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Abstract
Two prominent statistical laws in language and other complex systems are Zipf’s law and 
Heaps’ law. We investigate the extent to which these two laws apply to the linguistic domain 
of phonotactics—that is, to sequences of sounds. We analyze phonotactic sequences with 
different lengths within words and across word boundaries taken from a corpus of spoken English 
(Buckeye). We demonstrate that the expected relationship between the two scaling laws can 
only be attested when boundary spanning phonotactic sequences are also taken into account. 
Furthermore, it is shown that Zipf’s law exhibits both high goodness-of-fit and a high scaling 
coefficient if sequences of more than two sounds are considered. Our results support the notion 
that phonotactic cognition employs information about boundary spanning phonotactic sequences.
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1 Introduction

Naturally emerging complex systems typically obey characteristic statistical laws. For instance, 
preferential attachment in emerging networks (“the rich get richer” principle) leads to a link distri-
bution that follows a decreasing power law (Barabási & Pósfai, 2016). One of the most prominent 
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statistical laws ubiquitous in complex systems is Zipf’s law (Zipf, 1949). It accounts for distribu-
tional patterns in demographics, economy, bibliometrics, and language (Corominas-Murtra & 
Solé, 2010; Ferrer-i-Cancho, 2016; Li, 2002). In linguistics, it models the skewed distribution of 
frequency of occurrence in a population of types (e.g., words) or equivalently the inverse relation-
ship between token frequency f and rank r, that is, f ∝ r−α with exponent α. Similarly, Zipf’s law 
describes the inverse relationship between the complexity of a given type (e.g., in terms of its 
length, size, or duration) and its frequency. Another widely attested statistical scaling law, related 
to Zipf’s law, is Heaps’ law (also known as Herdan’s law; Heaps, 1978; Lü et al., 2010). It is a 
model of a system’s complexity (typically the number of types) depending on the number of tokens 
in it, that is, the sample size. According to Heaps’ law, complexity grows with the number of tokens 
in a sample in a sublinear fashion.

Most linguistic accounts of Zipf’s law and Heaps’ law operate on the lexical level: that is, they 
address the relationship between a word’s frequency and its rank, and the relationship between 
corpus size and the number of word types in it. Its validity has been demonstrated cross-linguisti-
cally (Baayen, 2001). The picture seems to be less straightforward with regard to the phonological 
level. For 95 languages it has been shown that the relationship between phoneme frequency and 
phoneme rank only roughly follows Zipf’s law (Tambovtsev & Martindale, 2007).

In this study, we focus on the domain of phonotactics, being systems of sound sequences also 
referred to as n-phones (where n stands for the number of phonological constituents in the 
sequence). We test to what extent Heaps’ law and Zipf’s law apply in phonotactics by analyzing 
n-phones (for a range of different lengths n) within words and across word boundaries.

Many mechanisms have been proposed to explain Zipf’s law and Heaps’ law in linguistics, and 
most of them can arguably be transferred to the phonotactic level as well. First, just like any lin-
guistic subsystem, systems of sound sequences can be conceived of as complex systems which 
have evolved over time (e.g., Barabási & Pósfai, 2016). If this process is driven by preferential 
attachment, so that the choice of a sound sequence depends on how established (or “entrenched”) 
it is already, this entails a skewed distribution of token frequencies of n-phone types. The extent to 
which preferential attachment applies is then reflected in the degree to which this distribution is 
skewed and translates into the power-law exponent α in f ∝ r−α. No preferential attachment corre-
sponds to a vanishing exponent (Baek et al., 2011).

A second hypothetical driving force, in fact brought into play by Zipf and colleagues (Newman 
& Zipf, 1936), is the principle of least effort, which has been suggested to explain the characteristic 
distributional properties on the phonological level. Some sounds are easier to produce, being for 
instance less complex and more well-formed, than others, and the more complex a sound is, the 
less frequently it is used (e.g., Deng, 2016). Similarly, sequences of sounds differ as to their com-
plexity. For example, sequences of consonants and vowels are generally considered articulatorily 
and perceptually less complex than sequences of consonants (Levelt & Van De Vijver, 2004). 
Related to this, using graphemics as a proxy for phonotactics, Mahowald et al. (2018) have dem-
onstrated a positive correlation between phonotactic probability as a measure of well-formedness 
and lexical frequency.

Third, it was argued that Zipf’s law may be a consequence of multiple underlying and interact-
ing processes, which in isolation would not necessarily give rise to power-law distributions 
(Aitchison et al., 2016). On the lexical level, it was argued by Lestrade (2017) on computational 
grounds that an interaction of syntactic and semantic factors provides a better explanation of Zipf’s 
law in the lexicon than each of these two domains in isolation. Clearly, phonotactics is influenced 
by various linguistic domains as well: sound sequences are brought about through concatenating 
phonemes within morphemes (i.e., lexical phonotactics in the narrow sense), through morphology 
(e.g., affixation, ablaut), or through syntax (across word boundaries).
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With regard to Heaps’ law it was shown rigorously by Lü et al. (2010) that in evolving complex 
systems with finite size, Zipf’s law entails Heaps’ law. In that sense, they argue Zipf’s law to be the 
more fundamental one of the two. Furthermore, they derive the interesting relationships that Heaps’ 
exponent is positively correlated with system size and non-negatively correlated with Zipf’s expo-
nent. So, if a grown linguistic subsystem—such as phonotactics—obeys Zipf’s law, these relation-
ships are expected to hold.

Although the applicability of scaling laws to phonotactics is not implausible, as argued above, 
phonotactic scaling laws are rather understudied. Ha et al. (2009) investigate Zipf’s law in systems 
of n-phones of length 2 up to 13, but they limit their analysis to word-internal phonotactics. 
Excluding word-boundary spanning n-phones from phonotactic research is potentially problematic 
for several reasons.

To begin with, this is because low-probability and/or complex phonotactic sequences have been 
suggested to fulfill the function of signaling word boundaries (Daland & Pierrehumbert 2011), and 
thus assist the listener in the decomposition of the speech stream into words.

Similarly, low-frequency diphones can signal morpheme boundaries or the boundaries between 
the individual parts of compound words (Finley & Newport, 2011). For example, in English, the 
2-phone consonant cluster /kf/ does not occur word-internally and therefore strikes listeners as 
being ill-formed when they encounter it within a word. In contrast, the same sequence occurs fre-
quently and sounds perfectly fine across word boundaries (e.g., “pink flamingo”) or across the 
boundaries of the parts of compound words (e.g., “workflow”, cf. Daland & Pierrehumbert 2011). 
Likewise, in English, the word-final cluster /ts/ does only rarely surface word internally (as in 
“blitz”) but mostly occurs across morpheme boundaries (e.g., “cats” or “hits”). Thus, when listen-
ers hear such sequences, they can interpret them as boundary signals (Jusczyk, 1999; Mattys & 
Jusczyk, 2001; Saffran et al., 1996).

In a similar vein, the “naïve discriminative learning” approach (Baayen et al., 2016; Milin et al., 
2017) argues that lexical structure can arise as the result of phonotactic distribution frequencies, so 
that actual morphemes, words and phrases indeed emerge from phonotactics (Divjak, 2019).

Taking this research into account, across-word phonotactics seem to fulfill a non-negligible role in 
the interface between phonology, morphology, syntax and the lexicon. As a consequence, accounts 
for scaling laws in phonotactics should not exclude boundary-spanning phonotactic items per se. 
Furthermore, if analyses are limited to word-internal phonotactics it cannot be ruled out that potential 
scaling laws in phonotactics are mere epiphenomena of corresponding scaling laws in the lexicon.

Finally, and relevant from a methodological perspective, the notion of what counts as a word (at 
least in corpus linguistics) is biased by graphemics among other factors (Haspelmath, 2011) so that 
word boundaries are usually equated with whitespaces in written text. This creates a multitude of 
problems: compounds are graphemically realized differently across languages; some writing sys-
tems do not show clear word boundaries; words are not the primary building blocks in polysyn-
thetic and incorporating languages.

The goal of this study is to provide an empirical analysis of Heaps’ law and Zipf’s law in pho-
notactics and to test whether they indeed hold in this domain. We compare phonotactics within 
word boundaries (“within-word phonotactics”) to phonotactic systems that also allow for bound-
ary-spanning n-phones (“within-and-across-word phonotactics”). We analyze n-phones of phono-
tactic length 2 to 6 in a corpus of spoken American English and test to what extent scaling-law 
characteristics (exponents) are related with phonotactic length and system size.

We demonstrate (a) that measures of phonotactic complexity taking frequency into account are 
more reliable than complexity measures only based on inventory size (see Rama, 2013, and discus-
sion below) and (b) that within-and-across-word phonotactics (but not so much within-word pho-
notactics) shows behavior typical of emerging complex systems, indicating that phonotactic 
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cognition also covers information about boundary spanning n-phones. Finally, we argue that (c) 
cognitively plausible phonotactic systems consist of sequences with more than two sounds and (d) 
we highlight differences between scaling laws in phonotactics and the lexicon.

2 Data and methods

We used the Buckeye Speech Corpus (Pitt et al., 2005), which contains about 300,000 phonologically 
transcribed word tokens produced by a total of 40 speakers of American English. We extracted 10 
nested sub-corpora from the corpus so that the smallest sub-corpus counts about 10,000 tokens, and 
each subsequent sub-corpus is a superset of and about 10,000 tokens larger than its predecessor.

From each sub-corpus, we extracted all n-phones with different length n from 2 to 6. In theory, 
(across-word) n-phones can be arbitrarily long, but for practical considerations, we had to set an 
upper limit for our investigations. Our choice is motivated by results from research on the human 
working memory, which has been argued to be limited to processing 3 to 5 segments at a time 
(Green, 2017; Mathy & Feldman, 2012). Applying this notion to phonotactics, we set our limit 
slightly above this cognitively grounded figure and analyzed n-phones up to a length of 6. In addi-
tion, this limit ensures that we do not consider sequences which are much longer than the average 
number of phonemes in a word, which is about 7±2 (a cross-linguistic estimate, for example as 
reported by Nettle, 1995; a similar mean length in the lexicon can be derived from English spoken 
frequencies in the CELEX database, namely 7.25 phonemes; Baayen et al., 1995).

The extraction of n-phones was done in two different ways: (1) In the within-word condition, all 
n-phones (for a given n) occurring within word forms (i.e., word tokens separated by whitespaces) 
were extracted. For instance, the sequence Heaps’ law features four within-word 2-phones /hi, ip, 
ps, lɔ/, two within-word 3-phones /hip, ips/, and a single within-word 4-phone /hips/. For each 
n-phone type i, the overall frequency of occurrence fi was computed; (2) In the within-and-across-
word condition, word (and sentence) boundaries were ignored, so that the sequence Heaps’ law 
shows five 2-phones /hi, ip, ps, sl, lɔ/, four 3-phones /hip, ips, psl, slɔ/, etc.

Next, we computed two complexity measures for each sub-corpus and each n. First, we retrieved 
phonotactic inventory size d0, that is, the number of n-phone types. Second, we computed phonotactic 
diversity as d1 = expH, where d H1 = exp , where H p pi i= −∑ log  is Shannon entropy, and where 
p f fi i j= ∑/  is the probability of type i. That is, phonotactic diversity is high if all n-phone types 

are roughly equally frequent and low if some types are relatively frequent while others are rare.
Both sizes are special cases of the more general diversity number of order q, defined as 

d pq i
q q

= ∑( ) −( )1 1/
 (see Hill, 1973, for a formal derivation). Thus, d0 (q = 0) provides a relatively 

rough measure of phonotactic complexity, while d1 (q = 1) is more fine-grained since it also cap-
tures token frequency. We have chosen these two measures of complexity, since d0 is a standard 
measure of the complexity of phonological systems (Nettle, 1995, 2012; Rama, 2013; Wichmann 
et al., 2011) and functions as a straightforward analogue of lexicon size. Moreover, d1 is closely 
related with Shannon entropy, which itself was studied on the lexical level in relation with corpus 
size (Febres, Jaffé, & Gershenson, 2015). Also note that there is a close relationship between d1 and 
Yule’s characteristic K, the latter of which, as a measure of lexical repetition, has been used as a 
relatively size-independent operationalization of lexical diversity (Miranda-García & Calle-
Martín, 2005): d1 = expH is an upper bound of the reciprocal of Yule’s K (Herdan, 1958).

To measure system size, we determined the number of n-phone types t in the overall corpus for 
each n respectively.

Heaps’ law describes the sublinear growth of complexity dq (usually the number of types) as a 
function of corpus size s, given by d s c sq ( ) = ⋅ β , where c > 0 is a constant and β < 1 is Heaps’ 
exponent. We consider two different exponents: β0 for the growth of inventory size d0 and β1 for 
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the growth of diversity d0. For each n, we estimated both exponents by means of non-linear least-
squares regression (Figure 1(a)).

Zipf’s law can be formalized as f r f r( ) = ⋅ −
1

α  so that a type’s token frequency f is a function 
of its rank f. Here, f1 is the frequency of the most frequent type (with r = 1) and α is Zipf’s expo-
nent. Again, we estimated the exponent for each n via non-linear least-squares regression (Figure 
1(b)). For both laws, goodness-of-fit (GoF) was assessed by means of adjusted R2.

Since we consider n-phones with length 2 to 6, this resulted in a series of 5 estimates for each 
of the variables (number of tokens; number of types; exponents β0; β1; α) and each condition 
(within, within-and-across). We computed pairwise correlation coefficients (Pearson’s R) for all 
combinations of two variables (Figure 2). All computations were done in R (R Development Core 
Team, 2017).

3 Results

The computed values for number of tokens, number of types, and the exponents β0, β1, and α for 
all lengths n are shown in Tables 1 and 2, respectively.

Growth curves for Heaps’ law are shown in Figure 1(a). The curves flatten more slowly as n gets 
larger. This is reflected in the exponent estimates, which increase with n. Similarly, it is evident that 
the growth curves of inventory size d0 flatten more slowly than the growth curves of diversity d1 
indicating that diversity is less susceptible to changes in sample size than it is the case for inventory 
size. It can be seen from Table 1- that growth exponents are on average higher in the within-and-
across-word condition than in the case of exclusively lexical phonotactics (within word condition), 
which may be attributed to larger system size in within-and-across phonotactics. Thus, phonotac-
tics is more sensitive to changes in sample size if boundary spanning n-phones are admitted, in 
particular for high n. Interestingly, β0 approaches estimates of Heaps’ exponent for lexical items. 
In the case of 6-phones, β0 = 0.82, which comes close to the range for lexical estimates for β0 
reported, for example by Torre et al. (2017). Note that lexical items have—cross-linguistically—on 
average about 7 2±  phonemes (Nettle, 1995).

The relationship between frequency and rank, as described by Zipf’s law, can be seen in Figure 
1b. In contrast to Heaps’ exponent, there is no clear relationship between α and phonotactic length 
n (neither for the within nor the within-and-across-word condition). It is remarkable that Zipf’s 
coefficients measured for phonotactic items are considerably lower than estimates in the lexical 
regime which is about α = 1 (Zipf, 1949). This entails that phonotactic frequency distributions are 
less skewed than lexical ones.

Figure 2 shows pairwise correlations for all combinations of variables under investigation. The 
measures for system size show interesting interactions with n. While the number of types t is posi-
tively correlated with n in within-and-across-word phonotactics, this is not the case in within-
word phonotactics. Similarly, both Heaps’ coefficients increase with the number of types in 
within-and-across-word phonotactics, but not in the within-word condition. Zipf’s exponent cor-
relates negatively with all other measures in the within-and-across-word condition, a relationship 
which cannot be observed in within-word phonotactics. What both conditions have in common is 
that both Heaps’ exponents correlate positively with n and that Zipf’s exponent peaks at n = 3. 
Finally, goodness-of-fit is low for n = 2 in both conditions but reasonably high for n > 2.

4 Discussion

In this study, we investigated scaling laws of phonotactic complexity in a phonologically tran-
scribed corpus. We considered n-phones—that is, phonotactic constituents—with different length 
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n under two different conditions: within-word phonotactics and unconstrained phonotactics where 
n-phones may span word boundaries. In our analysis, we focused on Heaps’ law and Zipf’s law. 
For the former, we operationalized phonotactic complexity by means of two different measures, 
inventory size and (frequency sensitive) diversity. For each phonotactic length n, and each condi-
tion Heaps’ and Zipf’s exponents were estimated.

A number of observations can be made which have implications for our understanding and 
analysis of phonotactic systems. These concern (a) different ways of measuring phonotactic com-
plexity, (b) the difference between within-word phonotactics and within-and-across-word, that is, 

Figure 2. Pairwise correlations among measures in within-word and within-and-across-word 
phonotactics. See Tables 1 and 2.
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unconstrained, phonotactics, (c) the relationship between the inspected scaling laws and phonotac-
tic length n, and (d) the difference between scaling laws in phonotactics and the lexicon. In what 
follows, we discuss these observations (a—d) in more detail.

First (observation 1), a comparison of the two measures of complexity d0 and d1 reveals that 
frequency dependent diversity is much less strongly dependent on sample size than is phonotactic 
inventory size in the sense that the Heaps’ coefficients corresponding to phonotactic inventory size 
are considerably higher. This implies that complexity measures which also take token frequency 
into account are much more robust with respect to comparisons across corpora and small sample 
sizes. Measuring differences in phonotactic inventory size (for 2-phones and 3-phones) was sug-
gested as a way of estimating linguistic time depth (Rama, 2013). We argue that frequency-based 
measures are potentially more reliable tools for these matters (although they require more fine-
grained quantitative analyses).

In order to assess the difference between word-internal and unconstrained phonotactics (obser-
vation 2) with respect to Heaps’ and Zipf’s law, let us first consider what would be expected based 
on formal evidence. Lü et al. (2010) have demonstrated on computational grounds that in emerging 
complex systems which obey Zipf’s law, (a) Heaps’ law is also supposed to hold, (b) Zipf’s expo-
nent shows a non-positive monotone relationship with Heap’s exponent, and (c) that Heaps’ expo-
nent increases with system size. If we see (a)–(c) as indicators for how well-behaved a complex 
system, such as the system of n-phones, is, we find that only unconstrained phonotactic systems 
behave like typical complex systems.

This is because although both laws can be argued to hold in both conditions (based on the esti-
mated coefficients and goodness-of-fit values), we do not find statistically robust support for (b) 
and (c) in the within-word condition (cf. Figure 2). We argue that it is a reflex of the fact that pho-
notactic system size decreases with phonotactic length since word length obviously constrains the 
number of possible word-internal phonotactic items, in particular if phonotactic length is high.

Table 1. Within word measures: phonotactic length (n), system size (the number of types (t)), and 
estimated exponents for Heaps’ law and Zipf’s law (together with respective 95% confidence intervals and 
goodness-of-fit measures).

n t β1 95% CI GoF β0 95% CI GoF α 95% CI GoF

2 837 −0.002 (–0.012,0.008) −0.095 0.104 (0.098,0.11) −0.094 0.658 (0.652,0.665) −0.094
3 4433 0.05 (0.025,0.075) 0.605 0.328 (0.314,0.342) 0.605 0.693 (0.692,0.695) 0.605
4 7291 0.172 (0.141,0.203) 0.928 0.492 (0.476,0.508) 0.928 0.668 (0.667,0.669) 0.928
5 6637 0.306 (0.273,0.339) 0.976 0.574 (0.554,0.594) 0.976 0.612 (0.61,0.613) 0.976
6 4781 0.369 (0.332,0.406) 0.980 0.611 (0.586,0.636) 0.980 0.507 (0.504,0.509) 0.980

Table 2. Across/within word measures: phonotactic length (n), system size (the number of types (t)), and 
estimated exponents for Heaps’ law and Zipf’s law (together with respective 95% confidence intervals and 
goodness-of-fit measures).

n t β1 95% CI GoF β0 95% CI GoF α 95% CI GoF

2 1176 0.004 (–0.004,0.012) 0.024 0.072 (0.062,0.082) 0.024 0.614 (0.609,0.619) 0.024
3 14367 0.082 (0.058,0.106) 0.821 0.307 (0.287,0.327) 0.821 0.62 (0.619,0.621) 0.821
4 60487 0.261 (0.224,0.298) 0.958 0.56 (0.542,0.578) 0.958 0.552 (0.552,0.553) 0.958
5 125540 0.467 (0.43,0.504) 0.989 0.723 (0.709,0.737) 0.989 0.49 (0.49,0.49) 0.989
6 186062 0.647 (0.618,0.676) 0.996 0.824 (0.812,0.836) 0.996 0.423 (0.423,0.424) 0.996
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Because it is rather within-and-across-word phonotactics—as opposed to phonotactics restricted 
to word-internal sequences—which shows the behavior expected for emerging complex systems, 
this indicates that phonotactic cognition is organized in such a way that it also covers information 
about boundary spanning items (e.g., conceptualized as phonotactic representations or transition 
probabilities; Ernestus, 2014). This supports results from research on phonotactically driven speech 
segmentation, which suggest that listeners infer morpheme and word boundaries from phonotactic 
information (Daland & Pierrehumbert, 2011; Dressler & Dziubalska-Kołaczyk, 2006; Jusczyk, 
1999; Saffran et al., 1996). Clearly, this requires listeners to have access to information on bound-
ary spanning phonotactic sequences.

Going further, word boundaries can be considered as artifacts imposed by the lexical domain in 
a top-down manner, which should a priori not be taken for granted in phonotactic research. For 
example, in naïve discriminative learning approaches (Baayen et al., 2016; Milin et al., 2017) 
words are effectively epiphenomena of distributional properties of phonotactics rather than phono-
tactics being defined by what is allowed within words. In this model, n-phones are input cues and 
the learning process consists of finding weights to predict outcomes (i.e., lexical items). So, during 
learning a system of phonotactic sequences emerges which consists of predictive (discriminative) 
and less predictive cues. Crucially, it is the boundary spanning sequences with low transition prob-
abilities which have high predictive power. This goes in line with our conclusion that these items 
represent integral parts of phonotactic cognition.

Lastly (observation 3), we can evaluate the relationship between phonotactic length n and the 
two scaling laws. A pattern that we find in the within-and-across condition is that while Heaps’ 
exponent increases and Zipf’s exponent decreases with n, respectively, goodness-of-fit is gener-
ally better for long phonotactic sequences (for n = 2 , goodness-of-fit is significantly worse than 
for n > 2 ). As argued before, large Zipf exponents can be interpreted as indicator for preferential 
attachment (i.e., “the rich get richer”) during the evolution of the—in our case, phonotactic—
system. At the same time, high goodness-of-fit with respect to Zipf’s law hints at multiple inter-
acting processes at work (Aitchison et al., 2016; Lestrade, 2017). Taken together, the behavior 
of phonotactic length n seems puzzling. The question is this: based on the present results, which 
phonotactic length n is cognitively most plausible? It seems that phonotactic sequences in the 
mid-regime at n = 3 or n = 4 strike a reasonable balance between coefficient size and goodness-
of-fit (for example, this can be seen by looking at the product of Zipf’s α and GoF, which takes 
its maximum at about n = 4). This suggests that it is systems of 3-phones or 4-phones that are 
affected to the largest extent by factors associated with Zipf’s law (multiple interacting pro-
cesses, preferential attachment, least effort). While this conclusion is speculative to a certain 
extent, it is worthwhile to point out that Baayen et al. (2016) suggest 3-phones to work best as 
input units for discriminative learning in English. Another potentially related observation is that 
the expected value of word length (i.e., average word length weighted by frequency) in English 
speech is about n = 3.26 (estimate based on spoken lemma frequencies in CELEX; Baayen 
et al., 1995) and a hypothesized upper limit of about 3 to 4 segments in short-term memory 
(Mathy & Feldman, 2012).

The significantly increasing relationship between Heaps’ exponent and phonotactic length n  
is in contrast with findings by Torre et al. (2017). In their study, scaling laws were investigated for 
acoustic units. These units were defined by means of acoustic energy thresholds so that low 
thresholds led to short units while high thresholds led to longer units. Interestingly, they found 
that Heaps’ exponent does not change substantially with the size of the energy threshold. Based 
on our findings, a positive correlation would be expected. Note, however, that the way in which 
phonemes (or phones) are defined crucially differs from Torre et al.’s (2017) operationalization of 
units of sound.
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As to our final observation (observation 4), we find that Zipf’s exponent in phonotactics is much 
lower than on the lexical level. This suggests that phonotactics is affected less by factors which are 
thought to give rise to Zipf’s law than this is the case in the lexical domain. One reason might be 
that cognitive constraints related to memory and semantic organization (Piantadosi, 2014) are 
much weaker in phonotactics than in the lexicon. Clearly, phonotactic sequences carry less mean-
ing than lexical items do (but see Topolinski et al., 2015, and Dressler & Dziubalska-Kołaczyk, 
2006, for sound-symbolic and functional properties, respectively).

In addition, we found that Heaps’ exponent in phonotactics is generally lower than its lexical 
counterpart. An important methodological consequence of this is that phonotactic studies do not 
require the same amount of linguistic data as lexical studies do. This is because a relatively large 
share of the complexity of the phonotactic system is covered already in small samples. This differ-
ence between phonotactics and the lexicon holds particularly true for short within-word phonotac-
tic sequences, such as word-internal 2-phones, but vanishes as phonotactic length approaches the 
average length of words.

5 Conclusion

We have shown that phonotactic systems obey well-established scaling laws that can be found in 
many complex systems. This implies—not quite surprisingly—that the architecture of phonotac-
tics is far from random but must rather be governed by similar laws of self-organization as other 
complex systems in linguistics (such as multiple interacting processes, preferential attachment, or 
the principle of least effort).

In particular, phonotactics exhibits behavior typical of complex systems following Zipf’s law if 
phonotactic items spanning word boundaries are also considered. One advantage of the latter oper-
ationalization is that it does not require word boundaries and hence no top-down conceptualization 
of what linguistic unit counts as a word (which in turn requires a notion of semantics). In that sense, 
the present paper aligns with the acoustic study by Torre et al. (2017). Consequently, the method 
used here can be applied to languages with various morphosyntactic structures (such as incorporat-
ing or polysynthetic languages). Likewise, it would be interesting to study phonotactic scaling laws 
in animal vocalizations for which segmented data is available (Kershenbaum et al., 2016).

Moreover, our results tentatively suggest that cognitively plausible phonotactic systems consist 
of sequences with more than two sounds and that differences between processes operating in pho-
notactics and the lexicon, respectively, are reflected in properties of their respective scaling laws 
(coefficients; goodness-of-fit). This, however, needs to be validated on experimental and computa-
tional grounds in order to draw robust conclusions.
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Supplemental material

The R code for doing all analyses in this contribution can be found in the script “analysis.R.” It requires the 
script “utils.R” comprising a set of helper functions. All data are collected in the binary “data.RData.” Run 
“analysis.R” to run the computation and to generate human readable data files. The scripts were created under 
R version 3.4.3. All code and data can be found in the following GitLab project: https://gitlab.com/andreas.
baumann/phonotactic_scaling_laws
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