Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3'-Benzoyl-1'-methyl-4'-phenylspiro-[acenaphthylene-1(2*H*),2'-pyrrolidin]-2one

T. Augustine,^a* Scholastica Mary Vithiya,^b S. Ignacimuthu^c and V. Ramkumar^d

^aDepartment of Chemistry, D. G. Vaishnav College, Chennai 106, Tamil Nadu, India, ^bDepartment of Chemistry, Auxilium College, Vellore, Tamil Nadu, India, ^cEntomology Research Institute, Loyola College, Chennai 34, Tamil Nadu, India, and ^dDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 36, Tamil Nadu, India

Correspondence e-mail: augustineap@gmail.com

Received 25 October 2010; accepted 26 October 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.142; data-to-parameter ratio = 19.1.

In the title compound, $C_{29}H_{23}NO_2$, the pyrrolidine ring adopts a twisted conformation about one of the C–N bonds. The acenaphthone ring (r.m.s. deviation = 0.025 Å) lies almost perpendicular to the pyrrolidine ring [dihedral angle = 88.08 (8)°]. The dihedral angle between the phenyl rings is 88.12 (11)°. In the crystal structure, weak C–H··· π interactions connect the molecules.

Related literature

For background on 1,3-dipolar cycloadditions, see: Grigg (1987); Huisgen (1988); Bridges *et al.* (1993); Padwa (1984). For a related structure, see: Augustine *et al.* (2007). For ring conformation analysis, see: Cremer & Pople (1975); Rao *et al.* (1981).

Experimental

Crystal data

 $C_{29}H_{23}NO_2$ $V = 2255.27 (19) Å^3$
 $M_r = 417.48$ Z = 4

 Monoclinic, P_{21}/c Mo $K\alpha$ radiation

 a = 8.6462 (4) Å $\mu = 0.08 \text{ mm}^{-1}$

 b = 15.8352 (8) Å T = 298 K

 c = 16.7174 (8) Å $0.42 \times 0.34 \times 0.22 \text{ mm}$
 $\beta = 99.827 (2)^{\circ}$ $0.42 \times 0.34 \times 0.22 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.969, T_{\rm max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	290 parameters
$wR(F^2) = 0.142$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
5549 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

16782 measured reflections

 $R_{\rm int} = 0.035$

5549 independent reflections

2944 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg5 is the centroid of the C17-C22 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C3-H3\cdots Cg5^{i}$	0.93	2.85	3.638 (2)	144		
Symmetry code: (i) $-x + 1$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.						

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5706).

References

- Augustine, T., Ramkumar, V., Arul Antony, S. & Kanakam, C. C. (2007). Acta Cryst. E63, 04412.
- Bridges, R. J., Lovering, F. E., Humphrey, J. M., Stanley, M. S., Blakely, T. N., Cristofaro, M. F. & Chamberlin, A. R. (1993). *Bioorg. Med. Chem. Lett.* 3, 115–121.

Bruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Grigg, G. (1987). Chem. Soc. Rev. 16, 89-121.
- Huisgen, R. (1988). Adv. Cycloaddition, 1, 1-31.
- Padwa, A. (1984). 1,3-Dipolar Addition Chemistry. New York: John Wiley.

Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A**37**, 421–425. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

Acta Cryst. (2010). E66, o3002 [doi:10.1107/S160053681004376X]

3'-Benzoyl-1'-methyl-4'-phenylspiro[acenaphthylene-1(2H),2'-pyrrolidin]-2-one

T. Augustine, S. M. Vithiya, S. Ignacimuthu and V. Ramkumar

Comment

1,3-dipolar cycloadditions using azomethine ylides is conceptually the most simple and efficient method for the construction of saturated, nitrogen containing five-membered heterocycles (Padwa, 1984). Ylide generation, often performed *in situ* (Grigg, 1987), followed by cycloaddition with suitable dipolarophiles furnishes pyrrolidines and pyrroles in only one step from simple starting materials (Huisgen, 1988). 1,3-dipolar cycloadditions of azomethine ylides with olefinic and acetylenic dipolarophiles represent an important approach for the formation of pyrrolidines and pyrrolizines which are prevalent in a variety of biologically active compounds (Bridges *et al.*, 1993). In view of this we have determined the structure of the title compound.

In the title compound C₂₉H₂₃NO₂, the C—O bond distance (1.21 Å) of the carbonyl group in the benzoyl moiety indicates n-p overlap. The bond angles and dihedral angle of C9—C12—C1 (101.69 Å) of the acenapthone ring indicate it to be in a plane nearly perpendicular to the pyrrolidine ring. The sum of the angles around N-atom of the pyrrolidine ring accounts for 338.78°. This indicates that the structure approaches pyramidal shape. The study of torsion angle, asymmetry parameters and least-square plane calculation shows that the pyrrolidine ring adopts a envelope conformation and puckered, Q₂ = 0.4030 (18) Å, φ = 333.0 (3)° (Cremer & Pople, 1975). The Pseudorotation parameter P and τ are 136.4 (1)° and 43.71 (1)° respectively (Rao *et al.*, 1981) showing that C15 and N1 are twisted and puckered.

The crystal structure is stabilized by weak C—H $\cdots\pi$ interactions.

Experimental

A mixture of chalcone [1,3-diphenyl-2-propen-1-one] (0.40 g, 2 mmol), acenaphthenequinone (0.36 g, 2 mmol), sarcosine (0.17 g, 2 mmol) and methanol (25 ml) was heated for four hours using oil bath using a dimmerstat at a temperature of 40° C. The reaction mixture was cooled to room temperature and poured into ice-cold water. The solid mass obtained was filtered, washed with water, dried and colourless blocks of (I) were obtained by recrystallization using acetone as solvent by slow evaporation method.

Refinement

H atoms were positioned geometrically and refined using riding model,with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{iso}(C)$ for CH₃.

Figures

3'-Benzoyl-1'-methyl-4'-phenylspiro[acenaphthylene-1(2H),2'- pyrrolidin]-2-one

F(000) = 880

 $\theta = 2.5 - 25.3^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

Block, colourless

 $0.42 \times 0.34 \times 0.22 \text{ mm}$

 $D_{\rm x} = 1.230 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3350 reflections

Crystal data $C_{29}H_{23}NO_2$ $M_r = 417.48$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.6462 (4) Å b = 15.8352 (8) Å c = 16.7174 (8) Å $\beta = 99.827$ (2)° V = 2255.27 (19) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	5549 independent reflections
Radiation source: fine-focus sealed tube	2944 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
ϕ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -9 \rightarrow 11$
$T_{\min} = 0.969, \ T_{\max} = 0.983$	$k = -18 \rightarrow 20$
16782 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 + 0.296P]$ where $P = (F_o^2 + 2F_c^2)/3$
5549 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
290 parameters	$\Delta \rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	sotropic	c or e	guivalent	isotropi	ic dis	placement	parameters ($(\AA^2$)
1		000.00000000000000000000000000000000000		500 op 10		100000000000000000000000000000000000000	15011 op1		p	pen ennerens ((,	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2530 (2)	0.32056 (11)	0.28710 (10)	0.0505 (5)
C2	0.3044 (2)	0.27558 (11)	0.21910 (10)	0.0523 (5)
C3	0.4124 (3)	0.21283 (14)	0.21511 (14)	0.0848 (7)
Н3	0.4681	0.1887	0.2621	0.102*
C4	0.4365 (4)	0.18600 (16)	0.13784 (16)	0.1013 (9)
H4	0.5112	0.1445	0.1344	0.122*
C5	0.3546 (3)	0.21865 (15)	0.06826 (14)	0.0845 (7)
Н5	0.3733	0.1985	0.0185	0.101*
C6	0.1491 (3)	0.32230 (14)	0.00346 (11)	0.0643 (6)
Н6	0.1588	0.3072	-0.0492	0.077*
C7	0.0454 (2)	0.38280 (14)	0.01609 (11)	0.0631 (6)
H7	-0.0157	0.4080	-0.0288	0.076*
C8	0.0257 (2)	0.40942 (12)	0.09475 (11)	0.0549 (5)
H8	-0.0478	0.4506	0.1012	0.066*
C9	0.11632 (19)	0.37362 (10)	0.16061 (9)	0.0413 (4)
C10	0.2211 (2)	0.31009 (10)	0.14725 (9)	0.0430 (4)
C11	0.2423 (2)	0.28227 (12)	0.06998 (10)	0.0555 (5)
C12	0.13015 (19)	0.38914 (10)	0.25123 (9)	0.0414 (4)
C13	0.19337 (19)	0.47786 (10)	0.28373 (9)	0.0402 (4)
H13	0.2961	0.4699	0.3181	0.048*
C14	0.0763 (2)	0.50907 (11)	0.33801 (10)	0.0497 (5)
H14	-0.0009	0.5458	0.3051	0.060*
C15	-0.0067 (2)	0.42866 (13)	0.35599 (12)	0.0637 (6)
H15A	0.0552	0.3972	0.4000	0.076*

H15B	-0.1090	0.4407	0.3697	0.076*
C16	0.2127 (2)	0.53926 (11)	0.21632 (10)	0.0447 (4)
C17	0.35855 (19)	0.53647 (11)	0.17984 (9)	0.0437 (4)
C18	0.4852 (2)	0.48560 (13)	0.20867 (12)	0.0612 (5)
H18	0.4812	0.4498	0.2524	0.073*
C19	0.6179 (3)	0.48749 (17)	0.17315 (16)	0.0906 (8)
H19	0.7031	0.4531	0.1929	0.109*
C20	0.6240 (3)	0.53984 (19)	0.10893 (17)	0.1026 (9)
H20	0.7140	0.5412	0.0854	0.123*
C21	0.5004 (3)	0.58984 (18)	0.07900 (14)	0.0889 (8)
H21	0.5055	0.6248	0.0348	0.107*
C22	0.3676 (2)	0.58877 (13)	0.11399 (11)	0.0625 (5)
H22	0.2831	0.6233	0.0934	0.075*
C23	0.1560 (2)	0.55919 (11)	0.41019 (11)	0.0495 (5)
C24	0.1259 (3)	0.64403 (13)	0.41745 (13)	0.0690 (6)
H24	0.0502	0.6700	0.3791	0.083*
C25	0.2064 (3)	0.69126 (16)	0.48084 (18)	0.0879 (8)
H25	0.1839	0.7484	0.4845	0.105*
C26	0.3172 (3)	0.65544 (18)	0.53761 (16)	0.0827 (7)
H26	0.3726	0.6878	0.5794	0.099*
C27	0.3463 (3)	0.57130 (17)	0.53253 (13)	0.0767 (7)
H27	0.4204	0.5456	0.5719	0.092*
C28	0.2670 (2)	0.52382 (14)	0.46946 (12)	0.0649 (6)
H28	0.2890	0.4665	0.4669	0.078*
C29	-0.0869 (3)	0.29814 (14)	0.28011 (14)	0.0825 (7)
H29A	-0.0220	0.2644	0.3202	0.124*
H29B	-0.0912	0.2728	0.2276	0.124*
H29C	-0.1908	0.3015	0.2928	0.124*
N1	-0.02068 (18)	0.38299 (10)	0.27962 (9)	0.0565 (4)
O2	0.29920 (19)	0.30958 (9)	0.35906 (7)	0.0752 (4)
O3	0.10953 (17)	0.58979 (9)	0.19095 (8)	0.0704 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0700 (12)	0.0418 (10)	0.0407 (10)	0.0002 (9)	0.0121 (8)	0.0050 (8)
C2	0.0703 (12)	0.0418 (10)	0.0463 (10)	0.0078 (10)	0.0138 (9)	0.0029 (8)
C3	0.1170 (19)	0.0658 (15)	0.0715 (14)	0.0422 (14)	0.0160 (13)	0.0069 (12)
C4	0.135 (2)	0.0850 (18)	0.0903 (19)	0.0531 (17)	0.0388 (17)	-0.0077 (15)
C5	0.1157 (19)	0.0786 (16)	0.0668 (15)	0.0179 (15)	0.0375 (14)	-0.0189 (13)
C6	0.0806 (15)	0.0741 (15)	0.0382 (10)	-0.0217 (12)	0.0106 (10)	-0.0067 (10)
C7	0.0625 (13)	0.0805 (15)	0.0414 (10)	-0.0169 (12)	-0.0050 (9)	0.0092 (10)
C8	0.0464 (10)	0.0618 (12)	0.0555 (11)	-0.0014 (9)	0.0062 (8)	0.0051 (9)
C9	0.0441 (9)	0.0410 (10)	0.0398 (9)	-0.0050 (8)	0.0098 (7)	0.0027 (7)
C10	0.0528 (10)	0.0395 (10)	0.0386 (9)	-0.0040 (8)	0.0129 (7)	-0.0022 (7)
C11	0.0707 (12)	0.0539 (12)	0.0455 (10)	-0.0071 (10)	0.0198 (9)	-0.0088 (9)
C12	0.0501 (10)	0.0378 (9)	0.0396 (8)	0.0014 (8)	0.0175 (7)	0.0017 (7)
C13	0.0441 (9)	0.0386 (9)	0.0415 (8)	0.0031 (7)	0.0172 (7)	0.0002 (7)

C14	0.0521 (10)	0.0487 (11)	0.0541 (10)	0.0063 (9)	0.0252 (8)	-0.0007 (8)
C15	0.0715 (13)	0.0652 (13)	0.0648 (12)	-0.0122 (11)	0.0412 (10)	-0.0122 (10)
C16	0.0509 (10)	0.0371 (10)	0.0484 (10)	0.0014 (9)	0.0153 (8)	-0.0006 (8)
C17	0.0460 (10)	0.0441 (10)	0.0435 (9)	-0.0115 (8)	0.0149 (7)	-0.0033 (8)
C18	0.0554 (12)	0.0624 (13)	0.0707 (12)	0.0027 (10)	0.0244 (10)	0.0129 (10)
C19	0.0621 (14)	0.1001 (19)	0.119 (2)	0.0144 (13)	0.0434 (14)	0.0281 (16)
C20	0.0779 (17)	0.128 (2)	0.118 (2)	0.0117 (18)	0.0625 (16)	0.0354 (19)
C21	0.0830 (17)	0.117 (2)	0.0747 (15)	-0.0113 (16)	0.0368 (13)	0.0311 (15)
C22	0.0587 (12)	0.0762 (14)	0.0537 (11)	-0.0109 (11)	0.0126 (9)	0.0105 (10)
C23	0.0562 (11)	0.0480 (11)	0.0510 (10)	0.0038 (9)	0.0284 (9)	-0.0048 (8)
C24	0.0813 (15)	0.0529 (13)	0.0771 (14)	0.0102 (11)	0.0261 (11)	-0.0052 (11)
C25	0.106 (2)	0.0577 (15)	0.109 (2)	-0.0035 (14)	0.0435 (17)	-0.0292 (15)
C26	0.0799 (17)	0.096 (2)	0.0821 (16)	-0.0169 (15)	0.0407 (14)	-0.0399 (15)
C27	0.0698 (14)	0.106 (2)	0.0576 (13)	0.0073 (13)	0.0194 (11)	-0.0129 (13)
C28	0.0769 (14)	0.0605 (13)	0.0610 (12)	0.0120 (11)	0.0228 (11)	-0.0084 (10)
C29	0.0991 (17)	0.0744 (16)	0.0854 (16)	-0.0376 (14)	0.0483 (13)	-0.0165 (12)
N1	0.0604 (10)	0.0557 (10)	0.0611 (10)	-0.0151 (8)	0.0322 (8)	-0.0083 (7)
O2	0.1194 (12)	0.0654 (9)	0.0392 (7)	0.0163 (8)	0.0087 (7)	0.0095 (6)
O3	0.0751 (9)	0.0600 (9)	0.0827 (10)	0.0249 (8)	0.0324 (7)	0.0237 (8)

Geometric parameters (Å, °)

C1—O2	1.2136 (19)	C15—H15A	0.9700
C1—C2	1.473 (2)	C15—H15B	0.9700
C1—C12	1.565 (2)	C16—O3	1.219 (2)
C2—C3	1.373 (3)	C16—C17	1.492 (2)
C2—C10	1.402 (2)	C17—C18	1.379 (3)
C3—C4	1.409 (3)	C17—C22	1.390 (2)
С3—Н3	0.9300	C18—C19	1.379 (3)
C4—C5	1.357 (3)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.364 (3)
C5—C11	1.403 (3)	C19—H19	0.9300
С5—Н5	0.9300	C20—C21	1.355 (3)
C6—C7	1.353 (3)	C20—H20	0.9300
C6—C11	1.408 (3)	C21—C22	1.375 (3)
С6—Н6	0.9300	C21—H21	0.9300
С7—С8	1.418 (3)	C22—H22	0.9300
С7—Н7	0.9300	C23—C28	1.375 (3)
С8—С9	1.361 (2)	C23—C24	1.378 (3)
С8—Н8	0.9300	C24—C25	1.384 (3)
C9—C10	1.397 (2)	C24—H24	0.9300
C9—C12	1.519 (2)	C25—C26	1.353 (3)
C10-C11	1.406 (2)	C25—H25	0.9300
C12—N1	1.465 (2)	C26—C27	1.361 (3)
C12—C13	1.571 (2)	С26—Н26	0.9300
C13—C16	1.519 (2)	C27—C28	1.379 (3)
C13—C14	1.551 (2)	С27—Н27	0.9300
С13—Н13	0.9800	C28—H28	0.9300
C14—C23	1.509 (2)	C29—N1	1.461 (2)

C14—C15	1.516 (3)	С29—Н29А	0.9600
C14—H14	0.9800	C29—H29B	0.9600
C15—N1	1.454 (2)	С29—Н29С	0.9600
O2—C1—C2	127.16 (17)	C14—C15—H15A	111.3
O2—C1—C12	124.49 (16)	N1—C15—H15B	111.3
C2—C1—C12	108.31 (14)	C14—C15—H15B	111.3
C3—C2—C10	119.66 (17)	H15A—C15—H15B	109.2
C3—C2—C1	133.22 (18)	O3—C16—C17	119.76 (15)
C10—C2—C1	107.11 (15)	O3—C16—C13	120.78 (15)
C2—C3—C4	118.1 (2)	C17—C16—C13	119.45 (15)
С2—С3—Н3	120.9	C18—C17—C22	118.44 (17)
С4—С3—Н3	120.9	C18—C17—C16	123.43 (15)
C5—C4—C3	122.3 (2)	C22—C17—C16	118.12 (16)
C5—C4—H4	118.9	C17—C18—C19	120.42 (19)
C3—C4—H4	118.9	C17—C18—H18	119.8
C4—C5—C11	121 20 (19)	C19—C18—H18	119.8
C4—C5—H5	119.4	C_{20} C_{19} C_{18}	119.9 (2)
C11-C5-H5	119.1	$C_{20} - C_{19} - H_{19}$	120.0
C7_C6_C11	120.06(17)	C_{18} C_{19} H_{19}	120.0
C7-C6-H6	120.00 (17)	$C_{10} = C_{10} = C_{10} = C_{10}$	120.0 120.8(2)
C11_C6_H6	120.0	$C_{21} - C_{20} - H_{20}$	120.8 (2)
C6 $C7$ $C8$	120.0 122.84(18)	$C_{21} = C_{20} = H_{20}$	119.0
$C_{0} = C_{1} = C_{0}$	1122.04 (10)	$C_{19} = C_{20} = C_{120}$	119.0 110.0(2)
$C_{0} = C_{1} = H_{1}$	118.0	$C_{20} = C_{21} = C_{22}$	119.9 (2)
$C_{0} = C_{1}^{2} = C_{1}^{2}$	110.0	$C_{20} = C_{21} = H_{21}$	120.0
$C_{2} = C_{2} = C_{1}$	110.07 (10)	$C_{22} = C_{21} = H_{21}$	120.0
$C_{2} = C_{3} = H_{3}$	120.6	$C_{21} = C_{22} = C_{17}$	120.3 (2)
$C^{2} = C^{2} = C^{1}$	120.0	C17 C22—H22	119.7
$C_{8} = C_{9} = C_{10}$	118.02(13)	C1/-C22-H22	119.7
$C_8 = C_9 = C_{12}$	132.51(10)	$C_{28} = C_{23} = C_{24}$	110.91 (19)
C10 - C9 - C12	109.46 (13)	$C_{28} = C_{23} = C_{14}$	121.96 (17)
C9-C10-C2	113.33 (14)	$C_{24} = C_{23} = C_{14}$	121.06 (18)
	124.21 (16)	$C_{23} = C_{24} = C_{25}$	121.1 (2)
	122.45 (16)	C23—C24—H24	119.4
C5—C11—C10	116.29 (18)	C25—C24—H24	119.4
C5—C11—C6	127.74 (18)	C26—C25—C24	120.9 (2)
C10-C11-C6	115.96 (18)	С26—С25—Н25	119.5
N1—C12—C9	112.92 (13)	C24—C25—H25	119.5
N1—C12—C1	114.40 (13)	C25—C26—C27	118.9 (2)
C9—C12—C1	101.69 (12)	C25—C26—H26	120.6
N1—C12—C13	102.93 (12)	C27—C26—H26	120.6
C9—C12—C13	116.96 (13)	C26—C27—C28	120.5 (2)
C1—C12—C13	108.34 (13)	С26—С27—Н27	119.7
C16—C13—C14	113.29 (13)	С28—С27—Н27	119.7
C16—C13—C12	113.06 (13)	C23—C28—C27	121.6 (2)
C14—C13—C12	105.31 (13)	C23—C28—H28	119.2
C16—C13—H13	108.3	C27—C28—H28	119.2
C14—C13—H13	108.3	N1—C29—H29A	109.5
С12—С13—Н13	108.3	N1—C29—H29B	109.5
C23—C14—C15	116.74 (15)	H29A—C29—H29B	109.5

C23—C14—C13	112.37 (14)	N1—C29—H29C	109.5
C15—C14—C13	103.08 (14)	H29A—C29—H29C	109.5
C23—C14—H14	108.1	H29B—C29—H29C	109.5
C15—C14—H14	108.1	C15—N1—C29	115.24 (15)
C13—C14—H14	108.1	C15—N1—C12	107.82 (14)
N1-C15-C14	102.41 (14)	C29—N1—C12	115.72 (15)
N1—C15—H15A	111.3		
O2—C1—C2—C3	-0.6 (4)	C9—C12—C13—C14	131.26 (14)
C12—C1—C2—C3	177.3 (2)	C1—C12—C13—C14	-114.66 (14)
O2—C1—C2—C10	-179.13 (18)	C16—C13—C14—C23	-90.89 (18)
C12—C1—C2—C10	-1.20 (19)	C12—C13—C14—C23	145.06 (14)
C10—C2—C3—C4	0.7 (3)	C16—C13—C14—C15	142.59 (16)
C1—C2—C3—C4	-177.7(2)	C12—C13—C14—C15	18.54 (17)
C2-C3-C4-C5	-1.5 (4)	C23—C14—C15—N1	-161.09 (15)
$C_{3} - C_{4} - C_{5} - C_{11}$	09(4)	C13—C14—C15—N1	-37 41 (19)
C11—C6—C7—C8	0.6(3)	C14-C13-C16-O3	-242(2)
C6-C7-C8-C9	0.9(3)	C12-C13-C16-O3	95 49 (18)
C7-C8-C9-C10	-21(2)	C14-C13-C16-C17	156 88 (14)
C7 - C8 - C9 - C12	177 34 (17)	C12-C13-C16-C17	-8341(18)
C_{8}^{-} C_{9}^{-} C_{10}^{-} C_{2}^{-}	-177.88(16)	03-C16-C17-C18	175 23 (18)
$C_1^{12} - C_2^{0} - C_1^{10} - C_2^{10}$	26(2)	C_{13} C_{16} C_{17} C_{18}	-5.9(2)
$C_{12} = C_{10} = C_{10} = C_{11}$	2.0(2)	03 - 016 - 017 - 022	-3.9(2)
$C_{12} = C_{10} = C_{10} = C_{11}$	-177.67(16)	C_{13} C_{16} C_{17} C_{22}	3.7(2)
$C_{12} = C_{10} = C_{10} = C_{11}$	-170.55(18)	$C_{13} = C_{10} = C_{17} = C_{22}$	1/4.97(10)
$C_{1} = C_{2} = C_{10} = C_{9}$	-0.8(2)	$C_{22} - C_{17} - C_{18} - C_{19}$	-178.6(2)
$C_1 = C_2 = C_{10} = C_{9}$	-0.8(2)	$C_{10} - C_{17} - C_{18} - C_{19}$	-1/8.0(2)
$C_{3} = C_{2} = C_{10} = C_{11}$	0.7(3)	C17 - C18 - C19 - C20	-0.1(4)
$C_1 = C_2 = C_{10} = C_{11}$	1/9.43(10)	$C_{18} - C_{19} - C_{20} - C_{21}$	-0.3(4)
C4 = C5 = C11 = C10	0.3(3)	C19 - C20 - C21 - C22	0.7(4)
$C_4 = C_5 = C_{11} = C_6$	1/9.7(2)	$C_{20} = C_{21} = C_{22} = C_{17}$	-0.2(4)
$C_{9} = C_{10} = C_{11} = C_{5}$	1/9.02 (18)	C18 - C17 - C22 - C21	-0.4(3)
$C_2 = C_1 O_2 = C_1 O_2 C_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	-1.3(3)	C16 - C17 - C22 - C21	1/8.81 (19)
C9 = C10 = C11 = C6	-0.4(3)	C13 - C14 - C23 - C28	55.7(2)
C2_C10_C11_C6	1/9.36 (1/)	C13 - C14 - C23 - C28	-63.1 (2)
C7—C6—C11—C5	179.8 (2)	C15-C14-C23-C24	-127.57 (19)
C/C6C11C10	-0.9(3)	C13-C14-C23-C24	113.66 (18)
C8—C9—C12—N1	54.5 (2)	C28—C23—C24—C25	1.2 (3)
C10-C9-C12-N1	-126.08 (15)	C14—C23—C24—C25	-175.76 (18)
C8—C9—C12—C1	177.53 (18)	C23—C24—C25—C26	0.0 (3)
C10-C9-C12-C1	-3.02 (17)	C24—C25—C26—C27	-1.4 (4)
C8—C9—C12—C13	-64.7 (2)	C25—C26—C27—C28	1.6 (3)
C10-C9-C12-C13	114.74 (16)	C24—C23—C28—C27	-1.0 (3)
O2—C1—C12—N1	-57.4 (2)	C14—C23—C28—C27	175.89 (17)
C2-C1-C12-N1	124.57 (15)	C26—C27—C28—C23	-0.4 (3)
O2—C1—C12—C9	-179.48 (18)	C14—C15—N1—C29	175.49 (17)
C2-C1-C12-C9	2.53 (17)	C14—C15—N1—C12	44.53 (19)
O2—C1—C12—C13	56.7 (2)	C9—C12—N1—C15	-158.77 (15)
C2-C1-C12-C13	-121.27 (15)	C1—C12—N1—C15	85.56 (17)
N1-C12-C13-C16	-117.34 (15)	C13—C12—N1—C15	-31.75 (17)
C9—C12—C13—C16	7.1 (2)	C9—C12—N1—C29	70.5 (2)

C1—C12—C13—C16 N1—C12—C13—C14	121.15 (15) 6.86 (16)	C1—C12—N1—C29 C13—C12—N1—C29		-45.1 (2) -162.45 (16)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C3—H3···Cg5 ⁱ	0.93	2.85	3.638 (2)	144
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+1/2$	2.			

Fig. 2

