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A multinomial quadrivariate D-vine
copula mixed model for meta-analysis
of diagnostic studies in the presence of
non-evaluable subjects

Aristidis K Nikoloulopoulos

Abstract

Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the presence or absence of

a disease and the result of a diagnostic test. They typically report the number of true positives, false positives, true

negatives and false negatives. However, diagnostic test outcomes can also be either non-evaluable positives or non-

evaluable negatives. We propose a novel model for the meta-analysis of diagnostic studies in the presence of non-

evaluable outcomes, which assumes independent multinomial distributions for the true and non-evaluable positives, and,

the true and non-evaluable negatives, conditional on the latent sensitivity, specificity, probability of non-evaluable

positives and probability of non-evaluable negatives in each study. For the random effects distribution of the latent

proportions, we employ a drawable vine copula that can successively model the dependence in the joint tails. Our

methodology is demonstrated with an extensive simulation study and applied to data from diagnostic accuracy studies of

coronary computed tomography angiography for the detection of coronary artery disease. The comparison of our

method with the existing approaches yields findings in the real data application that change the current conclusions.
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1 Introduction

Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the presence or

absence of a disease and the result of a diagnostic test. They typically report the number of true positives (diseased

subjects correctly diagnosed), false positives (non-diseased subjects incorrectly diagnosed as diseased), true neg-

atives (non-diseased subjects correctly diagnosed as non-diseased) and false negatives (diseased subjects incor-

rectly diagnosed as non-diseased). However, diagnostic test outcomes can be non-evaluable.1 This is the case for

coronary computed tomography (CT) angiography studies which have non-evaluable results of index text in

various ways such as when transferring a segment/vessel to a patient based evaluation.2

Synthesis of diagnostic test accuracy studies is the most common medical application of multivariate meta-

analysis.3,4 The purpose of a meta-analysis of diagnostic test accuracy studies is to combine information over

different studies and provide an integrated analysis that will have more statistical power to detect an accurate

diagnostic test than an analysis based on a single study. Nevertheless, the existence of non-evaluable subjects is an

important issue that could lead to biased meta-analytic estimates of index test accuracy.2,5,6 Schuetz et al.2 studied

different ad-hoc approaches dealing with diagnostic test non-evaluable subjects, such as non-evaluable subjects

are excluded from the study, non-evaluable positives (non-evaluable diseased subjects) are taken as true positives

and non-evaluable negatives (non-evaluable non-diseased subjects) are taken as false positives, non-evaluable
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positives are taken as false negatives and non-evaluable negatives are taken as true negatives, and non-evaluable
positives as false negatives and non-evaluable negatives as false positives. In all of these approaches, Schuetz
et al.2 used the bivariate generalized linear mixed model (BGLMM)7 and concluded that excluding the index test
non-evaluable subjects leads to overestimation of the meta-analytic estimates of sensitivity and specificity and
recommended the intent-to-diagnose approach by treating non-evaluable positives as false negatives and non-
evaluable negatives as false positives.

Ma et al.5 used a trivariate generalized mixed model (TGLMM) approach by treating the non-evaluable
subjects as missing data under a missing at random assumption (MAR). Ma et al.,5 with extensive simulation
studies, showed that the intent-to-diagnose approach2 under-estimates both meta-analytic estimates of sensitivity
and specificity, while the TGLMM approach under the MAR assumption gives nearly unbiased estimates of
sensitivity, specificity and prevalence.

Nikoloulopoulos,6 similar to Ma et al.,5 extended the vine copula mixed model for trivariate meta-analysis of
diagnostic test accuracy studies accounting for disease prevalence8 to additionally account for non-evaluable
subjects. The extended trivariate vine copula mixed model includes the extended TGLMM as a special case
and can also model sensitivity, specificity and prevalence on the original scale. Nikoloulopoulos6 demonstrated
that the extended TGLMM leads to biased meta-analytic estimates of sensitivity, specificity and prevalence when
the univariate random effects are misspecified and that the extended vine copula mixed model gives nearly unbi-
ased estimates of test accuracy indices and disease prevalence.

A recurrent theme underlying the methodologies of Ma et al.5 and Nikoloulopoulos6 is the need to make the
MAR assumption that cannot be verified based on the observed data. Hence, it is natural to be concerned about
robustness or sensitivity of inferences to departures from the MAR assumption. The within-study model assumes
that the number of true negatives, false negatives, false positives, true positives, non-evaluable negatives and non-
evaluable positives are multinomially distributed, given the latent (random) vector of sensitivity, specificity, dis-
ease prevalence, probability of non-evaluable positives and probability of non-evaluable negatives. Under the
MAR assumption, the multinomial probability mass function (pmf) decomposes into a product of independent
binomial pmfs given the random effects. Hence, the within-study model actually assumes that the number of true
negatives, number of true positives, number of diseased subjects, number of non-evaluable negatives and number
of non-evaluable positives are conditionally independent and binomially distributed given the random effects. The
triplet of latent sensitivity, specificity and prevalence are independent of the missing probabilities, hence the joint
likelihood factors into two components, one involving only the sensitivity, specificity and disease prevalence, and
the other involving only the probabilities of non-evaluable positives and non-evaluable negatives. Therefore, the
methodology of Chu et al.9 or Nikoloulopoulos8 is applied to the first likelihood component to infer about
the sensitivity, specificity and disease prevalence. Hence, the models in Ma et al.5 and Nikoloulopoulos6 extend
the BGLMM7 and the bivariate vine copula mixed model,10 respectively, to the trivariate case by adding the
disease prevalence as a third outcome to indirectly account for the non-evaluable results. On the one hand, the
number of diseased subjects are binomially distributed with probability of success the latent prevalence and a
support that includes the number of non-evaluable positives and the number of non-evaluable negatives, but the
true positives and true negatives are binomially distributed with probability of success the latent sensitivity and
specificity, respectively, and a support that does not include either the number of non-evaluable positives or the
number of non-evaluable negatives on the other, just like in the BGLMM7 and the bivariate vine copula mixed
model.10 Note in passing that a special case of the bivariate copula mixed model is the BGLMM, that is, a copula
mixed model composed of a bivariate normal (BVN) copula with normal margins.

In this paper, in order to remedy this situation of ignoring the non-evaluable subjects in the derivation of the
meta-analytic estimates of sensitivity and specificity, we include the number of non-evaluable positives and the
number of non-evaluable negatives as separate non-missing response categories. Interestingly, the proposed model
extends the bivariate copula mixed model10 to the quadrivariate case by directly adding the number of non-
evaluable positives and number of non-evaluable negatives as a third and fourth outcome, respectively. Hence, it
directly utilizes all the available data. The bivariate copula mixed model10 assumes independent binomial distri-
butions for the true positives and true negatives, conditional on the latent pair of sensitivity and specificity in each
study. In the proposed methodology for the meta-analysis of diagnostic tests where we additionally account for
non-evaluable outcomes of the diagnostic test, we will assume independent multinomial distributions for the true
and non-evaluable positives, and, the true and non-evaluable negatives, conditional on the latent sensitivity,
specificity, probability of non-evaluable positives and probability of non-evaluable negatives in each study.

For the random effects distribution, we employ a regular vine copula.11 Regular vine copulas are suitable for
high-dimensional data, hence given the low dimension d¼ 4, where d is the dimension, we use their boundary case
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namely a drawable vine (D-vine) copula. D-vine copulas have become important in many applications areas such

as finance12,13 and biological sciences,14,15 to just name a few, in order to deal with dependence in the joint tails.

Another boundary case of regular vine copulas is the canonical vine copula, but this parametric family of copulas

is only suitable if there exists a (pilot) variable that drives the dependence among the variables,16,17 which appar-

ently is not the case in this application area.
The remainder of the paper proceeds as follows. Section 2 introduces the multinomial quadrivariate D-vine

copula mixed model for meta-analysis of diagnostic studies accounting for non-evaluable results and provides

computational details for maximum likelihood (ML) estimation. Section 3 studies the small-sample efficiency and

robustness of the ML estimation of the multinomial quadrivariate D-vine copula mixed model. Section 4 applies

our methodology to data from a published meta-analysis for diagnostic accuracy studies of coronary computed

tomography angiography for the detection of coronary artery disease. We conclude with some discussion in

Section 5, followed by a brief section with software details.

2 The multinomial quadrivariate D-vine copula mixed model

In this section, we introduce the multinomial quadrivariate D-vine copula mixed model. In Subsections 2.1 and

2.2, a D-vine copula representation of the random effects distribution with normal and beta margins, respectively,

is presented. We complete this section with details on maximum likelihood estimation.

2.1 The multinomial quadrivariate D-vine copula mixed model with normal margins

We first introduce the notation used in this paper. The data are yijk; i ¼ 1; . . . ;N; j ¼ 0; 1; 2; k ¼ 0; 1, where i is an

index for the individual studies, j is an index for the test outcome (0: negative; 1: positive; 2: non-evaluable) and k

is an index for the disease outcome (0: non-diseased; 1: diseased). The “classic” 2� 2 table is extended to a 3� 2

table (Table 1). Each cell in Table 1 provides the cell frequency corresponding to a combination of index test and

disease outcomes in study i.
The diseased subjects have three possible states: false negative, true positive, and non-evaluable positive. The

multinomial observation is therefore the number of diseased subjects where the diagnostic test is in each of its

states. Hence, we assume that the false negatives Yi01, the true positives Yi11, and the non-evaluable positives Yi21

are multinomially distributed given ðX1 ¼ x1;X3 ¼ x3Þ, viz.

ðYi01; Yi11; Yi21ÞjðX1 ¼ x1; X3 ¼ x3Þ
�M3

�
yiþ1; 1� l�1ðx1; x3Þ � l�1ðx3; x1Þ; l�1ðx1; x3Þ; l�1ðx3; x1Þ

� (1)

where (X1, X3) is the bivariate latent pair of transformed sensitivity and probability of non-evaluable positives and

l�1ðxj; xkÞ ¼ exj

1þexjþexk
is the inverse multinomial logit link. Note that MTðn; p1; . . . ; pTÞ is shorthand notation for

the multinomial distribution, where T is the number of cells, n is the number of observations, and ðp1; . . . ; pTÞ with
p1 þ � � � þ pT ¼ 1 is the T-dimensional vector of success probabilities.

In a similar manner, the non-diseased subjects have also three possible states: true negative, false positive, and

non-evaluable negative. Hence, we assume that the true negatives Yi00, the false positives Yi10, and the non-

evaluable negatives Yi20 are multinomially distributed given ðX2 ¼ x2;X4 ¼ x4Þ, viz.

ðYi00; Yi10; Yi20ÞjðX2 ¼ x2; X4 ¼ x4Þ
�M3

�
yiþ0; l

�1ðx2; x4Þ; 1� l�1ðx2; x4Þ � l�1ðx4; x2Þ; l�1ðx4; x2Þ
� (2)

where (X2, X4) is the bivariate latent pair of transformed specificity and probability of non-evaluable negatives.
After defining the within-studies model in equations (1) and (2), we next define the between-studies model. The

stochastic representation of the between studies model takes the form

�
U
�
X1; lðp1; p3Þ; r21

�
; U

�
X2; lðp2; p4Þ; r22

�
;

U
�
X3; lðp3; p1Þ; r23

�
; U

�
X4; lðp4; p2Þ; r24

��
�Cð�; hÞ

(3)
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where Cð�; hÞ is a quadrivariate D-vine copula with dependence parameter vector h ¼
ðh12; h23; h34; h13j2; h24j3; h14j23Þ and Uð�; l; r2Þ is the cumulative distribution function (cdf) of the N(l; r2) distri-

bution, and lðpj; pkÞ ¼ log
pj

1�pj�pk

� �
is the multinomial logit link. The copula parameter vector h has parameters of

the random effects model and they are separated from the univariate parameters ðpj; rjÞ; j ¼ 1; . . . ; 4. The

parameters p1 and p2 are those of actual interest denoting the meta-analytic parameters for the sensitivity and

specificity, while the parameters p3 and p4 denote the probabilities of non-evaluable positives and negatives,

respectively. The univariate parameters r21; r
2
2; r

2
3; r

2
4 denote the variabilities of the random effects.

The quadrivariate D-vine copula is built via successive mixing from bivariate pair-copulas on different levels.

The pairs at level 1 are j; jþ 1, for j¼ 1, 2, 3, and for level ‘ (2 � ‘ < 4), the (conditional) pairs are j; jþ ‘jjþ
1; . . . ; jþ ‘� 1 for j ¼ 1; . . . ; 4� ‘. That is, for the four-dimensional D-vine, the copulas for variables j and jþ ‘
given the variables indexed in between capture the conditional dependence.13 When all the bivariate pair-copulas

are BVN copulas with correlation (copula) parameters q12; q23; q34 (1st level) and partial correlation parameters

q13j2; q24j3; q14j23 (2nd and 3rd level), the resulting distribution is the quadrivariate normal with mean vector l ¼�
lðp1; p3Þ; lðp2; p3Þ; lðp3; p1Þ; lðp4; p2Þ

�>
and variance covariance matrix

+ ¼

r21 q12r1r2 q13r1r3 q14r1r4
q12r1r2 r22 q23r2r3 q24r2r4
q13r1r3 q23r2r3 r23 q34r3r4
q14r1r4 q24r2r4 q34r3r4 r24

0
BBB@

1
CCCA

where q13 ¼ q13j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q212

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q223

q
þ q12q23, q24 ¼ q24j3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q223

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q234

q
þ q23q34, q14 ¼ q14j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q212

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q224

q
þ q12q24, q14j2 ¼ q14j23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q213j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q234j2

q
þ q13j2q34j2, q13j2 ¼ ðq13 � q12q23Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q212

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q223

q

and q34j2 ¼ ðq34 � q23q24Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q223

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q224

q
.15 Other choices of copulas are better if there is more dependence

in joint upper or lower tail.
The models in equations (1)–(3) together specify a multinomial quadrivariate D-vine copula mixed model with

joint likelihood

Lðp1; p2; p3; p4; r1; r2; r3; r4; hÞ

¼
YN
i¼1

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
g
�
yi11; yi21; yiþ1; l

�1ðx1; x3Þ; l�1ðx3; x1Þ
�

� g
�
yi00; yi20; yiþ0; l

�1ðx2; x4Þ; l�1ðx4; x2Þ
�
f1234ðx1; x2; x3; x4; hÞdx1 dx2 dx3 dx4

where gð; n; p1; . . . ; pT�1Þ is the MTðn; p1; . . . ; pTÞ pmf and f1234ð�; hÞ is the quadrivariate D-vine density, viz.

f1234ðx1; x2; x3; x4; hÞ ¼ /ðx1Þ/ðx2Þ/ðx3Þ/ðx4Þc1234
�
Uðx1Þ;Uðx2Þ;Uðx3Þ;Uðx4Þ; h

�
(4)

Table 1. Data from an individual study in a 3� 2 table.

Disease (by gold standard)

Test – þ Total

– yi00 yi01 yi0þ
þ yi10 yi11 yi1þ
Non-evaluable yi20 yi21 yi2þ
Total yiþ0 yiþ1 yiþþ
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with

c1234

�
Uðx1Þ;Uðx2Þ;Uðx3Þ;Uðx4Þ; h

�

¼ c12

�
Uðx1Þ;Uðx2Þ; h12

�
c23

�
Uðx2Þ;Uðx3Þ; h23

�
c34

�
Uðx3Þ;Uðx4Þ; h34

�

� c13j2
�
F1j2ðx1jx2Þ;F3j2ðx3jx2Þ; h13j2

�
c24j3

�
F2j3ðx2jx3Þ;F4j3ðx4jx3Þ; h24j3

�

� c14j23
�
F1j23ðx1jx2; x3Þ;F4j23ðx4jx2; x3Þ; h14j23

�

where /ðxÞ and UðxÞ is shorthand notation for the density /ðx; l; r2Þ and cdf Uðx; l; r2Þ of the Nðl; r2Þ distri-
bution, cjk; cjkj‘; c14j23 are bivariate copula densities, FjjkðxjjxkÞ ¼ @Cjk

�
UjðxjÞ;UkðxkÞ

�
@UkðxkÞ , F1j23ðx1jx2; x3Þ ¼

@C13j2
�
F1j2ðx1jx2Þ;F3j2ðx3jx2Þ

�
@Uðx2Þ and F4j23ðx4jx2; x3Þ ¼ @C24j3

�
F2j3ðx2jx3Þ;F4j3ðx4jx3Þ

�
@Uðx3Þ ; Cjk;Cjkj‘ are bivariate copula cdfs. Note

that a for a four-dimensional D-vine copula density there are 12 different decompositions.12 To be concrete in

the exposition of the theory, we use the decomposition in equation (4); the theory though also applies to the other

11 decompositions.
Below we transform the original integral into an integral over a unit hypercube using the inversion method.

Hence, the joint likelihood becomes

YN
i¼1

Z 1

0

Z 1

0

Z 1

0

Z 1

0

g
�
yi11; yi21; yiþ1; l

�1
�
U�1

�
u1; lðp1; p3Þ; r21

�
; U�1

�
u3; lðp3; p1Þ; r23

��
;

l�1
�
U�1

�
u3; lðp3; p1Þ; r23

�
; U�1

�
u1; lðp1; p3Þ; r21

���

� g
�
yi00; yi20; yiþ0; l

�1
�
U�1

�
u2; lðp2; p4Þ; r22

�
; U�1

�
u4; lðp4; p2Þ; r24

��
;

l�1
�
U�1

�
u4; lðp4; p2Þ; r24

�
; U�1

�
u2; lðp2; p4Þ; r22

���
c1234ðu1; u2; u3; u4; hÞdu

2.2 The multinomial D-vine copula mixed model with beta margins

In this section, we use the parametrization proposed by Wilson18 in order the latent sensitivity and specificity to

remain on the original scale. The within-study model takes the form

ðYi01; Yi11; Yi21jðX1 ¼ x1;X3 ¼ x3Þ �M3

�
yiþ1; 1� x1 � x3ð1� x1Þ; x1; x3ð1� x1Þ

�
;

ðYi00; Yi10; Yi20jðX2 ¼ x2;X4 ¼ x4Þ �M3

�
yiþ0; x2; 1� x2 � x4ð1� x2Þ; x4ð1� x2Þ

� (5)

The stochastic representation of the between studies model is

FðX1; p1; c1Þ; FðX2; p2; c2Þ; F X3;
p3

1� p1
; c3

� �
; F X4;

p4
1� p2

; c4

� �� �
�Cð�; hÞ (6)

where Cð�; hÞ is a D-vine copula with dependence parameter vector h and Fð�; p; cÞ is the cdf of the Beta(p; c)
distribution with p the mean and c the dispersion parameter. The copula parameter vector h has the dependence

parameters of the random effects model and they are separated from the univariate parameters

ðpj; cjÞ; j ¼ 1; . . . ; 4. The parameters p1 and p2 are those of actual interest denoting the meta-analytic parameters

for the sensitivity and specificity, while the parameters p3 and p4 denote the probabilities of non-evaluable

positives and negatives, respectively. The univariate parameters c1; c2; c3; c4 denote the variabilities of the

random effects. In contrast with the model in the preceding subsection, the random effects of sensitivity and

specificity are on the original scale.

2992 Statistical Methods in Medical Research 29(10)



The models in equations (5) and (6) together specify a vine copula mixed model with joint likelihood

Lðp1; p2; p3; p4; c1; c2; c3; c4; hÞ

¼
YN
i¼1

Z 1

0

Z 1

0

Z 1

0

Z 1

0

g
�
yi11; yi21; yiþ1; x1; x3ð1� x1Þ

�
g
�
yi00; yi02; yiþ0; x2; x4ð1� x2Þ

�

� f1234ðx1; x2; x3; x4; hÞdx1 dx2 dx3 dx4

where f1234ð�; hÞ is as in equation (4) where we use beta instead of normal marginal distributions. Below we

transform the integral into an integral over a unit hypercube using the inversion method. Hence, the joint like-

lihood becomes

YN
i¼1

Z 1

0

Z 1

0

Z 1

0

Z 1

0

g yi11; yi21; yiþ1; F
�1ðu1; p1; c1Þ; F�1 u3;

p3
1� p1

; c3

� ��
1� F�1ðu1; p1; c1Þ

�� �

� g yi00; yi20; yiþ0;F
�1ðu2; p2; c2Þ; F�1 u4;

p4
1� p2

; c4

� ��
1� F�1ðu2; p2; c2Þ

�� �

� c1234ðu1; u2; u3; u4; hÞ du1 du2 du3 du4

2.3 Maximum likelihood estimation and computational details

Estimation of the model parameters can be approached by the standard maximum likelihood (ML) method, by

maximizing the logarithm of the joint likelihood. The estimated parameters can be obtained by using a quasi-

Newton19 method applied to the logarithm of the joint likelihood. This numerical method requires only the

objective function, i.e. the logarithm of the joint likelihood, while the gradients are computed numerically and

the Hessian matrix of the second-order derivatives is updated in each iteration. The standard errors (SEs) of the

ML estimates can be also obtained via the gradients and the Hessian computed numerically during the maximi-

zation process.
For the multinomial quadrivariate D-vine copula mixed model, numerical evaluation of the joint pmf can be

achieved with the following steps:

1. Calculate Gauss-Legendre20 quadrature points fuq : q ¼ 1; . . . ; nqg and weights fwq : q ¼ 1; . . . ; nqg in terms of

standard uniform.
2. Convert from independent uniform random variables fuq1 : q1 ¼ 1; . . . ; nqg; fuq2 : q2 ¼ 1; . . . ; nqg;

fuq3 : q3 ¼ 1; . . . ; nqg, and fuq4 : q4 ¼ 1; . . . ; nqg to dependent uniform random variables vq1 ; vq2jq1 ; vq3jq1;q2 ,
and vq4jq1;q2;q3 that have a D-vine distribution Cð�; hÞ using the algorithm in Nikoloulopoulos15:

1. Set vq1 ¼ uq1

2. vq2jq1 ¼ C�1
2j1ðuq2 juq1 ; h12Þ

3. t1 ¼ C1j2ðvq1 jvq2jq1 ; h12Þ
4. t2 ¼ C�1

3j1;2ðuq3 jt1; h12Þ; h13j2Þ
5. vq3jq1;q2 ¼ C�1

3j2ðt2jvq2jq1 ; h23Þ
6. t3 ¼ C2j3ðvq2jq1 jvq3jq1;q2 ; h23Þ
7. t4 ¼ C1j3;2ðt1jt2; h13j2Þ
8. t5 ¼ C4j1;2;3ðuq4 jt4; h14j23Þ
9. t6 ¼ C�1

4j2;3ðt5jt3; h24j3Þ
10. vq4jq1;q2;q3 ¼ C�1

4j3ðt6jvq3jq1;q2 ; h34Þ

where Cðvju; hÞ and C�1ðvju; hÞ are conditional copula cdfs and their inverses.
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3. Numerically evaluate the joint pmf, e.g.

YN
i¼1

Z 1

0

Z 1

0

Z 1

0

Z 1

0

g yi11; yi21; yiþ1;F
�1ðu1; p1; c1Þ; F�1 u3;

p3
1� p1

; c3

� ��
1� F�1ðu1; p1; c1Þ

�� �

� g yi00; yi20; yiþ0; F
�1ðu2; p2; c2Þ; F�1 u4;

p4
1� p2

; c4

� ��
1� F�1ðu2; p2; c2Þ

�� �

� c1234ðu1; u2; u3; u4; hÞ du1 du2 du3 du4

in a quadruple sum

Xnq
q1¼1

Xnq
q2¼1

Xnq
q3¼1

Xnq
q4¼1

wq1wq2wq3wq4g

�
yi11; yi21; yiþ1; F

�1ðvq1 ; p1; c1Þ;

F�1 vq3jq1;q2 ;
p3

1� p1
; c3

� ��
1� F�1ðvq1 ; p1; c1Þ

��
g

�
yi00; yi20; yiþ0;

F�1ðvq2jq1 ; p2; c2Þ; F�1 vq4jq1;q2;q3 ;
p4

1� p2
; c4

� ��
1� F�1ðvq2jq1 ; p2; c2Þ

��

With Gauss-Legendre quadrature, the same nodes and weights are used for different functions; this helps in

yielding smooth numerical derivatives for numerical optimization via quasi-Newton.

3 Simulations

In this section, we study the small-sample efficiency and robustness of the ML estimation of the multinomial

quadrivariate D-vine copula mixed model. In Section 3.1, we gauge the small-sample efficiency of the ML method

and investigate the misspecification of the parametric margin or bivariate pair-copulas of the random effects

distribution. In Section 3.2, we investigate the mixed model misspecification by using both the proposed model

and the extended trivariate vine copula mixed model6 as true models.
We set the sample size and the true univariate and dependence parameters to mimic the data analyzed

in Section 4. In each model, we use six different linking copula families: normal, Frank, and Clayton

copula along with its rotated versions (see our previous papers on copula mixed models8,10,21,22 for definitions)

to cover different types of dependence structure. To make it easier to compare strengths of dependence,

we convert the BVN, Frank, and rotated Clayton estimated parameters to Kendall’s s’s in ð�1; 1Þ via the fol-

lowing relations23,24

s ¼ 2

p
arcsinðhÞ

s ¼
1� 4h�1 � 4h�2

Z 0

h

t

et � 1
dt; h < 0

1� 4h�1 þ 4h�2

Z h

0

t

et � 1
dt; h > 0

8>>><
>>>:

and25

s ¼ h=ðhþ 2Þ; by 0� or 180�

�h=ðhþ 2Þ; by 90� or 270�
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3.1 Small-sample efficiency–misspecification of the random effects distribution

We randomly generate samples of size N¼ 30 from the multinomial quadrivariate D-vine copula mixed model
with both normal and beta margins. The simulation process is as below:

1. Simulate ðu1; u2; u3; u4Þ from a D-vine distribution Cð�; s12; s23; s34; s13j2 ¼ 0; s24j3 ¼ 0; s14j23 ¼ 0Þ.
2. • Convert to normal realizations via

x1 ¼ U�1 u1; log
p1

1� p1 � p3
; r1

� �
x2 ¼ U�1 u2; log

p2
1� p2 � p4

; r2

� �

x3 ¼ U�1 u3; log
p3

1� p1 � p3
; r3

� �
x4 ¼ U�1 u4; log

p4
1� p2 � p4

; r4

� �

• Convert to beta realizations via

x1 ¼ F�1ðu1; p1; c1Þ x2 ¼ F�1ðu2; p2; c2Þ
x3 ¼ F�1 u3;

p3
1� p1

; r1

� �
x4 ¼ F�1 u4; log

p4
1� p2

; c4

� �

3. Simulate the size of diseased and non-diseased subjects n1 and n2, respectively, from a shifted gamma distri-
bution to obtain heterogeneous study sizes,26 i.e.

n1 � sGammaða ¼ 1:2; b ¼ 0:01; lag ¼ 30Þ
n2 � sGammaða ¼ 1:2; b ¼ 0:01; lag ¼ 30Þ

and round off n1 and n2 to the nearest integers.

4. • For normal margins, draw ðy01; y11; y21Þ from

M3 n1;
1

1þ ex1 þ ex3
;

ex1

1þ ex1 þ ex3
;

ex3

1þ ex1 þ ex3

� �

and ðy00; y10; y20Þ from

M3 n2;
ex2

1þ ex2 þ ex4
;

1

1þ ex2 þ ex4
;

ex4

1þ ex2 þ ex4

� �

• For beta margins, draw ðy01; y11; y21Þ from

M3

�
n1; 1� x1 � x3ð1� x1Þ; x1; x3ð1� x1Þ

�

and ðy00; y10; y20Þ from

M3

�
n2; x2; 1� x2 � x4ð1� x2Þ; x4ð1� x2Þ

�

Tables 2 and 3 contain the resultant biases, root mean square errors (RMSE), and standard deviations (SD),
along with the square root of the average theoretical variances (

ffiffiffiffi
�V

p
), scaled by 100, for the ML estimates under

different pair-copulas and marginal choices from the multinomial D-vine copula mixed model with beta and

Nikoloulopoulos 2995
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normal margins, respectively. The true (simulated) pair-copula distributions are the Clayton copulas rotated by
180� for both the C12ð; s12Þ and C34ð; s34Þ pair-copulas and the Clayton copula rotated by 90� for the C23ð; s23Þ
pair-copula.

Conclusions from the values in the tables are the following:

• ML with the true multinomial D-vine copula mixed model is highly efficient according to the simulated biases,
SDs and RMSEs.

• The ML estimates of the univariate meta-analytic parameters and their SDs are robust under copula misspe-
cification, but are not robust to margin misspecification.

• The ML estimates of s’s and their SDs are robust to copula misspecification, but they are not robust to margin
misspecification.

3.2 Misspecification of the copula mixed model that accounts for non-evaluable

outcomes

We randomly generate samples of size N¼ 30 from the multinomial quadrivariate D-vine copula mixed model and
the extended trivariate vine copula mixed model with both normal and beta margins using the algorithm in
Section 3.1 and in Nikoloulopoulos,6 respectively. We compare the ML estimates of common parameters for
both approaches under misspecification and also include in the comparison the bivariate copula mixed model
estimates where the non-evaluable positives and negatives are either excluded or included as false negatives and
false positives (intention to diagnose approach), respectively.

In Section 3.1 and in Nikoloulopoulos,6 it has been revealed that (a) the estimation of the univariate meta-
analytic parameters is a univariate inference, and hence it is the univariate marginal distribution that matters and
not the type of the copula, and (b) estimated Kendall’s s is similar among different families of copulas. Hence, as
the ML estimates are nearly not affected by the type of the pair-copula, we provide here the results when all the
bivariate copulas are BVN.

Tables 4 and 5 contain the resultant biases, RMSEs, and SDs, along with the square root of the average
theoretical variances (

ffiffiffiffi
�V

p
), scaled by 100, for the ML estimates under different copula mixed models. The true

quadrivariate multinomial vine copula mixed model is composed by the Clayton copulas rotated by 180
�
for both

the C12ð; s12Þ and C34ð; s34Þ pair-copulas and the Clayton copula rotated by 90
�
for the C23ð; s23Þ pair-copula. The

true trivariate vine copula mixed model is composed by the Clayton copula for C12ð; s12Þ and the Clayton rotated
by 90

�
for both the C13ð; s13Þ and C23j1ð; s23j1Þ pair-copulas.

Conclusions from the values in the tables are the following:

• The bivariate copula mixed model where the non-evaluable outcomes are disregarded and the extended tri-
variate vine copula mixed model showed similar performance. Both led to unbiased (biased) and efficient
(inefficient) estimates when the true model is the trivariate (quadrivariate multinomial) vine copula mixed
model.

• The bivariate copula mixed model where the non-evaluable positives and negatives included as false negatives
and false positives, respectively, and the multinomial D-vine copula mixed model with beta margins showed
similar performance. Both led to unbiased (biased) and efficient (inefficient) estimates when the true model is
the quadrivariate multinomial vine copula mixed model with beta margins (trivariate vine copula mixed model
or quadrivariate multinomial vine copula mixed model with normal margins).

4 Meta-analysis of coronary computed tomography angiography studies

We apply the multinomial quadrivariate D-vine copula mixed model for the meta-analysis of diagnostic accuracy
studies accounting for non-evaluable subjects to data on 30 studies from a systematic review for diagnostic
accuracy studies of coronary computed tomography angiography for the detection of coronary artery disease.27

We fit the multinomial quadrivariate D-vine copula mixed model for all different decompositions of the D-vine
copula density, for both beta and normal margins and different pair-copulas at the level 1; for levels 2 and 3, we
use BVN copulas. In cases when fitting the multinomial quadrivariate D-vine copula mixed model, the resultant
estimate of one of the conditional dependence parameters was close to the right boundary of its parameter space
(that is clear indication that the model with a full structure provides more dependence structure than it is actually
required8), we used a truncated model, i.e. we captured the strongest dependence in the first tree and then just used
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the independence copulas in lower order trees, i.e. conditional independence. Joe et al.28 showed that in order for a
vine copula to have (tail) dependence for all bivariate margins, it is only necessary for the bivariate copulas in level
1 to have (tail) dependence and it is not necessary for the conditional bivariate copulas in levels 2 and 3, to have
tail dependence. Hence, one can either use BVN or independence copulas at levels 2 and 3 without sacrificing the
tail dependence of the vine copula distribution.

In Table 6, we present the results from the decomposition of the vine copula density in equation (4), as a
different decompositions led to similar results due to the small sample size. This is consistent with our previous
studies on vine copula mixed models.6,8 Since the number of parameters is not the same between the models, we
use the Akaike information criterion (AIC), that is �2� log-likelihood þ2� (#model parameters) as a rough
diagnostic measure for goodness of fit between the models. The AICs showed that a (truncated) multinomial
quadrivariate D-vine copula mixed model with Clayton copulas rotated by 180� for both the C12ð; s12Þ and
C34ð; s34Þ pair-copulas and the Clayton copula rotated by 90� for the C23ð; s23Þ pair-copula and beta margins
(Table 6) provides the best fit.

In real data (in contrast with the simulated data in Section 3), the truth is unknown, so it is important to
compare between the proposed and other existing approaches in terms of point estimation and variance. First, in
order to reveal if the use of the proposed model is worthy, when a standard bivariate analysis (either ignoring the
non-evaluable outcomes or including the non-evaluable positives and negatives as false negatives and positives,
respectively) is easy, we also fit the bivariate copula mixed model10 with both beta and normal margins and
different bivariate copulas. According to the likelihood principle, a bivariate copula mixed model with a Clayton
and Clayton copula rotated by 180� (to model the association between the latent sensitivity and specificity) and
beta margins provides the best fit for both different ad-hoc approaches to handle the non-evaluable outcomes
(Table 7). It is revealed that a bivariate copula mixed model with the sensitivity and specificity on the original scale
provides better fit than the BGLMM,7 which models the sensitivity and specificity on a transformed scale.

Then, in order to compare the proposed approach with the ones that use the MAR assumption, we fit the
extended trivariate vine copula mixed model6 with both beta and normal margins and different pair-copulas.
According to the likelihood principle, a vine copula mixed model composed of a Clayton copula to model the
association between the sensitivity and specificity, a Clayton copula rotated by 90� to model both the associations
between the specificity and prevalence and between the sensitivity and prevalence given the specificity, and beta
margins provides the best fit (Table 7). It is revealed that an extended trivariate vine copula mixed model with the
sensitivity, specificity, and disease prevalence on the original scale provides better fit than the extended TGLMM,5

which models the sensitivity, specificity, and disease prevalence on a transformed scale.
It has been shown that the trivariate analysis does not change the conclusions from the bivariate analysis

excluding the non-evaluable outcomes. It is also apparent that the results from the quadrivariate analysis differ-
entiate from the ones from bivariate (excluding the non-evaluable outcomes) and trivariate analyses which are
fairly similar. The meta-analytic estimates of sensitivity and specificity from the latter approaches are blown,
because in both approaches it is assumed that

Yi11jX1 ¼ x1 �Binomialðyi01 þ yi11; x1Þ and Yi00jX2 ¼ x2 �Binomialðyi00 þ yi10; x2Þ

i.e. their support ignores the number of non-evaluable positives yi21 and the number of non-evaluable negatives
yi20. The conclusions from the quadrivariate analysis with the latent proportions on the original scale are quite
similar with the ones from the bivariate analysis where the non-evaluable positives and negatives are included as
false negatives and positives, respectively. These results are consistent with the findings in the simulations in
Section 3.2. Note in passing that comparing the AIC values among the quadrivariate, trivariate and bivariate
copula mixed models is inconclusive as they use a different number of responses.

Although typically the focus of meta-analysis has been to derive the summary-effect estimates, there is increas-
ing interest in drawing predictive inference. Summary receiver operating characteristic curves (SROC) can be
deduced from the D-vine copula mixed model with the sensitivity and specificity on the original scale through the
quantile regression techniques developed for the bivariate copula mixed model.10 SROC essentially shows the
effect of different model (random effect distribution) assumptions, since it is an inference that depends on the joint
distribution. An SROC curve has been deduced for the bivariate copula mixed model10 through a median regres-
sion curve of X1 on X2. For the copula mixed model, the model parameters (including dependence parameters),
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the choice of the copula, and the choice of the margin affect the shape of the SROC curve.10 However, there is no
priori reason to regress X1 on X2 instead of the other way around, so a median regression curve of X2 on X1 has
also been provided. Rucker and Schumacher29 stated that instead of summarizing data using an SROC, it might
be preferable to give confidence regions. Hence, in addition to using just median regression curves, quantile
regression curves with a focus on high (q¼ 0.99) and low quantiles (q¼ 0.01), which are strongly associated
with the upper and lower tail dependence imposed from each parametric family of copulas, have been proposed.10

These can been seen as confidence regions of the median regression SROC curve.
Figure 1 demonstrates the SROC curves with a confidence region and summary operating points (a pair of the

model-based sensitivity and specificity; shown by the black square) from the best fitted multinomial quadrivariate
D-vine copula mixed model, the best fitted trivariate vine copula mixed model, and the best fitted bivariate copula
mixed models along with the study estimates (shown by the circles in Figure 1). For the upper panel graphs, the

Table 6. AICs, ML estimates, and standard errors (SE) of the multinomial quadrivariate D-vine copula mixed models for diagnostic
accuracy studies of coronary computed tomography angiography.

BVN Frank Cln{180�, 90�}a Cln{180�, 270�}

Est. SE Est. SE Est. SE Est. SE

Normal margins

p1 0.94 0.01 0.95 0.01 0.94 0.02 0.94 0.02

p2 0.80 0.03 0.80 0.03 0.79 0.03 0.79 0.03

p3 0.04 0.01 0.03 0.01 0.03 0.01 0.04 0.01

p4 0.09 0.02 0.09 0.02 0.09 0.02 0.09 0.02

r1 0.89 0.20 0.91 0.19 0.75 0.17 0.83 0.17

r2 0.72 0.15 0.65 0.13 0.65 0.12 0.67 0.13

r3 1.32 0.36 1.37 0.36 1.20 0.31 1.19 0.33

r4 0.80 0.23 0.70 0.21 0.69 0.19 0.73 0.19

s12 0.54 0.22 0.49 0.20 0.82 0.19 0.82 0.18

s23 –0.16 0.20 –0.31 0.17 –0.38 0.24 –0.04 0.15

s34 0.22 0.23 0.11 0.24 0.29 0.17 0.37 0.17

s13j2 0.43 0.34 0.67 0.23 – – – –

s24j3 0.11 0.22 –0.03 0.24 – – – –

s14j23 –0.39 0.32 –0.36 0.49 – – – –

AIC 4013.22 4010.80 4007.72 4009.36

Beta margins

p1 0.90 0.02 0.90 0.02 0.90 0.01 0.89 0.01

p2 0.76 0.03 0.77 0.02 0.77 0.02 0.76 0.02

p3 0.06 0.01 0.06 0.01 0.06 0.01 0.07 0.01

p4 0.11 0.02 0.11 0.02 0.11 0.02 0.11 0.02

c1 0.08 0.03 0.09 0.03 0.09 0.03 0.10 0.03

c2 0.09 0.03 0.09 0.02 0.08 0.02 0.09 0.02

c3 0.32 0.12 0.32 0.13 0.37 0.12 0.28 0.12

c4 0.15 0.07 0.16 0.07 0.15 0.07 0.15 0.06

s12 0.71 0.11 0.74 0.08 0.82 0.08 0.79 0.07

s23 –0.35 0.17 –0.34 0.12 –0.52 0.14 –0.23 0.10

s34 0.23 0.22 0.20 0.21 0.26 0.18 0.21 0.17

s13j2 –0.66 0.38 – – – – – –

s24j3 –0.10 0.20 – – – – – –

s14j23 –0.02 0.57 – – – – – –

AIC 4009.42 4005.93 4002.17 4004.92

Note: Cln{x
�
1;x

�
2}: The C12ð�; s12Þ; C34ð�; s34Þ and C23ð�; s23Þ pair-copulas are Clayton rotated by x1 and x2 degrees, respectively.

AIC: akaike information criterion; BVN: bivariate normal.
aBest fit.
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sensitivity and specificity at study i (point estimates) have been calculated with the typical definitions of sensitivity
and specificity, viz.

yi11
yi01 þ yi11

and
yi00

yi00 þ yi10

Table 7. AICs, ML estimates, and standard errors (SE) of the best fitted bivariate copula and extended trivariate vine copula mixed
models with beta margins for diagnostic accuracy studies of coronary computed tomography angiography.

Bivariate Trivariate

Claytona Clayton 180�b Clayton f0�; 90�g
Est. SE Est. SE Est. SE

p1 0.97 0.01 0.90 0.01 0.97 0.01

p2 0.85 0.02 0.77 0.02 0.85 0.02

p3 – – – – 0.49 0.03

c1 0.03 0.01 0.09 0.03 0.03 0.01

c2 0.06 0.02 0.08 0.02 0.06 0.02

c3 – – – – 0.11 0.02

s12 0.42 0.19 0.82 0.08 0.39 0.20

s13 – – – – 0.02 0.23

s23j1 – – – – –0.28 0.17

AIC 244.82 321.91 492.26

AIC: akaike information criterion.
aThe non-evaluable outcomes are excluded.
bThe non-evaluable positives and negatives are included as false negatives and positives, respectively.
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Figure 1. SROC curves with a confidence region and summary operating points (a pair of the model-based sensitivity and specificity)
from the best fitted multinomial quadrivariate D-vine, extended trivariate vine and bivariate copula mixed models along with the study
estimates.
�: summary point; �: study estimate; black and grey lines represent the quantile regression curves x1 :¼ ~x1ðx2; qÞ and x2 :¼ ~x2ðx1; qÞ,
respectively; for q¼ 0.5 solid lines and for q 2 f0:01; 0:99g dotted lines (confidence region).
aThe non-evaluable outcomes are excluded.bThe non-evaluable positives and negatives are included as false negatives and positives,
respectively.
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respectively, as only patients with positive or negative results are considered, while for the lower panel graphs, the

sensitivity and specificity at study i have been calculated with the definitions of sensitivity and specificity in Simel

et al.,30 viz.

yi11
yiþ1

and
yi00
yiþ0

respectively, since the number of non-evaluable positives yi21 contributes to the diseased population and the

number of non-evaluable negatives yi20 contributes to the non-diseased population.

5 Discussion

Motivated by the existence of non-evaluable results in diagnostic test accuracy studies, this paper proposed a

multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic test accuracy studies

accounting for non-evaluable subjects. Our general statistical model allows for selection of pair-copulas indepen-

dently among a variety of parametric copula families, i.e. there are no constraints in the choices of bivariate

parametric families of copulas and can also operate on the original scale of sensitivity and specificity.
For the random effects, we have used a quadrivariate D-vine copula distribution or a truncated at level 1

quadrivariate D-vine copula (conditional independence), which allows flexible (tail) dependence.28 We have pro-

posed a numerically stable ML estimation technique based on Gauss-Legendre quadrature; the crucial step is to

convert from independent to dependent quadrature points that follow a quadrivariate D-vine distribution.
In an era of evidence-based medicine, decision makers need high-quality procedures such as the one developed

in this article to support decisions about whether or not to use a diagnostic test in a specific clinical situation. The

multinomial quadrivariate vine-copula mixed model is not an ad-hoc2 but rather a sophisticated approach that

utilizes all the available data in decision making and can satisfy the intention-to-diagnose principle. Using an

intention to diagnose principle, i.e. a conservative approach, ensures that both the sensitivity and specificity are

not overestimated. Hence, it formally enables decision makers to be more cautious in solely relying to the overly

optimistic meta-analytic estimates of sensitivity and specificity derived from the extended trivariate vine copula

mixed model that indirectly accounts for the non-evaluable outcomes.
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Software

R functions to implement and simulate from the multinomial quadrivariate D-vine copula mixed model for meta-analysis of

diagnostic tests with non-evaluable subjects are part of the R package CopulaREMADA.31 The data and code used in Section

4 are given as data and code examples in the package, respectively.
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