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Abstract

Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the presence or absence of
a disease and the result of a diagnostic test. They typically report the number of true positives, false positives, true
negatives and false negatives. However, diagnostic test outcomes can also be either non-evaluable positives or non-
evaluable negatives. We propose a novel model for the meta-analysis of diagnostic studies in the presence of non-
evaluable outcomes, which assumes independent multinomial distributions for the true and non-evaluable positives, and,
the true and non-evaluable negatives, conditional on the latent sensitivity, specificity, probability of non-evaluable
positives and probability of non-evaluable negatives in each study. For the random effects distribution of the latent
proportions, we employ a drawable vine copula that can successively model the dependence in the joint tails. Our
methodology is demonstrated with an extensive simulation study and applied to data from diagnostic accuracy studies of
coronary computed tomography angiography for the detection of coronary artery disease. The comparison of our
method with the existing approaches yields findings in the real data application that change the current conclusions.
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| Introduction

Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the presence or
absence of a disease and the result of a diagnostic test. They typically report the number of true positives (diseased
subjects correctly diagnosed), false positives (non-diseased subjects incorrectly diagnosed as diseased), true neg-
atives (non-diseased subjects correctly diagnosed as non-disecased) and false negatives (diseased subjects incor-
rectly diagnosed as non-diseased). However, diagnostic test outcomes can be non-evaluable.! This is the case for
coronary computed tomography (CT) angiography studies which have non-evaluable results of index text in
various ways such as when transferring a segment/vessel to a patient based evaluation.’

Synthesis of diagnostic test accuracy studies is the most common medical application of multivariate meta-
analysis.>* The purpose of a meta-analysis of diagnostic test accuracy studies is to combine information over
different studies and provide an integrated analysis that will have more statistical power to detect an accurate
diagnostic test than an analysis based on a single study. Nevertheless, the existence of non-evaluable subjects is an
important issue that could lead to biased meta-analytic estimates of index test accuracy.>° Schuetz et al.” studied
different ad-hoc approaches dealing with diagnostic test non-evaluable subjects, such as non-evaluable subjects
are excluded from the study, non-evaluable positives (non-evaluable diseased subjects) are taken as true positives
and non-evaluable negatives (non-evaluable non-diseased subjects) are taken as false positives, non-evaluable
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positives are taken as false negatives and non-evaluable negatives are taken as true negatives, and non-evaluable
positives as false negatives and non-evaluable negatives as false positives. In all of these approaches, Schuetz
et al.” used the bivariate generalized linear mixed model (BGLMM)’ and concluded that excluding the index test
non-evaluable subjects leads to overestimation of the meta-analytic estimates of sensitivity and specificity and
recommended the intent-to-diagnose approach by treating non-evaluable positives as false negatives and non-
evaluable negatives as false positives.

Ma et al.’ used a trivariate generalized mixed model (TGLMM) approach by treating the non-evaluable
subjects as missing data under a missing at random assumption (MAR). Ma et al.,” with extensive simulation
studies, showed that the intent-to-diagnose approach” under-estimates both meta-analytic estimates of sensitivity
and specificity, while the TGLMM approach under the MAR assumption gives nearly unbiased estimates of
sensitivity, specificity and prevalence.

Nikoloulopoulos,® similar to Ma et al.,’ extended the vine copula mixed model for trivariate meta-analysis of
diagnostic test accuracy studies accounting for disease prevalence® to additionally account for non-evaluable
subjects. The extended trivariate vine copula mixed model includes the extended TGLMM as a special case
and can also model sensitivity, specificity and prevalence on the original scale. Nikoloulopoulos® demonstrated
that the extended TGLMM leads to biased meta-analytic estimates of sensitivity, specificity and prevalence when
the univariate random effects are misspecified and that the extended vine copula mixed model gives nearly unbi-
ased estimates of test accuracy indices and disease prevalence.

A recurrent theme underlying the methodologies of Ma et al.” and Nikoloulopoulos® is the need to make the
MAR assumption that cannot be verified based on the observed data. Hence, it is natural to be concerned about
robustness or sensitivity of inferences to departures from the MAR assumption. The within-study model assumes
that the number of true negatives, false negatives, false positives, true positives, non-evaluable negatives and non-
evaluable positives are multinomially distributed, given the latent (random) vector of sensitivity, specificity, dis-
ease prevalence, probability of non-evaluable positives and probability of non-evaluable negatives. Under the
MAR assumption, the multinomial probability mass function (pmf) decomposes into a product of independent
binomial pmfs given the random effects. Hence, the within-study model actually assumes that the number of true
negatives, number of true positives, number of diseased subjects, number of non-evaluable negatives and number
of non-evaluable positives are conditionally independent and binomially distributed given the random effects. The
triplet of latent sensitivity, specificity and prevalence are independent of the missing probabilities, hence the joint
likelihood factors into two components, one involving only the sensitivity, specificity and disease prevalence, and
the other involving only the probabilities of non-evaluable positives and non-evaluable negatives. Therefore, the
methodology of Chu et al.” or Nikoloulopoulos® is applied to the first likelihood component to infer about
the sensitivity, specificity and disease prevalence. Hence, the models in Ma et al.’ and Nikoloulopoulos® extend
the BGLMM and the bivariate vine copula mixed model,'® respectively, to the trivariate case by adding the
disease prevalence as a third outcome to indirectly account for the non-evaluable results. On the one hand, the
number of diseased subjects are binomially distributed with probability of success the latent prevalence and a
support that includes the number of non-evaluable positives and the number of non-evaluable negatives, but the
true positives and true negatives are binomially distributed with probability of success the latent sensitivity and
specificity, respectively, and a support that does not include either the number of non-evaluable positives or the
number of non-evaluable negatives on the other, just like in the BGLMM and the bivariate vine copula mixed
model.'” Note in passing that a special case of the bivariate copula mixed model is the BGLMM, that is, a copula
mixed model composed of a bivariate normal (BVN) copula with normal margins.

In this paper, in order to remedy this situation of ignoring the non-evaluable subjects in the derivation of the
meta-analytic estimates of sensitivity and specificity, we include the number of non-evaluable positives and the
number of non-evaluable negatives as separate non-missing response categories. Interestingly, the proposed model
extends the bivariate copula mixed model'® to the quadrivariate case by directly adding the number of non-
evaluable positives and number of non-evaluable negatives as a third and fourth outcome, respectively. Hence, it
directly utilizes all the available data. The bivariate copula mixed model'® assumes independent binomial distri-
butions for the true positives and true negatives, conditional on the latent pair of sensitivity and specificity in each
study. In the proposed methodology for the meta-analysis of diagnostic tests where we additionally account for
non-evaluable outcomes of the diagnostic test, we will assume independent multinomial distributions for the true
and non-evaluable positives, and, the true and non-evaluable negatives, conditional on the latent sensitivity,
specificity, probability of non-evaluable positives and probability of non-evaluable negatives in each study.

For the random effects distribution, we employ a regular vine copula.'' Regular vine copulas are suitable for
high-dimensional data, hence given the low dimension d =4, where d is the dimension, we use their boundary case
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namely a drawable vine (D-vine) copula. D-vine copulas have become important in many applications areas such
as finance'>'? and biological sciences,'*'® to just name a few, in order to deal with dependence in the joint tails.
Another boundary case of regular vine copulas is the canonical vine copula, but this parametric family of copulas
is only suitable if there exists a (pilot) variable that drives the dependence among the variables,'®!” which appar-
ently is not the case in this application area.

The remainder of the paper proceeds as follows. Section 2 introduces the multinomial quadrivariate D-vine
copula mixed model for meta-analysis of diagnostic studies accounting for non-evaluable results and provides
computational details for maximum likelihood (ML) estimation. Section 3 studies the small-sample efficiency and
robustness of the ML estimation of the multinomial quadrivariate D-vine copula mixed model. Section 4 applies
our methodology to data from a published meta-analysis for diagnostic accuracy studies of coronary computed
tomography angiography for the detection of coronary artery disease. We conclude with some discussion in
Section 5, followed by a brief section with software details.

2 The multinomial quadrivariate D-vine copula mixed model

In this section, we introduce the multinomial quadrivariate D-vine copula mixed model. In Subsections 2.1 and
2.2, a D-vine copula representation of the random effects distribution with normal and beta margins, respectively,
is presented. We complete this section with details on maximum likelihood estimation.

2.1 The multinomial quadrivariate D-vine copula mixed model with normal margins

We first introduce the notation used in this paper. The data are y;, i=1,...,N,j=0,1,2, k=0,1, where iis an
index for the individual studies, j is an index for the test outcome (0: negative; 1: positive; 2: non-evaluable) and k
is an index for the disease outcome (0: non-diseased; 1: diseased). The “classic” 2 x 2 table is extended to a 3 x 2
table (Table 1). Each cell in Table 1 provides the cell frequency corresponding to a combination of index test and
disease outcomes in study i.

The diseased subjects have three possible states: false negative, true positive, and non-evaluable positive. The
multinomial observation is therefore the number of diseased subjects where the diagnostic test is in each of its
states. Hence, we assume that the false negatives Yj;, the true positives Y;;, and the non-evaluable positives Y
are multinomially distributed given (X; = x1, X3 = x3), viz.

(Yior, Yiir, Yor)|(Xi = x1, X3 = Xx3)

1
~ Msj (yi+17 1= 171 (xy, x3) = 171 (xs, x), (e, xs), 171 (s, X1)) O

where (X7, X3) is the bivariate latent pair of transformed sensitivity and probability of non-evaluable positives and
I (x;, xi) = ﬁ is the inverse multinomial logit link. Note that Mr(n, pi,...,pr) is shorthand notation for
the multinomial distribution, where 7 is the number of cells, 7 is the number of observations, and (py, ..., pr) with
p1+ -+ pr=11s the T-dimensional vector of success probabilities.

In a similar manner, the non-diseased subjects have also three possible states: true negative, false positive, and
non-evaluable negative. Hence, we assume that the true negatives Yjy, the false positives Y;9, and the non-

evaluable negatives Yy are multinomially distributed given (X, = x5, X4 = x4), viz.

(Yi00, Yito, Yio)|(X2 = x2, X4 = x4)

2
~ M3 (yi+07 7N (x2, x4), 1= 171 (30, x4) — 171 (34, x2), 171 (x4, Xz)) @

where (X,, X4) is the bivariate latent pair of transformed specificity and probability of non-evaluable negatives.
After defining the within-studies model in equations (1) and (2), we next define the between-studies model. The
stochastic representation of the between studies model takes the form

(<D(X1; I(my, m3), 0%), (D(Xz; (12, ), O%)a

<D(X3; I(m3, m1), a%), (I)(X4; (g, m2), 0'42‘)) ~C(+0) ©
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Table 1. Data from an individual study in a 3 x 2 table.

Disease (by gold standard)

Test - + Total
- Yioo yiol Yio+
+ Yilo il Yil+
Non-evaluable Yo Y2l Yi+
Total Yito Yitl Yit+

where C(;0) is a quadrivariate D-vine copula with dependence parameter vector 6=
(012, 023, O34, 01312, Oy, 914‘23) and ®(-; u, ¢) is the cumulative distribution function (cdf) of the N(u, o) distri-

bution, and /(w;, i) = 10g< — ) is the multinomial logit link. The copula parameter vector 6 has parameters of

the random effects model and they are separated from the univariate parameters (n;,0;), j=1,...,4. The
parameters ©; and 7, are those of actual interest denoting the meta-analytic parameters for the sensitivity and
specificity, while the parameters 73 and 7y denote the probabilities of non-evaluable positives and negatives,
respectively. The univariate parameters a3, 93, o3 03,0 2 denote the variabilities of the random effects.

The quadrivariate D-vine copula is built via successwe mixing from bivariate pair-copulas on different levels.
The pairs at level 1 are j,j+ 1, for j=1, 2, 3, and for level ¢ (2 < ¢ < 4), the (conditional) pairs are j,j+ ¢|j +
I,....j+f¢—1forj=1,...,4— ¢ That s, for the four-dimensional D-vine, the copulas for variables j and j+ ¢
given the variables indexed in between capture the conditional dependence.'®> When all the bivariate pair-copulas
are BVN copulas with correlation (copula) parameters p;,, p»3, p34 (1st level) and partial correlation parameters

P13125 P24j35 P14p3 (2nd and 3rd level), the resulting distribution is the quadrivariate normal with mean vector u =

.
(l(m, n3), l(ma, m3), l(m3, m1), I(7q, nz)) and variance covariance matrix

0'% P120102  P130103  P140104

_ | P2O102 7 P230203 240204

P130103  P230203 U% 340304
P140104  P240204 340304 %

where  pi3 = pi3py/1 = P/ 1= 55+ papss Pas = Pogis/ 1 — P23/ 1 = P3g+ P23psas  P1a = Prapy/1 — PT
V1= P54+ P12P24s Prap = P14\23\/1 - P%3|2\/1 - P§4|2 + P3P, Pip = (P13 — P12P23)/\/1 - P%z/\/l — P

and pyyp = (P34 — p23p24)/\/1 - p%3/\/1 — p3,."> Other choices of copulas are better if there is more dependence

in joint upper or lower tail.
The models in equations (1)—(3) together specify a multinomial quadrivariate D-vine copula mixed model with
joint likelihood

L TC], Ty, T3, T4, O1, 02, 03, 04, 0)

/ / / / Yitls You; ity I1(x1, x3), 17 1(X3,X1))
i=1

X g(yz‘oo, V205 Viros 171 (x2, x4), 171 (x4, xz))flz34(xu X2, X3, X4; 0) dxy doxy dxs dxg

where g(;n,p1,...,pr—1) is the My(n, p1,...,pr) pmf and fi234(-; 0) is the quadrivariate D-vine density, viz.

S1234(x1, X2, X3, X450) = P(x1)P(x2) P (x3)Pp(x4)C1234 (Q(xl), D(x2), D(x3), D(x4); 0) 4)
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with

C1234 ((I)(Xl), (I)(Xz), (I)(X3), (I)(X4); 0)
=i ((D(Xl% D(x2); 012) 23 (‘D(Xz)7 D(x3); 923) C34 (‘D(X3), D(x4); 934)
X C132 (Fuz(xl |X2), F3p(x3]x2); 913\2)6‘24\3 (Fz\3(x2|x3)7F4|3(X4|X3); 924\3)

X €423 <F1|23(«‘C1 |2, x3), Fap3(xa]x2, x3); 914\23)

where ¢(x) and ®(x) is shorthand notation for the density ¢(x; i, ¢?) and cdf ®(x; i, 6?) of the N(u, o?) distri-

. . . .. 0C/k q)/(X/'),(l)k<Xk)
bution,  ¢j, Cjxe, 143 are  bivariate copula  densities, Iﬁﬁﬁx@z%, Fipps(x1]x2, x3) =

OC13p  Fijp(x1]x2), Fap (x3]x2)
oo (e alb(xz) b)) and Fyjp3(x4

that a for a four-dimensional D-vine copula density there are 12 different decompositions.'? To be concrete in
the exposition of the theory, we use the decomposition in equation (4); the theory though also applies to the other
11 decompositions.

Below we transform the original integral into an integral over a unit hypercube using the inversion method.
Hence, the joint likelihood becomes

ﬁ/ol /01 /01 /01 g(yillayz?l; Virt, 7! ((D*l (uh (1, m3), U%), ! (U37 (73, m1), G§)>,
/1 (CI)’1 (u3, (13, 1), a%), (I)’l<u1, I(my, m3), a%)))
X g(yioo,yizo;yiw,l*l (CIYI (uz, (72, m4), U%>7 Q! <u4, (14, ), 642;)>7

/1 (CI)’1 (u47 (14, 72), 03), o! (uz, (1, 74), a%)))clzm(ul, Uy, u3, uyg; 0)du

0Cous ( Foys (x2]x3), Faga (s .
X2, X3) = 2 2‘3%3‘);2') 4‘3(““3)); Cit, Cjeje are bivariate copula cdfs. Note

2.2 The multinomial D-vine copula mixed model with beta margins

In this section, we use the parametrization proposed by Wilson'® in order the latent sensitivity and specificity to
remain on the original scale. The within-study model takes the form

(Yoo, Yiir, You| (X1 = x1, X3 = x3) ~M3<yi+1, 1 —x1 —x3(1 —x1), x1, x3(1 —x1)>;

)
(Yioo, Yino, Yiol(X2 = x2, X4 = x4) ~ M3 (Yi+0;x27 1 — x5 — x4(1 — x2), x4(1 — Xz))
The stochastic representation of the between studies model is
3 T4
<F(X1; 1, 1), F(X23 m2, 13), F<X35 T—n’ “/3); F<X4§ 1T-n’ "/4)) ~C(;0) (6)

where C(-;0) is a D-vine copula with dependence parameter vector @ and F(-;x,y) is the cdf of the Beta(rw,y)
distribution with n the mean and y the dispersion parameter. The copula parameter vector 0 has the dependence
parameters of the random effects model and they are separated from the univariate parameters
(m,7;), j=1,...,4. The parameters m; and 7, are those of actual interest denoting the meta-analytic parameters
for the sensitivity and specificity, while the parameters n; and 74 denote the probabilities of non-evaluable
positives and negatives, respectively. The univariate parameters y,,7,,73,74 denote the variabilities of the
random effects. In contrast with the model in the preceding subsection, the random effects of sensitivity and
specificity are on the original scale.
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The models in equations (5) and (6) together specify a vine copula mixed model with joint likelihood

L TC17 T2, T35 T4y V15 V25 V35 Vas 0)

/ / / / g\ yitrs Yars Yist, X1, x3(1 — xl)) (yzoo, Yio2; Viro, X2, X4(1 — Xz))
i=1

X f123a(X1, X2, X3, X4; 0) dox; dxy dxs dxg

where f1234(+;0) is as in equation (4) where we use beta instead of normal marginal distributions. Below we
transform the integral into an integral over a unit hypercube using the inversion method. Hence, the joint like-
lihood becomes

Nop1oploplopl

- 3 -
H/ / / / g()/imyizl;ym,F 1(“1;ﬁ1,V|);F1<M3; 7’/3>(1—F 1(“1;7T17V1)))
1o Jo Jo Jo l-m

Ty
X g(yioo,yizo;yi+o7F_](u2; 2, 72), F! (W; T “/4) (1 - Fl(”zﬂz;?z)))

X ¢34 (uy, ua, u3, ug; 0) duy dus duz duy

2.3 Maximum likelihood estimation and computational details

Estimation of the model parameters can be approached by the standard maximum likelihood (ML) method, by
maximizing the logarithm of the joint likelihood. The estimated parameters can be obtained by using a quasi-
Newton'® method applied to the logarithm of the joint likelihood. This numerical method requires only the
objective function, i.e. the logarithm of the joint likelihood, while the gradients are computed numerically and
the Hessian matrix of the second-order derivatives is updated in each iteration. The standard errors (SEs) of the
ML estimates can be also obtained via the gradients and the Hessian computed numerically during the maximi-
zation process.

For the multinomial quadrivariate D-vine copula mixed model, numerical evaluation of the joint pmf can be

achieved with the following steps:

1.

Calculate Gauss-Legendre?® quadrature points {ug :qg=1,...,n,} and weights {w, : ¢ = 1,...,n,} in terms of
standard uniform.

. Convert from independent uniform random variables {u, :qi=1,...,n.}, {ug, :q2=1,...,n4},

{ug, :q3=1,...,n,}, and {uy, : q4 =1,...,n,} to dependent uniform random variables v, ,v,,
\nangs that have a D-vine distribution C(-;0) using the algorithm in Nikoloulopoulos'
1. Set vy, = uy,

lg13 Vaslara2>
and v,,

Volon = Cz_\}(”qz|“ql§012)

11 = Cip(vg Vg3 012)

1 = Cy15 (g 115 012), 0132)
Vaslaizg: = C;\;(Q'qu\ql ; 023)
13 = Coparlg, [Vaslgiigos 023)
ta = Cipa(ti]ta; 013p)

ts = Capi2,3(ug,| 143 01423)

t = Cabs(t5]133 024y3)

© Y *® N ke

—

Vaslgiaras = C4\3(t6|vq3\q|:qz5 034)

where C(v|u;0) and C~!(v|u; 0) are conditional copula cdfs and their inverses.
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3. Numerically evaluate the joint pmf, e.g.

Noplopl el gl

- 3
H////g(ynlainl;yiJrl;Fl(ul;nl,V])vF1(“35 T- ,V3)<1_F1(“157T1;V1)))
=1Jo Jo Jo Jo —m

. 4
Xg<J7i007yi20§yi+07Fl(“2§ M, 72), F 1<u4; 1_@#4) (1_p1(u2;n2,y2))>

X cio3a(ur, ur, us, ug; @) duy dup dus duy

in a quadruple sum

ng ng o ngoong

. —1 .
E E § Ewawq214fq3vvq4g(yf11,yizl,ym,F (g3 T, 1),
q=1g=1g3=1g4=1

_ 3
F 1<v43|41§42; 1_—7117 Va) (1 - Fl(Vql;7T17’/1)>>g<yioo,yfzo;yf+oa

- T4
F l(qu\ql; T, y2)a Fl (vtj‘4l]1;l]2,q3; 1—77'627 "/4) (1 - FI(VQZ\QI;R27 VZ)))

With Gauss-Legendre quadrature, the same nodes and weights are used for different functions; this helps in
yielding smooth numerical derivatives for numerical optimization via quasi-Newton.

3 Simulations

In this section, we study the small-sample efficiency and robustness of the ML estimation of the multinomial
quadrivariate D-vine copula mixed model. In Section 3.1, we gauge the small-sample efficiency of the ML method
and investigate the misspecification of the parametric margin or bivariate pair-copulas of the random effects
distribution. In Section 3.2, we investigate the mixed model misspecification by using both the proposed model
and the extended trivariate vine copula mixed model® as true models.

We set the sample size and the true univariate and dependence parameters to mimic the data analyzed
in Section 4. In each model, we use six different linking copula families: normal, Frank, and Clayton
copula along with its rotated versions (see our previous papers on copula mixed models®!%?!>? for definitions)
to cover different types of dependence structure. To make it easier to compare strengths of dependence,
we convert the BVN, Frank, and rotated Clayton estimated parameters to Kendall’s t’s in (—1,1) via the fol-
lowing relations+>*

2
T 7Tarcsm( )

0
1f40*1f49*2/ L dr, 0<0
98—1
T =

0
1—40—‘+40—2/e’ dr, 0>0
0

and®

_{ 0/(0+2), by 0° or 180°
1 —=0/(0+2), by 90° or 270°
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3.1 Small-sample efficiency-misspecification of the random effects distribution

We randomly generate samples of size N =30 from the multinomial quadrivariate D-vine copula mixed model
with both normal and beta margins. The simulation process is as below:

1. Simulate (u1,us, u3,us) from a D-vine distribution C(-; 712, 723, T34, T130 = 0, Tagi3 = 0, Tygp3 = 0).
2.+ Convert to normal realizations via

X| = o' MUIOgL, g1 Xy = ! uz;logL, ()
1—7(1—7[3 1—7‘52—7[4

X3 :cbl(m;logL
1—7(1

—1 . 74
os) =0 (wglog o)
— T3 1 - Ty — Ty

« Convert to beta realizations via
x1 = FNup; m, ) X2 = F ' u2; mp, 9,)

x3=F"{us; L701 x4 =F " ug 10gL»V4
1 —m I —m

3. Simulate the size of diseased and non-diseased subjects n; and n,, respectively, from a shifted gamma distri-
bution to obtain heterogeneous study sizes,* i.e.

ny ~sGamma(a = 1.2, 5 = 0.01,lag = 30)
ny ~sGamma(x = 1.2, = 0.01,1ag = 30)

and round off n; and n, to the nearest integers.

4.« For normal margins, draw (yo1, y11,21) from

1 et e
M3 ny, ) K
l+er+en 1+et+ev 1+e% +e"

and (Yoo, Y10, Y20) from

ev 1 e
M3 ny, ) )
l+e2+ev’ 14+e2+ev’ | 4e2+en

e For beta margins, draw (yo,y11,y21) from

M3(l’l1, 1 — X1 —X3(1 —Xl), X1, X3(1 —xl))
and (yoo, y10,20) from
./\/l3 (nz, X2, 1 - Xy — X4(1 — XQ), X4(1 — XQ))

Tables 2 and 3 contain the resultant biases, root mean square errors (RMSE), and standard deviations (SD),
along with the square root of the average theoretical variances (ﬁ ), scaled by 100, for the ML estimates under
different pair-copulas and marginal choices from the multinomial D-vine copula mixed model with beta and



Statistical Methods in Medical Research 29(10)

2996

‘lopow anuj,

[ew.Iou 9)eLIBAIQ INAG
‘A|oAndadsau ‘sea.8ap Zm pue ! Aq paielod uoike|D aJe sendod-ared (€01:)€L) pue (¥E1 i )¥Ey ‘(T2 i)Ty oy Amsb_asvc_u PI0N

0,6l 0TTT ¥S91 ¥SP Yo'l 18T 69°€ 121 1871 €9 86l €199

9°CE 108F YT Sy - - - - 85T 05T Ly sSSP {0£T ‘0D JewuoN

16S1 Axd 0T6 1€y 90'6 L1'T S8'C 191 oLl (4 66l .239g

189 79°6€ (4514 - - - - €9 89T 0€d 09%  {.06 ‘081}uD  [ew.oN

(4 A 85I £7'8 Sy €56 £TT 00'€ 651 19°1 14T S8l 199

8.°0€ SO'SH SLTE - - - - 65T 15T 6S¥ ¥9¥ Juely  [ewldoN

8TLI 995G sl Sy 856 87T 16T L] Sl €5 S6'| €199

15°0€ 95°SH 61°€€ - - - - 85T €5 ob'¥ 6P NAd [BWJON  ISWY

€291 SLT €801 vy ¥8'L v6'l 01¢ 9€'| ol'l S8l wl elog

S191 e Y€ 5 hd yELT 601 ¥0'91 99| 81l or'e 8¢l {0£T ‘0D [ewuoN

IX%dl SHEl 80'8 16°€ 00'8 €8 %l <dl k4l 66’ €€l .239d

LLE| €551 1S€l akd YT L0 6¥91 £9°1 SI'l ¥ET 9¢’| {06 .0813UD  [ewuoN

0T S| LO°E| ¥8'L So¥ S8 ¥6l ¥8l 9¢’| ol'l S8l 81l e19g

0S¥l SLE| €€l 99¥| ¥6HT 9270l 1791 W9l 4N 87T 1€ Juely  [BwION

88¥| vIEl ¥0'6 90¥ WL (42! 161 9’| k4l 66’ pEl elog

99°G| 96| S5l €LY 0¥'ST S80l 9891 99| L] 6€T 8¢l NAG  [ewJON AN

€561 €791 €191 ¥y S0'6 €8T 65°€ 121 vl €9 86'l €199

ITo€ ¥€'8T 8L°€€ 098I SL0€ 68| 879 6Ll Wl 91T 88| {0£T ‘0D JewuoN

e8I S9¥I 816 8Th 688 ST S8T L9l 891 (4% 86l .2399

06°1¢ 9°ST 19°€T 98°LI 8L°LT £5°€1 L6°€T YA 91 19T 88l {06 -0813UD  [ew.ON

€21 1L¥1 708 vEP €98 we 00'€ 85l 19°1 LET ¥8l e19g

SH'9C 15°8C 06'%C 08I ¥1'8C a4 0L¥%T 181 59l vLT 68l Juedy  [ewloN

91°LI LTHI 920l SEd 678 87T 16T L] 121 £S5 S6'l €199

£6'ST 89°LT (474 8S°LI 81'8C 90%| 0S¢ A 651 89'C ¥8l NAG  [ewJoN as

9T SISl 9°¢- ¥1°0 £€'9— 60 80 700 €50 110 800~ €199

o€l 9/°8¢ 01°0¢— - - - - S8 1- 06’1 (493 vid {c0£T ‘0D JewuoN

LE'] 1£0 090 750 SL1- 870~ L0~ K €0 91°0- 170~ 2399

£S°S| og 06'SI- - - - - ¥8'1- 00~ LEE 0ty {.06 081JuD  [ew.oN

00T v1'g 85T 600~ STy £L1°0- 100~ 81°0- 110 €50 170 €199

vLSI ¥8HE 8T I - - - - 98'|- 96'I— 89'¢ YTh Juely  |ewldoN

161 179 105~ o= 18— 170~ 0l1'0- €00 80 €00~ 800~ €129

£091 LT9€ LETT - - - - 16’1 161 6¥€ oTd NAG  [ewJON selg
9T0="*12 gso-=f1 ggo=7tl2 gqro=" sgo0=% go0=% 00='C |1'0=txr 900=°fx fL0=7 (Q60='x gndoy  uiBuely

‘saselq JueI|NSaJ pue suldJew ©19q YIIM [9pow paxiw eindod aulA-q d1elieAlpenb [elwouninw syl wouy (g =

b,

‘suiduew pue sadioyd ejndod-ured juauayip
Japun sa1ewWnNsa | Y2 4o} ‘00| Aq paeds .@\(v S9OUEBLIBA [BD[19.400Y) d8EJAE 3U) JO 1004 dJenbs ayy Yam 3uoje (QS) suoneiasp pJepuels pue (ISY) SJoddd aaenbs uesw 1004

u 'suoneoljdas (0]) suonenwis g = N $dzIs Jo d|dwes |lews °Z 3|qeL



2997

Nikoloulopoulos

‘lopow anuj,

‘lew.ou eLIBAIQ NAY
“AjpARdadsau ‘sea48ep Zm pue !m Aq pereiod uolked aJe seindod-ured (€21:)€8) pue (Ve i )rEy (22i)Tin ay) %o mlul 0N

S1°CE 18°CC 98'9C - - - - 60°€ €8y ws 889 eeg

9LvT SLTC €9°CC €rsl 86'¥C SIEl ¥T0C 88| 86| 8T LTT {-0LT ‘s0luD  [ewoN

14 RY4 £T8C 8¢Sl - - - - I1Te Uy 9¢€'S L0°L eieg

8691 yeel 99°91 6V S6°CC LLL] 68’| €6l 08'¢C €TC {-06 ‘081}UD  Jew.oN

142T4 6EvC 8¥9I - - - 10°€ 19% 96V £99 eeg

88°0¢ 1281 €6'91 N4 I1'¥C €6/l 68| 00°C 18°C 6C'C Juedy  [RWLION

16'SC £8°TC 088l - - - - 00°€ 69v €S 989 eeg

[4 N0 ¥6'Ll 8881 Wyl 09°€T 8911 [4%:] 981 €6'l LLT we NAG  [BWION  ISWY

S¥°0¢ €981 688 qle ws 60C 0Tt vel 801 96l 9T eieg

9881 60°G1 05°8l 19°C1 et 9501 0C91 09°l L1°] 1+'C 61 {-0LT ‘s0juD  [ewloN

9891 Wl €6'L €l'e 899 6C'C L6°] Yl L1°] 14 1€ esg

14dh4! €991 90V 0Tl 11T 886 [434 65| 81l 8¢€°C hd {-06 ‘-081JUD  Jew.oN

6CLI 6891 0L'L ore S€9 6C°C 10T &l €l £0C 8T'| eeg

0091 y1°9l SLI LETI 8Tt €101 €991 99l 1l 0€¢C €e’l Juedy  [BWION

LS°L] 6871 608 ole 609 11" ¥0'C bl L1 01¢ Sel eieg

16'91 88'q1 81°8l &vCl 99°CC €001 1891 (42 61l ) 44 (34l NAG  [BWION AN

SC0€ €8'1C €191 e 099 6¢'¢ €L'S 86| €€°C [4VR) 66'C esg

12244 Ly'6l 91"CC €1'sl Uyt 80°¢l 66l 98l 98l 18°C ST {-0LT c0luD  [ewoN

10°1¢C S€0¢ 'l 0S¢ L0°L YA 91's 10T T €0¢ 90°¢ eeg

891 8061 L¥'S| 9€YI 6L7CC vyl YL LI 98’1 ¥8'l LLT 144 {-06 ‘-081}UD  Jew.oN

[4444 ocel 89°01 &v'e 129 L1'E €T 00C S€T 00°€ L6C eeg

91°0¢ ¥S'8I tiad! oSyl [44X4 09°11 6Ll 88’| 16°1 08C 0T'¢ Juedy  JRULION

€9°CC €981 8601 e 199 00°€ 9C'S v6'l 1€°¢ ¥6'C 66'C esg

g6l WLl vS'LI Va4 90°€C [ANN 68l ¥8'l €81 SLT [4¢ NAG  [BWION as

1601 19°9— VA a4 - - - - LET €y STy 09— eeg

(404 8L'11 80— 90— €9°¢— 9¢€’1 LS'E ¥Co 1£°0 44 Lo {-0LT s0uD  [ewloN

126 wel— orol- - - - - 0S¢ ol'y Wy LE9— eeg

1€°¢C Wt vS1— L6°0— 1L 96'1— (3 €€o0 LS°0 Yy o- €90- {06 -081}uD  JewloN

81Tl wyl— 99°CI- - - - - YA 96'¢ 96°€— L6'9— esg

'S €9°C £9°9- 980~ €L°5— 01— 80 o 190 L1'0— €9°0— Juedy  [RULION

6L7CI 9TEl- 9CSI— - - - - 6C°C 80t 1Ty 91'9— esg

09'S o€y 86'9— 880~ €09~ (44 b 660 S0 190 €€0- 90— NAG  [eWJION selg
6T0="%2  gEo-=ft1  7g0=1t1 690="Y2 QOUI=% §90=% §L0='0 00=*% €00=fr 6L0=C°% {60="'u gjndo) uiduely

‘suidaew pue sadioyd ejndod-ured jusuayip

Japun sa1BWNSS | 9Y2 Joj ‘00| Aq poeds .@\c S9OUELIBA |B119.409Y) 95E.I9AR 31 JO 1004 dJenbs aya yam Suoje {(QS) suoneiAsp pJepuels pue (IS Y) sJ0..9 aJenbs uesaw 1004 ‘saselq
T - _ by« _ .

UEINS3J pUE SUISIEW [BULIOU YIM [9pow paxiw endod aulA-Q SlelieAlpenb [eiwouninw syl wody (§| = °u suonedidas (|) suonenwis g =N $dzis Jo s|dwes |lews ‘¢ d|qeL



2998 Statistical Methods in Medical Research 29(10)

normal margins, respectively. The true (simulated) pair-copula distributions are the Clayton copulas rotated by
180° for both the Ci,(;112) and Ci4(;134) pair-copulas and the Clayton copula rotated by 90° for the Cy3(;123)
pair-copula.

Conclusions from the values in the tables are the following:

e ML with the true multinomial D-vine copula mixed model is highly efficient according to the simulated biases,
SDs and RMSE:s.

e The ML estimates of the univariate meta-analytic parameters and their SDs are robust under copula misspe-
cification, but are not robust to margin misspecification.

e The ML estimates of 7’s and their SDs are robust to copula misspecification, but they are not robust to margin
misspecification.

3.2 Misspecification of the copula mixed model that accounts for non-evaluable
outcomes

We randomly generate samples of size N = 30 from the multinomial quadrivariate D-vine copula mixed model and
the extended trivariate vine copula mixed model with both normal and beta margins using the algorithm in
Section 3.1 and in Nikoloulopoulos,® respectively. We compare the ML estimates of common parameters for
both approaches under misspecification and also include in the comparison the bivariate copula mixed model
estimates where the non-evaluable positives and negatives are either excluded or included as false negatives and
false positives (intention to diagnose approach), respectively.

In Section 3.1 and in Nikoloulopoulos,® it has been revealed that (a) the estimation of the univariate meta-
analytic parameters is a univariate inference, and hence it is the univariate marginal distribution that matters and
not the type of the copula, and (b) estimated Kendall’s 7 is similar among different families of copulas. Hence, as
the ML estimates are nearly not affected by the type of the pair-copula, we provide here the results when all the
bivariate copulas are BVN.

Tables 4 and 5 contain the resultant biases, RMSEs, and SDs, along with the square root of the average
theoretical variances (v/7), scaled by 100, for the ML estimates under different copula mixed models. The true
quadrivariate multinomial vine copula mixed model is composed by the Clayton copulas rotated by 180 for both
the C1,(;712) and Cs4(; 134) pair-copulas and the Clayton copula rotated by 90" for the Ca3(; 23) pair-copula. The
true trivariate vine copula mixed model is composed by the Clayton copula for Cj»(; 712) and the Clayton rotated
by 90" for both the Ci3(;713) and Cay)1(; T23)1) pair-copulas.

Conclusions from the values in the tables are the following:

e The bivariate copula mixed model where the non-evaluable outcomes are disregarded and the extended tri-
variate vine copula mixed model showed similar performance. Both led to unbiased (biased) and efficient
(inefficient) estimates when the true model is the trivariate (quadrivariate multinomial) vine copula mixed
model.

e The bivariate copula mixed model where the non-evaluable positives and negatives included as false negatives
and false positives, respectively, and the multinomial D-vine copula mixed model with beta margins showed
similar performance. Both led to unbiased (biased) and efficient (inefficient) estimates when the true model is
the quadrivariate multinomial vine copula mixed model with beta margins (trivariate vine copula mixed model
or quadrivariate multinomial vine copula mixed model with normal margins).

4 Meta-analysis of coronary computed tomography angiography studies

We apply the multinomial quadrivariate D-vine copula mixed model for the meta-analysis of diagnostic accuracy
studies accounting for non-evaluable subjects to data on 30 studies from a systematic review for diagnostic
accuracy studies of coronary computed tomography angiography for the detection of coronary artery disease.>’

We fit the multinomial quadrivariate D-vine copula mixed model for all different decompositions of the D-vine
copula density, for both beta and normal margins and different pair-copulas at the level 1; for levels 2 and 3, we
use BVN copulas. In cases when fitting the multinomial quadrivariate D-vine copula mixed model, the resultant
estimate of one of the conditional dependence parameters was close to the right boundary of its parameter space
(that is clear indication that the model with a full structure provides more dependence structure than it is actually
required®), we used a truncated model, i.e. we captured the strongest dependence in the first tree and then just used
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the independence copulas in lower order trees, i.e. conditional independence. Joe et al.?® showed that in order for a
vine copula to have (tail) dependence for all bivariate margins, it is only necessary for the bivariate copulas in level
1 to have (tail) dependence and it is not necessary for the conditional bivariate copulas in levels 2 and 3, to have
tail dependence. Hence, one can either use BVN or independence copulas at levels 2 and 3 without sacrificing the
tail dependence of the vine copula distribution.

In Table 6, we present the results from the decomposition of the vine copula density in equation (4), as a
different decompositions led to similar results due to the small sample size. This is consistent with our previous
studies on vine copula mixed models.®® Since the number of parameters is not the same between the models, we
use the Akaike information criterion (AIC), that is —2x log-likelihood +2x (#model parameters) as a rough
diagnostic measure for goodness of fit between the models. The AICs showed that a (truncated) multinomial
quadrivariate D-vine copula mixed model with Clayton copulas rotated by 180° for both the Cj»(;112) and
C34(; 134) pair-copulas and the Clayton copula rotated by 90° for the Ch3(;123) pair-copula and beta margins
(Table 6) provides the best fit.

In real data (in contrast with the simulated data in Section 3), the truth is unknown, so it is important to
compare between the proposed and other existing approaches in terms of point estimation and variance. First, in
order to reveal if the use of the proposed model is worthy, when a standard bivariate analysis (either ignoring the
non-evaluable outcomes or including the non-evaluable positives and negatives as false negatives and positives,
respectively) is easy, we also fit the bivariate copula mixed model'® with both beta and normal margins and
different bivariate copulas. According to the likelihood principle, a bivariate copula mixed model with a Clayton
and Clayton copula rotated by 180° (to model the association between the latent sensitivity and specificity) and
beta margins provides the best fit for both different ad-hoc approaches to handle the non-evaluable outcomes
(Table 7). It is revealed that a bivariate copula mixed model with the sensitivity and specificity on the original scale
provides better fit than the BGLMM,’ which models the sensitivity and specificity on a transformed scale.

Then, in order to compare the proposed approach with the ones that use the MAR assumption, we fit the
extended trivariate vine copula mixed model® with both beta and normal margins and different pair-copulas.
According to the likelihood principle, a vine copula mixed model composed of a Clayton copula to model the
association between the sensitivity and specificity, a Clayton copula rotated by 90° to model both the associations
between the specificity and prevalence and between the sensitivity and prevalence given the specificity, and beta
margins provides the best fit (Table 7). It is revealed that an extended trivariate vine copula mixed model with the
sensitivity, specificity, and disease prevalence on the original scale provides better fit than the extended TGLMM,>
which models the sensitivity, specificity, and disease prevalence on a transformed scale.

It has been shown that the trivariate analysis does not change the conclusions from the bivariate analysis
excluding the non-evaluable outcomes. It is also apparent that the results from the quadrivariate analysis differ-
entiate from the ones from bivariate (excluding the non-evaluable outcomes) and trivariate analyses which are
fairly similar. The meta-analytic estimates of sensitivity and specificity from the latter approaches are blown,
because in both approaches it is assumed that

Yin|X1 = x; ~Binomial(yjo1 + yi1, x1) and  Yjp|X> = x» ~ Binomial(yio0 + yito, X2)

i.e. their support ignores the number of non-evaluable positives y»; and the number of non-evaluable negatives
vino- The conclusions from the quadrivariate analysis with the latent proportions on the original scale are quite
similar with the ones from the bivariate analysis where the non-evaluable positives and negatives are included as
false negatives and positives, respectively. These results are consistent with the findings in the simulations in
Section 3.2. Note in passing that comparing the AIC values among the quadrivariate, trivariate and bivariate
copula mixed models is inconclusive as they use a different number of responses.

Although typically the focus of meta-analysis has been to derive the summary-effect estimates, there is increas-
ing interest in drawing predictive inference. Summary receiver operating characteristic curves (SROC) can be
deduced from the D-vine copula mixed model with the sensitivity and specificity on the original scale through the
quantile regression techniques developed for the bivariate copula mixed model.'® SROC essentially shows the
effect of different model (random effect distribution) assumptions, since it is an inference that depends on the joint
distribution. An SROC curve has been deduced for the bivariate copula mixed model'® through a median regres-
sion curve of X; on X,. For the copula mixed model, the model parameters (including dependence parameters),
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Table 6. AICs, ML estimates, and standard errors (SE) of the multinomial quadrivariate D-vine copula mixed models for diagnostic
accuracy studies of coronary computed tomography angiography.

BVN Frank CiIn{180°, 90°}* Cin{180°, 270°}
Est. SE Est. SE Est. SE Est. SE
Normal margins
) 0.94 0.0l 0.95 0.0l 0.94 0.02 0.94 0.02
123 0.80 0.03 0.80 0.03 0.79 0.03 0.79 0.03
3 0.04 0.0l 0.03 0.0l 0.03 0.01 0.04 0.0l
T4 0.09 0.02 0.09 0.02 0.09 0.02 0.09 0.02
gy 0.89 0.20 091 0.19 0.75 0.17 0.83 0.17
0a 0.72 0.15 0.65 0.13 0.65 0.12 0.67 0.13
03 1.32 0.36 1.37 0.36 1.20 0.31 1.19 0.33
04 0.80 0.23 0.70 0.21 0.69 0.19 0.73 0.19
Ti2 0.54 0.22 0.49 0.20 0.82 0.19 0.82 0.18
T3 —0.16 0.20 —0.31 0.17 —0.38 0.24 —0.04 0.15
T34 0.22 0.23 0.1 0.24 0.29 0.17 0.37 0.17
kD) 0.43 0.34 0.67 0.23 - - - -
243 0.11 0.22 —-0.03 0.24 - - - -
T14/23 -0.39 0.32 —0.36 0.49 - - - -
AIC 4013.22 4010.80 4007.72 4009.36
Beta margins

) 0.90 0.02 0.90 0.02 0.90 0.01 0.89 0.01
123 0.76 0.03 0.77 0.02 0.77 0.02 0.76 0.02
3 0.06 0.0l 0.06 0.0l 0.06 0.01 0.07 0.0l
4 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02
71 0.08 0.03 0.09 0.03 0.09 0.03 0.10 0.03
o) 0.09 0.03 0.09 0.02 0.08 0.02 0.09 0.02
V3 0.32 0.12 0.32 0.13 0.37 0.12 0.28 0.12
V4 0.15 0.07 0.16 0.07 0.15 0.07 0.15 0.06
Ti2 0.71 0.11 0.74 0.08 0.82 0.08 0.79 0.07
T3 —0.35 0.17 —0.34 0.12 -0.52 0.14 -0.23 0.10
T34 0.23 0.22 0.20 0.21 0.26 0.18 0.21 0.17
‘L'|3‘2 -0.66 0.38 - - - - - -
‘524‘3 -0.10 0.20 - - - - - -
T14)23 —-0.02 0.57 - - - - - -
AIC 4009.42 4005.93 4002.17 4004.92

Note: CIn{wLwi}: The Cj2(+;712), C34(+; T34) and Cy3(; T23) pair-copulas are Clayton rotated by w; and w, degrees, respectively.
AIC: akaike information criterion; BVN: bivariate normal.
*Best fit.

the choice of the copula, and the choice of the margin affect the shape of the SROC curve.'® However, there is no
priori reason to regress X; on X, instead of the other way around, so a median regression curve of X> on X; has
also been provided. Rucker and Schumacher®’ stated that instead of summarizing data using an SROC, it might
be preferable to give confidence regions. Hence, in addition to using just median regression curves, quantile
regression curves with a focus on high (¢=0.99) and low quantiles (¢=0.01), which are strongly associated
with the upper and lower tail dependence imposed from each parametric family of copulas, have been proposed.'”
These can been seen as confidence regions of the median regression SROC curve.

Figure 1 demonstrates the SROC curves with a confidence region and summary operating points (a pair of the
model-based sensitivity and specificity; shown by the black square) from the best fitted multinomial quadrivariate
D-vine copula mixed model, the best fitted trivariate vine copula mixed model, and the best fitted bivariate copula
mixed models along with the study estimates (shown by the circles in Figure 1). For the upper panel graphs, the
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Table 7. AICs, ML estimates, and standard errors (SE) of the best fitted bivariate copula and extended trivariate vine copula mixed
models with beta margins for diagnostic accuracy studies of coronary computed tomography angiography.

Bivariate Trivariate

Clayton® Clayton 180°° Clayton {0°,90°}

Est. SE Est. SE Est. SE
o 0.97 0.0l 0.90 0.0l 0.97 0.0l
Ty 0.85 0.02 0.77 0.02 0.85 0.02
T3 - - - - 0.49 0.03
71 0.03 0.0l 0.09 0.03 0.03 0.0l
V2 0.06 0.02 0.08 0.02 0.06 0.02
73 - - - - 0.11 0.02
Ti2 0.42 0.19 0.82 0.08 0.39 0.20
i3 - - - - 0.02 0.23
T23)1 - - - - -0.28 0.17
AIC 244.82 321.91 492.26

AIC: akaike information criterion.
*The non-evaluable outcomes are excluded.
®The non-evaluable positives and negatives are included as false negatives and positives, respectively.
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Figure 1. SROC curves with a confidence region and summary operating points (a pair of the model-based sensitivity and specificity)
from the best fitted multinomial quadrivariate D-vine, extended trivariate vine and bivariate copula mixed models along with the study
estimates.

HW: summary point; °: study estimate; black and grey lines represent the quantile regression curves x| := X (x2,q) and x3 := x2(x, q),
respectively; for ¢ = 0.5 solid lines and for g € {0.01,0.99} dotted lines (confidence region).

*The non-evaluable outcomes are excluded."The non-evaluable positives and negatives are included as false negatives and positives,
respectively.

sensitivity and specificity at study i (point estimates) have been calculated with the typical definitions of sensitivity
and specificity, viz.
Yill and Vi0o
Yior +yin Yioo + Yito
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respectively, as only patients with positive or negative results are considered, while for the lower panel graphs, the
sensitivity and specificity at study i/ have been calculated with the definitions of sensitivity and specificity in Simel
et al.,>® viz.

Yill and Yioo
Yit1 Yito

respectively, since the number of non-evaluable positives y;»; contributes to the diseased population and the
number of non-evaluable negatives y,o contributes to the non-diseased population.

5 Discussion

Motivated by the existence of non-evaluable results in diagnostic test accuracy studies, this paper proposed a
multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic test accuracy studies
accounting for non-evaluable subjects. Our general statistical model allows for selection of pair-copulas indepen-
dently among a variety of parametric copula families, i.e. there are no constraints in the choices of bivariate
parametric families of copulas and can also operate on the original scale of sensitivity and specificity.

For the random effects, we have used a quadrivariate D-vine copula distribution or a truncated at level 1
quadrivariate D-vine copula (conditional independence), which allows flexible (tail) dependence.?® We have pro-
posed a numerically stable ML estimation technique based on Gauss-Legendre quadrature; the crucial step is to
convert from independent to dependent quadrature points that follow a quadrivariate D-vine distribution.

In an era of evidence-based medicine, decision makers need high-quality procedures such as the one developed
in this article to support decisions about whether or not to use a diagnostic test in a specific clinical situation. The
multinomial quadrivariate vine-copula mixed model is not an ad-hoc? but rather a sophisticated approach that
utilizes all the available data in decision making and can satisfy the intention-to-diagnose principle. Using an
intention to diagnose principle, i.e. a conservative approach, ensures that both the sensitivity and specificity are
not overestimated. Hence, it formally enables decision makers to be more cautious in solely relying to the overly
optimistic meta-analytic estimates of sensitivity and specificity derived from the extended trivariate vine copula
mixed model that indirectly accounts for the non-evaluable outcomes.
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Software
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diagnostic tests with non-evaluable subjects are part of the R package CopulaREMADA ' The data and code used in Section
4 are given as data and code examples in the package, respectively.

References

1. Begg CB, Greenes RA and Iglewicz B. The influence of uninterpretability on the assessment of diagnostic tests. J Chronic
Dis 1986; 39: 575-584.


https://orcid.org/0000-0003-0853-0084
https://orcid.org/0000-0003-0853-0084

Nikoloulopoulos 3005

2.

oW

11.
12.

13.

15.

16.
17.

18.

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31

Schuetz GM, Schlattmann P and Dewey M. Use of 3 x 2 tables with an intention to diagnose approach to assess clinical
performance of diagnostic tests: Meta-analytical evaluation of coronary CT angiography studies. BMJ (Online) 2012; 345:
e6717.

. Jackson D, Riley R and White IR. Multivariate meta-analysis: potential and promise. Stat Med 2011; 30: 2481-2498.
. Mavridis D and Salanti G. A practical introduction to multivariate meta-analysis. Stat Meth Med Res 2013; 22: 133-158.
. Ma X, Suri MFK and Chu H. A trivariate meta-analysis of diagnostic studies accounting for prevalence and non-evaluable

subjects: re-evaluation of the meta-analysis of coronary CT angiography studies. BMC Med Res Methodol 2014; 14: 128.

. Nikoloulopoulos AK. An extended trivariate vine copula mixed model for meta-analysis of diagnostic studies in the

presence of non-evaluable outcomes. Int J Biostat 2020. DOI: 10.1515/ijb-2019-0107

. Chu H and Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed

model approach. J Clin Epidemiol 2006; 59: 1331-1332.

. Nikoloulopoulos AK. A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies

accounting for disease prevalence. Stat Meth Med Res 2017; 26: 2270-2286.

. Chu H, Nie L, Cole SR et al. Meta-analysis of diagnostic accuracy studies accounting for disease prevalence: alternative

parameterizations and model selection. Star Med 2009; 28: 2384-2399.

. Nikoloulopoulos AK. A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula

representation of the random effects distribution. Stat Med 2015; 34: 3842-3865.

Bedford T and Cooke RM. Vines — a new graphical model for dependent random variables. Ann Stat 2002; 30: 1031-1068.
Aas K, Czado C, Frigessi A et al. Pair-copula constructions of multiple dependence. Insurance: Math Econ 2009; 44:
182-198.

Nikoloulopoulos AK, Joe H and Li H. Vine copulas with asymmetric tail dependence and applications to financial return
data. Comput Stat Data Anal 2012; 56: 659-3673.

. Killiches M and Czado C. A D-vine copula-based model for repeated measurements extending linear mixed models with

homogeneous correlation structure. Biometrics 2018; 74: 997-1005.

Nikoloulopoulos AK. A D-vine copula mixed model for joint meta-analysis and comparison of diagnostic tests. Stat Meth
Med Res 2019; 28: 3286-3300.

Nikoloulopoulos AK and Joe H. Factor copula models for item response data. Psychometrika 2015; 80: 126-150.
Czado C, Schepsmeier U and Min A. Maximum likelihood estimation of mixed C-vines with application to exchange rates.
Stat Model 2012; 12: 229-255.

Wilson K. Specification of informative prior distributions for multinomial models using vine copulas. Bayesian Anal 2018;
13: 749-766.

Nash J. Compact numerical methods for computers: linear algebra and function minimisation. 2nd ed. New York:
Hilger, 1990.

Stroud AH and Secrest D. Gaussian quadrature formulas. Englewood Cliffs, NJ: Prentice-Hall, 1966.

Nikoloulopoulos AK. Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of
diagnostic tests. Stat Meth Med Res 2018; 27: 2540-2553.

Nikoloulopoulos AK. On composite likelihood in bivariate meta-analysis of diagnostic test accuracy studies. ASt4 Adv
Stat Anal 2018; 102: 211-227.

Hult H and Lindskog F. Multivariate extremes, aggregation and dependence in elliptical distributions. Adv Appl Prob
2002; 34: 587-608.

Genest C. Frank’s family of bivariate distributions. Biometrika 1987; 74: 549-555.

Genest C and MacKay J. The joy of copulas: bivariate distributions with uniform marginals. Am Stat 1986; 40: 280-283.
Paul M, Riebler A, Bachmann LM et al. Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested
Laplace approximations. Stat Med 2010; 29: 1325-1339.

Menke J and Kowalski J. Diagnostic accuracy and utility of coronary CT angiography with consideration of unevaluable
results: a systematic review and multivariate Bayesian random-effects meta-analysis with intention to diagnose. Eur Radiol
2016; 26: 451-458.

Joe H, Li H and Nikoloulopoulos AK. Tail dependence functions and vine copulas. J Multivar Anal 2010; 101: 252-270.
Riicker G and Schumacher M. Letter to the editor. Biostatistics 2009; 10: 806—807.

Simel DL, Feussner JR, Delong ER et al. Intermediate, indeterminate, and uninterpretable diagnostic test results. Med
Decis Mak 1987; 7: 107-114.

Nikoloulopoulos AK. CopulaREMADA: Copula mixed models for multivariate meta-analysis of diagnostic test accuracy
studies, 2019. R package version 1.3, http://CRAN.R-project.org/package = CopulaREMADA (accessed 13 March 2020).


http://CRAN.R-project.org/package=CopulaREMADA

	table-fn1-0962280220913898
	table-fn2-0962280220913898
	table-fn3-0962280220913898
	table-fn4-0962280220913898
	table-fn5-0962280220913898
	table-fn6-0962280220913898
	table-fn7-0962280220913898
	table-fn8-0962280220913898
	table-fn9-0962280220913898
	table-fn10-0962280220913898
	table-fn11-0962280220913898
	table-fn12-0962280220913898
	table-fn13-0962280220913898
	table-fn14-0962280220913898
	table-fn15-0962280220913898
	table-fn16-0962280220913898
	table-fn17-0962280220913898
	table-fn18-0962280220913898
	table7-0962280220913898

