Of the 192 
channels in 6 organoids, 1 channel was excluded in the 270 kHz dataset and 5 channels in the 885 kHz dataset. The 60 Hz power 
line was filtered out using a notch filter. Data analyses were performed using custom Matlab scripts. Spectral analysis was performed 
using the Fast Fourier Transform (periodogram command in Matlab). The analyzed frequency ranges comprised delta (1–4 Hz), theta 
(4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), gamma (30–50 Hz), and high gamma (70–110 Hz).

2.6. Optical measurements

Displacement measurements were obtained using an MV-H-S laser vibrometer (OmniSensing Photonics, Columbia, MD). The 
stimulation was performed in the same manner as during the electrophysiological recordings with the exception that organoids were 
replaced with the transparent Matrigel (Corning Life Sciences, USA). The optical transparency of the Matrigel enabled us to measure 
the displacements optically, at high spatial and temporal resolution. The vibrometer recorded displacements at a sampling rate of 
1.25 MHz, high enough for the 270 kHz ultrasound. The vibrometer was placed 80 mm from the electrode array embedded in the 
Matrigel. An IR detector card was used to validate the laser’s targeting. Ultrasound was applied for 3 seconds at 0.6 MPa with a 
frequency of 270 kHz, pulsed at 60 Hz and 5% duty cycle. Responses were recorded using the OmniSensing Photonics software.

3. Results

In a recent study, we generated telencephalic organoids from isolated neural rosettes and demonstrated that 6-month-old 
organoids develop spontaneous network activity and oscillations that are abolished by the application of a voltage-gated sodium 
channel blocker TTX [61]. Here, we tested whether these organoids could be used for studying the effects of ultrasound on human 
neural networks. We recorded electrophysiological responses from the organoids using implanted multi-electrode arrays, while the 
organoids were subjected to ultrasound focused through the intact human skull (Fig. 1).

The transducer operated at two distinct frequencies (270 kHz fundamental and a 885 kHz harmonic), which enabled us to test 
the responses of the organoids to low and high frequencies of neuromodulatory ultrasound [49]. We evaluated the responses of the 
3

organoids to 15-minute stimulation protocol. We hypothesized that sustained ultrasonic modulation elicits durable changes in neural 
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Fig. 2. Electrophysiological effects. Mean±s.e.m. changes of z-scored neural signals within specific frequency bands (see inset and Materials and Methods) during 
the 15 minute stimulation relative to a 5 min pre-stimulation baseline. These epochs are highlighted in single-organoid (organoid O2) time course examples on the 
bottom. The effects are provided separately for the low-frequency (left plot) and the high-frequency (middle plot) ultrasound stimuli. Sham stimulation (right plot) 
delivered the high-frequency ultrasound 20 mm off-target. Stars denote effects significant at 𝑝 < 0.05

6
(two-sided t-test, Bonferroni correction for multiple comparisons).

activity, and these changes are specific to particular neural rhythms [35,60,19]. The ultrasound pressure was set to 0.65 MPa at the 
organoid location for both frequencies, and was pulsed at 5% duty and 60 Hz pulse-repetition frequency to prevent heating during 
the stimulation (see Materials and Methods for additional reasons).

We quantified the responses of the brain organoids in standard frequency bands ranging from delta to high gamma [61]. Fig. 2

shows the changes of z-scored activity within each band during the 15-minute stimulation relative to a 5 minute baseline prior to 
the stimulation. The ultrasound stimulation modulated the activity in specific frequency bands, and the effects depended on the 
frequency of the applied ultrasound (Fig. 2). A two-way ANOVA with factors of ultrasound frequency and signal band detected 
a significant effect of ultrasound frequency (𝐹 (1, 2256) = 6.5, 𝑝 = 0.011), signal band (𝐹 (5, 2256) = 9.3, 𝑝 = 9.4 × 10−9) as well as a 
significant interaction between these two factors (𝐹 (5, 2256) = 8.9, 𝑝 = 2 × 10−8). Post-hoc t-tests specifically revealed a significant 
change (𝑝 < 0.05

6 ; Bonferroni correction) in the high-gamma (𝑡(186) = 4.48, 𝑝 = 1.3 ×10−5), gamma (𝑡(186) = 3.91, 𝑝 = 0.00013), and delta 
(𝑡(186) = −3.09, 𝑝 = 0.0023) bands for the high-frequency ultrasound stimulus, and beta (𝑡(190) = 2.73, 𝑝 = 0.007), alpha (𝑡(190) = 3.12, 
𝑝 = 0.0021), and delta (𝑡(190) = 6.60, 𝑝 = 4 × 10−10) bands for the low-frequency ultrasound stimulus. There were no significant effects 
during a sham condition, in which the high-frequency stimulus was aimed 20 mm off of each organoid (Fig. 2, right). These results 
suggest that ultrasound modulates specific neural rhythms in stimulation frequency-dependent manner, and that the effects are 
specific to the ultrasound focus.

We next investigated the variability of ultrasound-induced responses from organoid-to-organoid by including the number of 
each organoid as an additional factor in the ANOVA. The 3-way ANOVA indeed revealed a significant effect (𝐹 (5, 2196) = 46.0, 
𝑝 = 2.9 × 10−45). We inspected this effect in detail, by plotting the strongest effect (high gamma modulation for the 885 kHz stimulus;

Fig. 2) separately for the individual organoids. Fig. 3 revealed that 50% (3 of 6) organoids showed significant modulation (𝑝 < 0.05
6 ; 

two-sided t-test, Bonferroni correction for multiple comparisons). This outcome serves as an additional control for potential artifacts 
that could be associated with the stimulation, but also indicates that there is organoid-to-organoid variability in the ultrasound-

induced responses.

We investigated the temporal dynamics of the effects for the organoids responsive to the ultrasonic stimulation (Fig. 3). Fig. 4

confirms the effects of Fig. 2 that the high-frequency stimulus substantially modulated activity in the gamma, high gamma, and delta 
frequency bands. Notably, the changes in the high gamma and delta activity outlive the stimulus duration. Indeed, in the window 
from 15-30 min, both the high gamma (𝑡(95) = 3.85, 𝑝 = 0.00021, two-sided t-test) and the delta (𝑡(95) = −6.80, 𝑝 = 9.4 × 10−10) effects 
4

remain significant. Therefore, ultrasonic stimulation can exert sustained, durable effects on high gamma and delta activity.
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Fig. 3. Effects for individual organoids. Same format as in Fig. 2 specifically for high gamma activity at 885 kHz, separately for each organoid. Stars denote effects 
significant at 𝑝 < 0.05

6
(two-sided t-test, Bonferroni correction for multiple comparisons). The organoid-to-organoid variability was most apparent in the high gamma 

range.

Fig. 4. Effect dynamics. Mean±s.e.m. activity within the individual bands as a function of time for the three responsive organoids (Fig. 3). The activity is aligned to 
the ultrasound onset (time 0). The activity in each band was computed in 0.5 s time windows, 0.25 s overlap. The traces were smoothed with a 10 s zero-lag averaging 
filter.

Fig. 5. Measurements of electrode displacements in response to ultrasonic stimulation. Typical time course of the displacement of the electrode array measured 
using an ultrafast laser vibrometer in response to the 270 kHz stimulation protocol. The stimulation was performed in the same manner as during the electrophysio-

logical recordings with the exception that the organoids were replaced with the transparent Matrigel. The optical transparency of the Matrigel enabled us to measure 
the displacements optically, with high spatial and temporal precision.

Finally, we used an ultrafast laser vibrometer (see Materials and Methods) to assess the degree of displacement of the recording 
electrode in response to the sonication (Fig. 5). The optical measurements had a sampling rate of 1.25 MHz, which was high enough 
5

to assess the displacements during the 270 kHz ultrasound. Across 180 pulses of ultrasound, delivered in the same manner as 



Heliyon 9 (2023) e18482J. Kubanek, M. Wilson, R.D. Rabbitt et al.

during the stimulation, we detected a mean±s.d. displacement of 113±46 nm and 114±49 nm for the positive and negative peaks, 
respectively.

4. Discussion

We developed a method that enables to study the responses of human brain tissue to transcranial neuromodulation. The approach 
records electrophysiological activity from ensembles of neurons within three-dimensional human cortical organoids. We combined 
volumetric recordings from the brain organoids (see [34,57]) with geometric constraints of the human skull, which presents a critical 
barrier for studies of transcranial neuromodulation [50].

The organoid-based approach has three notable strengths. First, neuromodulation is known to act on neuronal tissues volumet-

rically. Compared with single cells or two-dimensional cultures, the organoids model these three-dimensional interactions. Second, 
approaches such as ultrasonic neuromodulation induce mechanical effects on the target neural tissue [42,31,3]. The organoids in-

corporate three-dimensional mechanical and elastic ties of cells with their neighbors. And third, neuromodulation in intact organism 
often invokes peripheral artifacts, including auditory, tactile, and other artifacts [23,52,5,37]. Because the organoids do not possess 
sensory organs, there are no auditory, tactile, or other peripheral confounds.

This article provides initial examples on how organoid-based methods can begin to answer outstanding questions regarding 
electrophysiological effects of neuromodulation. Specifically, in the field of ultrasonic neuromodulation, it has been unclear whether 
lower (see [30,28,63,20,49]) or higher (see [41,31]) ultrasound frequencies stimulate neurons more effectively. We found that 
activity in the delta band can show diverging effects depending on the frequency—an increase at 270 kHz yet a decrease at 885 
kHz (Fig. 2). Moreover, we found that activity in the gamma and high gamma bands was effectively only induced at 885 kHz 
(Fig. 2). Therefore, ultrasound stimulation frequency governs which rhythms are modulated and how. Because high gamma activity 
correlates strongly with multi-unit activity [44], our data suggest that high ultrasound frequencies are more potent in eliciting 
multi-unit discharge.

We found that the high gamma and delta effects outlived the stimulus offset (Fig. 4), suggesting sustained neuromodulation. The 
effects were observed for up to 20 min following the stimulus offset—the full duration of our recordings. Indeed, sustained effects 
of ultrasonic stimulation have been observed by multiple groups and multiple animal models [59,10,45,18,60,27], including in 
humans [2,51]. The organoid-based approach offers a new way to study these durable effects at a detailed electrophysiological level. 
Moreover, pharmacological and genetic manipulations of the organoids will be able provide future insights into the neuroplastic 
effects at the level of individual molecules and ion channels.

In this study, the ultrasound was applied through the intact skull from a distance of 6 cm away from each organoid. This serves 
to eliminate potential electrical confounds in the recordings. There are four additional lines of evidence that the reported effects 
are physiological and not artifactual. First, high gamma and delta effects outlasted the stimulation (Fig. 4). Because no ultrasound 
was applied to the organoids during that time, these effects are artifact-free. Second, no effects were observed during off-target 
stimulation (Fig. 2), which applied to the ultrasonic transducer the same electric field as during the verum, on-target stimulation. 
Third, there was a dissociation of the effects through the stimulation frequency (Fig. 2). Fourth, effects were observed only in a 
subset organoids, ceteris paribus (Fig. 3).

The finding that high gamma and delta effects outlasted the stimulation (Fig. 4) also controls for the possibility of the electrodes 
being vibrated by the ultrasound. No ultrasound was applied to the organoids during that time, and thus any effects are vibration-

artifact-free. Effects during the stimulation could be affected by a vibration of the recording electrode, but there are two lines of 
evidence against that possibility. First, the measured displacements were on the order of 0.1 um (Fig. 5)—small with respect to 
neuronal size. Second, we pulsed the ultrasound at 60 Hz, and filtered the signals out at 60 Hz. Therefore, radiation forces associated 
with the ultrasound were filtered out.

The inclusion of the skull is key for studies of ultrasonic neuromodulation that are to be applicable to the human brain. The 
skull provides a critical set of constraints on the parameters (frequency, amplitude, waveform) of the ultrasound that can be used for 
transcranial neuromodulation. This way, the neuromodulatory effects observed for the parameters tested in this study are applicable 
to the system of the human head and brain.

The study has certain caveats. First, the organoid dishes were exposed to air outside of the incubator. The associated changes in 
CO2 levels could lead to changes in the acidity of the media. For this reason, we limited our recording window to 35 minutes (about 
45 minutes total including setup). Second, although we used a single-rosette induction approach, which aims to reduce anatomical 
variability across organoids [61], we observed functional variability [55]. As a consequence, we found that only 50% of the organoids 
showed significant responses to ultrasound (Fig. 3). The organoid-to-organoid variability in the responses warrant future systematic 
studies on the time point at which organoids exhibit mature activity and responses to neuromodulation. Currently, this window is 
believed to lie between 6-12 months [48,34], though may depend on the specific induction method and the nourishing media. And 
third, although the effects of ultrasound were observed for around 20 minutes, the effects eventually vanished. Future studies should 
test a broader set of parameters (duration, fundamental and pulse repetition frequency, duty cycle) to induce more durable effects, 
which are key for ultimate treatments of brain disorders.

The human brain organoids provide a unique opportunity to study the effects of neuromodulation at a detailed level and as a 
function of specific neural circuits. For example, organoids that model complete neural networks, such as cortico-striato-thalamic 
networks, have been developed [54,46]. Moreover, it is possible to label each cell type and thus obtain a cell-specific information on 
neuronal activation by ultrasound [13]. Furthermore, the organoids are also amenable to pharmacological and genetic manipulations 
6

to provide further insights into neuromodulation effects on individual molecules and ion channels [56].
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In summary, we have presented a method that provides electrophysiological recordings from human brain tissue during transcra-

nial neuromodulation. The method models three-dimensional electrical and mechanical ties between cells, and has the capability to 
model complete neural circuits. Moreover, the method is free of auditory, tactile, or other peripheral artifacts that can be difficult to 
control for in animal models and humans. The method is expected to lead to protocols that maximize transient or sustained neuro-

modulation effects in specific neural circuits in humans. This has the potential to boost the effectiveness of emerging neuromodulation 
approaches and thus provide treatment options for the large number of treatment-resistant patients.
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