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Abstract

We explored the benefits of triheptanoin as a treatment for Short Chain Enoyl

Co-A Hydratase (SCEH) deficiency. One child with early onset, severe SCEH

Deficiency was treated with triheptanoin, an odd chain oil with anapleurotic

properties, for 37 months. Blood and urine chemistry safety measures, motor

skills assessment, physical exam, and neurological assessment were monitored

over a 27 month period. Modest sustained gains in motor skills, attention,

muscle bulk, and strength were observed without any significant adverse effects.

Triheptanoin appears to be a promising effective treatment for SCEH Defi-

ciency.

Introduction

Short Chain Enoyl Co-A Hydratase (SCEH) deficiency is

a phenotypically heterogeneous disorder ranging from

an early onset severe progressive Leigh-Like Syndrome

with early demise1,2 to later onset childhood movement

disorders.3,4 Early onset symptoms include hypotonia,

respiratory insufficiency, global developmental delay,

encephalopathy, sensorineural hearing loss, cardiomyopa-

thy, and bilateral basal ganglia lesions.5 Less common are

the later onset mildly symptomatic patients with varied

movement disorders and basal ganglia lesions.4-6 Interme-

diate phenotypes also have been reported.5,7 Median life

expectancy is approximately 2 years.8 Last reported age of

24 early onset patients, alive at time of the report, was

104.8 + 95 months (range 8–372 months). Lactate values

(blood, CSF, and brain magnetic resonance spectroscopy)

in severe cases are elevated, and pyruvate values may be

elevated or normal.5 In contrast, intermediate and mild

cases usually have normal laboratory values. A review of

the literature1-4,6-29 revealed 67 patients with most suffer-

ing the early onset presentation. Average age at death was

28.0 + 43.8 months (range 16 h to 156 months) for 27

early onset patients (age <12 months) for whom age at

death was reported.

SCEH deficiency is caused by bi-allelic mutations in

the ECHS1 gene which encodes short chain enoyl CoA

hydratase. Mutation types vary with the missense variant

being the most common.23

SCEH is a mitochondrial matrix enzyme that catalyzes

the second step of fatty acid beta-oxidation converting

medium and short chain 2-enoylacyl-CoA to 3-hydroxya-

cyl-CoA10,11,18 (Figure 1), Fatty acid oxidation intermedi-

ates are generally normal with some reports of elevated

C4 acylcarnitine.18 SCEH is also involved in valine meta-

bolism; converting methacrylyl-CoA to 3-hydoxybutyryl

and acryloyl-CoA to 3-hydroxypropionyl-CoA.10 Both

methacrylyl-CoA and acryloyl-CoA are elevated in

patients with SCEH deficiency.10,30 Elevated levels of ery-

thro-2,3 dihydroxy-2-methylbutyrate,7,21 3-methylglu-

conate, lactate, methylacryloyl-CoA, and acryloyl-CoA21

also have been reported.

Methacrylyl-CoA and acryloyl-CoA toxicity is thought

to be the cause of the brain pathology21 impairing the

pyruvate dehydrogenase complex and the electron trans-

port chain.18,30 Pyruvate dehydrogenase deficiency has

been reported in the early onset patients but not uni-

formly.30 Sakai et al reported an early onset child, with

reductions in respiratory chain complexes, I, III, and IV,

but this disturbance has not been found in all patients.
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SCEH is also involved with isoleucine and leucine

metabolism; however, these metabolites have not been

disturbed in patients with SCEH Deficiency, so it is

assumed that SCEH does not play a significant role in

these pathways.30

There is no cure for SCEH Deficiency, but various

symptomatic treatments have been attempted. The keto-

genic diet has generally not been helpful, although there

is one mild patient whose dystonia improved.4 Vitamin

cocktails are not useful. Dystonia in one mild patient

improved on a low protein diet.4 Another mild patient

was given carnitine, creatine, and idebenone without

effect.4 Levodopa was evaluated for movement disorders

without effect.4 Two patients on a low valine diet and a

vitamin cocktail showed motor skill improvements.26

Three patients on a low valine diet showed improvements

in awareness, muscle tone, spontaneous movement, and

language.31

Triheptanoin (C7 oil) has been used to treat various

fatty acid oxidation disorders32-35 and Glut-1 Deficiency

Syndrome33,36 with minimal to significant improvement

in clinical symptoms. In most studies, triheptanoin

replaced 30%–40% of daily calories32,36 in an otherwise

normal diet. The C7 oil is well-tolerated; however, GI

symptoms have been reported.36 Triheptanoin replenishes

the TCA cycle intermediates (known as anaplerosis), glu-

coneogenesis, and seems not to depend on SCEH for

metabolism. Therefore, a trial of C7 oil appeared war-

ranted in patients with SCEH deficiency.

Triheptanoin is a naturally occurring medium odd-

chain triglyceride which directly enters the mitochondria

without the need for carnitine.37 In the liver, C7 oil is

metabolized to four carbon (acetoacetate and betahydrox-

ybutyrate) and five carbon ketone bodies (Beta-hydrox-

ypentanoate (BHP) and Beta-ketopentoate (BKP)) that

are exported to peripheral tissues, including the brain,

Figure 1. Short chain enoyl Co-A hydratase deficiency impacts the conversion of enoyl-CoA to 3-hydroxyacyl-CoA in the fatty acid oxidation

pathway. 3-L-hydroxyacyl-CoA dehydrogenase (HADH) and 3-ketoacyl-CoA thiolase (KAT) complete the conversion to fatty acyl-CoA.
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where they are converted to acetyl-CoA and propionyl-

CoA.32 Propionyl CoA is then converted to succinyl-CoA

(by propionyl CoA carboxylase and methylmalonyl CoA

mutase) before entering the TCA cycle directly (Figure 2).

Propionyl-CoA also contributes to gluconeogenesis. Tri-

heptanoin enters the mitochondria largely as the carboxy-

late, without the need for CPTI, carnitine-acylcarnitine

translocase or CPTII.37 It is then metabolized sequentially

to acetyl CoA by medium chain-acyl-CoA synthetase,

MCAD, IVCD, SCAD, and thiolase.

Methods

A female child with SCEH deficiency was treated with

daily dosing of triheptanoin after approval of a single

patient Investigational New Drug (IND) application.

Ultragenyx Pharmaceuticals provided the triheptanoin

which was administered enterally on an ascending dose

regimen (5% to 40% of total daily calories divided into

seven daily doses). Safety measures (blood and urine che-

mistries, EKG), neurological examination, physical exami-

nation, and motor function assessments were performed

quarterly. Outcome measures included the following: (1)

The Columbia Neurological Score (CNS),38 which

includes a several domain physical and neurological exam,

with normal range (70–76), mild impairment (60–69),
moderate (50–59), and severe (40–49); (2) The Gross

Motor Function Measure-88 (GMFM-88) which measures

motor changes in neuromuscular disorders39,40 (mini-

mum score is 0 and maximum is 264); and (3) The Chil-

dren’s Hospital of Philadelphia Infant Test of

Neuromuscular Disorders (CHOP-INTEND) which mea-

sures motor function for fragile infants with neuromuscu-

lar disorders (minimum score is 0 and maximum is

64).41

Results

The patient, a 6 year 11 month old girl, presented at age

6 months with Leigh syndrome, global developmental

delay, ptosis, oscillatory eye movements, mixed tone

abnormalities, hyperreflexia, and bilateral Babinski signs.

Compound heterozygous mutations in the ECHS1 gene

(p. Ala173Val and p. Gly175Ser), confirmed the diagnosis

of SCEH deficiency. Brain MRI at age 8 months showed

mildly prominent CSF spaces, moderate overall symmetri-

cal diminution in cerebral white matter volume, subtle

nonspecific symmetric restricted diffusion, and T2

Figure 2. Triheptanoin enters the mitochondria as a C7 fatty acid, each of which is metabolized to two C2 Acetyl CoA’s, which directly enter

the TCA cycle, and one C3 Propionyl CoA that is converted to methylmalonyl-CoA and then to succinyl-CoA, a TCA intermediate.
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prolongation within the basal ganglia, especially posteri-

orly and inferiorly, and including the cerebral pedun-

cles/subthalamic regions. Plasma acylcarnitine values were

normal and urine organic acids showed elevated 3-

methylglutaconic acid values.

At age 47 months, treatment with triheptanoin was ini-

tiated and has continued through age 6 years and

11 months. C7 oil was administered orally as an ascend-

ing dose (5% to 40% of total daily calories divided into 7

daily doses). The patient’s condition has remained stable

clinically since starting the C7 oil with subtle improve-

ments in awareness, posture, purposeful movements,

affect, and sleep pattern. The CHOP-INTEND Score

improved 17 points during the first 24 months of treat-

ment (baseline score 34/64; 24 month score 51/64), and

the GMFM-88 improved 29 points (baseline score 9/264;

24 month score 38/ 264) (Figure 3). The CNS score

improved 5 points (baseline score 41/76; 27 month score

46/76) reflecting increases in muscle bulk and strength.

Acylcarnitine values showed increases from baseline to

27 months of treatment: (1) Acetyl [C2] 10.9 to

25.02 umol/L, (2) Propionyl [C3] 1.13 to 5.32 umol/L,

and (3) Isovaleryl/2-methlybutyryl [C5] 0.31 to

0.88 umol/L (Table 1). Urine organic acids levels varied.

Lipid and hepatic profiles, basic metabolic panel, and

complete blood count values were normal throughout.

There has been no evidence of clinical regression or seri-

ous side effects over the 37 months of treatment. In-per-

son evaluations were interrupted after 27 months due to

COVID-19 restrictions.

Discussion

We present a child with severe, early onset SCEH Defi-

ciency treated successfully with triheptanoin. The patient

presented early in infancy with clinical signs and labora-

tory findings typical of SCEH deficiency including severe

developmental delay, abnormal brain MRI, elevation of

urinary 3-methylglutaconic acid, and bi-allelic mutations

in the ECHS1 gene. As expected, treatment with C7 oil

resulted in increased medium and short chain acylcar-

nitine levels and elevations of urinary ketones. Baseline

motor performance was severely delayed but stabilized

after starting triheptanoin, followed by mild improve-

ments in motor performance, head control, and sitting

tolerance during the first 12 months. Motor skills contin-

ued to improve thereafter. Of note, there has been no

clinical worsening which is commonly seen in untreated

infantile onset disease. We were concerned when starting

Triheptanoin as to whether SCEH is important in the

metabolism of this heptanoate or any of its metabolites.

The clinical improvement and the lack of any toxicity

suggests that SCEH is not necessary or critical in the

metabolism of these metabolites. Lifespan, at this point,

has exceeded that of most early onset patients with SCEH

deficiency. We have attributed the improvements in over-

all energy level, to C7 oil which replenishes TCA cycle

intermediates, supports gluconeogenesis, and replaces fats

commonly found in a standard diet. Daily total calories

were maintained on a strict regimen accommodating

standard protein and carbohydrate recommendations, and
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Figure 3. Repeat assessment of functional ability was obtained over a 27 month period using the CHOP Intend, GMFM-88 and the CNS, all

widely used measures of motor skill.
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triheptanoin accounted for 40% of total daily calories.

Limited protein intake accounted for reductions in diet-

ary valine, but it is unclear whether decreased valine

intake was therapeutic. Since most patients have the early

onset severe phenotype, initiating treatment in the new-

born period would seem to be ideal. Newborn screening

would facilitate the diagnosis of genetically affected

infants before or soon after onset of clinical symptoms

permitting early treatment and protection of the develop-

ing nervous system. One of the limitations of this study is

small sample size and delayed treatment. Continued eval-

uation of triheptanoin as a promising effective treatment

for SCEH Deficiency is an important next step.
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