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Abstract 

Background:  Tigecycline (TIG) is an antibiotic belonging to the glycylcyclines class and appears to be a good choice 
to fight infections caused by Staphylococcus aureus. To date, TIG exhibits good activity against this microorganism. 
The aim of this work was to obtain in vitro mutants of S. aureus resistant to TIG and evaluate possible changes in their 
susceptibility patterns to other antibiotics.

Results:  Two mutants of S. aureus resistant to TIG (MIC = 16 µg/mL) were selected in vitro from clinical isolates of 
methicillin-resistant S. aureus. In both mutants, corresponding to different lineage (ST5 and ST239), an increase of 
efflux activity against TIG was detected. One mutant also showed a reduced susceptibility to vancomycin, corre-
sponding to the VISA phenotype (MIC = 4 µg/mL), with a loss of functionality of the agr locus. The emergence of the 
VISA phenotype was accompanied by an increase in oxacillin and cefoxitin MICs.

Conclusions:  This study demonstrates that, under selective pressure, the increase of efflux activity in S. aureus is one 
of the mechanisms that may be involved in the emergence of tigecycline resistance. The emergence of this pheno-
type may eventually be associated to changes in susceptibility to other antibiotics such oxacillin and vancomycin.
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Findings
Staphylococcus aureus is one of the major pathogens 
causing serious infections both within the hospital setting 
and in the community. This pathogen is characterized by 
rapid acquisition of resistance to antibiotics introduced 
into clinical practice. Thus, methicillin-resistant S. aureus 
(MRSA) emerged first in the hospital setting and then 
spread to the community (CA-MRSA) [1]. In the late 
1990s, MRSA strains emerged with reduced susceptibil-
ity to vancomycin, VISA (vancomycin-intermediate S. 
aureus) [2] and VRSA (vancomycin-resistant S. aureus) 
[3]. Tigecycline (TIG) is an antibiotic belonging to the 
glycylcyclines class and representing a treatment option 
for infections caused by S. aureus [4]. Surveillance studies 

of S. aureus have exhibited good activity of this antibi-
otic, with 99.9 % of isolates found to be susceptible [5]. A 
high susceptibility rate was also reported in Latin Amer-
ica from 2004 to 2010 [6] and in several countries around 
the world [7, 8]. The aim of this work was to select and 
characterize in  vitro tigecycline-resistant mutants from 
MRSA clinical isolates.

Two unrelated MRSA clinical isolates (2028p and 
94159p) were studied. They were genotyped by spa typ-
ing [9], and the multilocus sequence type (MLST) was 
determined using the S. aureus MLST database (http://
www.mlst.net).

Oxacillin resistance was confirmed by PCR amplifica-
tion of an internal fragment of the mecA gene. S. aureus 
strains ATCC 29213 and ATCC 43300 were used as nega-
tive and positive controls, respectively.

The SCCmec type was determined by characterization 
of the ccr complex (cassette chromosome recombinase) 
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and the mec complex, using a simplified version of the 
previously described scheme [10]. The agr type was 
characterized by multiplex PCR [11], and analysis of agr 
functionality was performed by determining δ-hemolysin 
production according to Traber et al. [12]. Briefly, it was 
conducted by cross-streaking test strains perpendicularly 
to S. aureus RN4220, which only produces β-hemolysin 
on a sheep blood agar plate. δ-hemolysin acts synergis-
tically in the lysis of sheep red blood cells and gener-
ates a zone of enhanced hemolysis at the intersection of 
RN4220 and test strain streaks.

In vitro mutant selection was performed by serial pas-
sage in Mueller–Hinton broth (Britania, Argentina) with 
increasing concentrations of TIG (Pfizer, USA), starting 
from a sub-inhibitory concentration corresponding to ¼ 
minimum inhibitory concentration (MIC) to MIC val-
ues, using an inoculum of 5  ×  105 CFU/mL. Colonies 
were selected after 15 passages [13]. The MIC of TIG 
was determined by the epsilometric method, consider-
ing the FDA breakpoints. Mutant stability was evalu-
ated by determining the TIG MIC after 10 consecutive 
passages in antibiotic-free Tryptic-Soy Agar (Britania, 
Argentina). The clonal relationship between the parental 
strains and the mutants was confirmed by pulsed-field 
gel electrophoresis (PFGE) using the SmaI endonucle-
ase [14]. Susceptibility to other classes of antibiotics was 
tested by the agar dilution method following the Clinical 
and Laboratory Standards Institute recommendations 
(CLSI, 2013). The antibiotics tested were oxacillin (OXA), 
cefoxitin (FOX), trimethoprim-sulfamethoxazole (TMS), 
rifampicin (RIF) (Sigma-Aldrich, USA), gentamicin 
(GEN), ciprofloxacin (CIP), clindamycin (CLI) and van-
comycin (VAN) (Fada Pharma, Argentina).

Finally, efflux activity was phenotypically evaluated as a 
potential mechanism of resistance to TIG by comparing 
the MICs of TIG and ethidium bromide (EB) in the pres-
ence and absence of reserpine (RS) (20  µg/mL). An EB 
MIC of ≥32 µg/mL, coupled with a reduction of at least 
4 twofold dilutions (TFD) in the MICs of EB and TIG in 
the presence of RS, was considered to be indicative of an 
enhancement of efflux activity. This criterion combines 
the canons proposed by Patel et al. [15] (EB MIC ≥25 µg/
mL) and DeMarco et al. [16] (MIC reduction of 4 TFD in 
the presence of RS).

The two TIG-resistant mutants were obtained from the 
two MRSA parental strains, 2028 and 94159p, and named 
2028 and 94159m, respectively. The parental and mutant 
strains were isogenic (Fig.  1). Both mutants exhibited 
TIG MIC values, which were 128-fold higher than those 
against the parental strains. The MIC data and molecular 
characteristics of the strains are summarized in Table 1.

Unlike the parental strains, both mutants showed a 
decrease of ≥4 TFD in EB and TIG MICs in the presence 

of RS (Table 1), which suggested that an increase in efflux 
pump activity could be involved in TIG resistance. It is 
well known that efflux pumps in S. aureus have the ability 
to expel more than a few antibiotics in addition to other 
compounds such as biocides and dyes [17]. The increase 
of efflux activity is one of the mechanisms involved in 
resistance of S. aureus to several antibiotics, due to which 
strains become refractory to treatments with those anti-
biotics [18].

To date, naturally occurring S. aureus isolates with 
reduced susceptibility to tigecycline (MICs of 1–2 µg/
mL) have been isolated from clinical specimens [5, 
6]. However, the high MIC values (16  µg/mL) of 
these in  vitro selected mutants should be considered 
a potential risk in clinical settings. It is important to 
highlight that no significant fitness cost associated 
with the selection of these mutants was detected (data 
not shown).

Fig. 1  SmaI-PFGE of the parental and mutant strains. Lane 1: parental 
strain 2028p, lane 2: mutant strain 2028 m, lane 3: parental strain 
94159p, lane 4: mutant strain 94159 m
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In addition, TIG-resistant mutant 94159  m was also 
characterized by a changed susceptibility profile to OXA, 
FOX, and VAN. It is important to highlight that the VAN 
MIC value of this mutant is 4 µg/mL, thus corresponding 
to the VISA definition (Table 1).

An increase in the VAN MIC was previously associ-
ated with a reduction in the OXA MIC in both in vitro 
selected VRSA mutants and in  vivo VISA isolates [19, 
20]. By contrast, in this case the emergence of the VISA 
phenotype is accompanied by an increase in OXA and 
FOX MIC values in the 94159m strain.

The MIC values of OXA, FOX and VAN for 94159m 
remain unchanged in the presence of RS (Table  1) sug-
gesting a different mechanism to that observed for TIG 
resistance.

Based on molecular typing, the 94159p strain was char-
acterized as ST5, SCCmec IV, spa-type t002, indicat-
ing that it belonged to the main CA-MRSA clone that 
circulated in Argentina at the time when this strain was 
isolated [21, 22]. The increased ability to acquire new 
resistance determinants and the capacity of surviving in 
different environments have been associated with a great 
genomic plasticity of clonal complex 5 (CC5). The major-
ity of heterogeneous VISA (hVISA), VISA and VRSA 
isolates belong to this lineage [23, 24]. Likewise, an emer-
gence of CC5 hVISA isolates has recently been reported 
in Argentina [25]. Finally, a loss of δ-hemolysin expres-
sion in the VISA 94159m mutant was another charac-
teristic observed in this work (Fig.  2). An association 
between reduced susceptibility to VAN and the loss of 
the agr function was described previously [26].

Strain 2028p (ST239, SCCmec III, spa-type t654) was 
shown to belong to the Brazilian clone, a multi-resistant 
HA-MRSA clone that was prevalent in Argentina in 2005. 
Contrary to the behavior of 94159m, mutant 2028m did 
not show any modification in either the VAN MIC or in 
the agr functionality. In this work, the ability of S. aureus 
to develop resistance to TIG under selective pressure 

with this antibiotic was shown, and the increase of efflux 
activity is considered to be one of the possible resistance 
mechanisms involved. The selection of TIG mutants in 
two different lineages indicates that this event is not lim-
ited to a particular genetic background. Furthermore, the 
data show that, in a particular strain, the acquisition of 
this resistance may be associated with reduced suscep-
tibilities to vancomycin and some other antibiotics such 
as oxacillin. The literature data suggest that the phenom-
enon of elevated vancomycin MICs, coupled with the loss 
of δ-hemolysin expression, appears to be common to dif-
ferent geographical regions [27]. Importantly, while the 
emergence of resistance to tigecycline and vancomycin 
can occur, the absence of high-level resistance to these 
antibiotics is noteworthy [5]. It is important to be aware 
of this potential risk and, wherever possible, emphasize 
the necessity to use appropriate and adequate drug dos-
ing regimens to prevent it.
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Fig. 2  δ-Hemolysin assays. The strain streaked vertically is β-hemolysin-producing RN4220. Strain N315 was used as a negative control. a A zone of 
enhanced hemolysis by strain 94159p is seen as an arrowhead (δ-hemolysin); the δ-hemolytic capacity has been lost by strain 94159 m. b Strains 
2028p and 2028 m both produce β- and δ-hemolysins
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