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Abstract
Functional dependencies (FDs) and candidate keys are essential for table
decomposition, database normalization, and data cleansing. In this paper,
we present FDTool, a command line Python application to discover minimal
FDs in tabular datasets and infer equivalent attribute sets and candidate
keys from them. The runtime and memory costs associated with seven
published FD discovery algorithms are given with an overview of their
theoretical foundations. Previous research establishes that FD_Mine is the
most efficient FD discovery algorithm when applied to datasets with many
rows (> 100,000 rows) and few columns (< 14 columns). This puts it in a
special position to rule mine clinical and demographic datasets, which often
consist of long and narrow sets of participant records. The structure of
FD_Mine is described and supplemented with a formal proof of the
equivalence pruning method used. FDTool is a re-implementation of
FD_Mine with additional features added to improve performance
and automate typical processes in database architecture. The experimental
results of applying FDTool to 13 datasets of different dimensions are
summarized in terms of the number of FDs checked, the number of FDs
found, and the time it takes for the code to terminate. We find that the
number of attributes in a dataset has a much greater effect on the runtime
and memory costs of FDTool than does row count. The last section
explains in detail how the FDTool application can be accessed, executed,
and further developed.
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Introduction
Functional dependencies (FDs) are key to understanding how attributes in a database schema relate to one another. 
An FD defines a rule constraint between two sets of attributes in a relation1 r(U), where U = {v

1
,v

2
,…,v

m
} is  

a finite set of attributes (Yao et al., 2002). A combination of attributes over a dataset is called a candidate (Yao  
et al., 2002). An FD X → Y asserts that the values of candidate X uniquely determine those of candidate Y (Yao 
et al., 2002). For example, the social security number (SSN) attribute in a dataset of public records functionally  
determines the first name attribute. Because the FD holds, we write {SSN} → {first_name}.

Definition 1. A functional dependency X → Y, where X,Y ⊆ U, is satisfied by r(U), if for all pairs of tuples  
t
i
,  t

j 
∈ r(U), we have that t

i
 [X] = t

j
 [X] implies t

i
 [Y] = t

j
 [Y] (Yao & Hamilton, 2008).

In this case, X is the left-hand side of an FD, and Y is the right-hand side (Yao et al., 2002). If Y is not functionally 
dependent on any proper subset of X, then X → Y is minimal (Yao et al., 2002). Minimal FDs are our only con-
cern in rule mining FDs, since all other FDs are logically implied. For instance, if we know {SSN} → {first_name},  
then we can infer that {SSN, last_name} → {first_name}.

Power set lattice
The search space for FDs can be represented as a power set lattice of nonempty attribute combinations.  
Figure 1 gives the nonempty attribute combinations of a relation r(U) such that U = {A,B,C,D}. There are  
2n – 1 = 24 – 1 = 15 attribute subsets in the power set lattice (Yao & Hamilton, 2008). Each combination X of  
the attributes in U can be the left-hand side of an FD X → Y such that X → Y is satisfied by relation r(U) (Yao &  
Hamilton, 2008). Since the attribute set itself U trivially determines each one of its proper subsets, it can be ignored  
as a candidate. There remain 2n – 2 = 24 – 2 = 14 nonempty subsets of U that are to be considered candidates.

There are n · 2n–1 – n = 4 · 24–1 – 4 = 28 edges (or arrows) in the semi-lattice of the complete search space for 
FDs in relation r(U) (Yao & Hamilton, 2008). The size of the search space for FDs is exponentially related 
to the number of attributes in U. Hence, the search space for FDs increases quite significantly when there is 

Figure 1. Nonempty combinations of attributes A, B, C, and D by k-level.

1Each attribute v
i
 has a finite domain, written dom(v

i
), representing the values that v

i
 can take on. For a subset X = {v

i
,…,v

j
} 

of U, we write dom(X) for the Cartesian product of the domains of the individual attributes in X, namely, dom(X) = dom(v
i
) 

× … × dom(v
j
) (Yao & Hamilton, 2008). A relation r on U, denoted r(U), is a finite set of mappings {t

1
,…, t

n
} from U 

to dom(U) with the restriction that for each mapping t ∈ r(U), t[v
i
] must be in dom(v

i
), 1 ≤ i ≤ m, where t[v

i
] denotes the  

value obtained by restricting the mapping t to v
i
. Each mapping t is called a tuple and t(v

i
) is called the v

i
-value of t (Maier, 1983).

      Amendments from Version 1

In response to the reviewers’ comments, in this revision we corrected grammatical and typographical errors. 
In the abstract, we clarify that the experimental comparison of several functional dependency algorithms is referenced 
from previous research.
In the sentence following Definition 6, we substituted the phrase “determines equivalent attributes sets with” with 
“determines equivalent attribute sets using”, since the FDTool code uses the functional dependencies discovered at 
each level to generate equivalent attribute sets.
We uploaded publicly available data with the same shape and structure as the 13 CARES datasets. We base all 
simulation studies on the publicly available data, which can be found in FDTool/data/input/CARES/ as part of the FDTool 
repository and archived our Zenodo project.
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a greater number of attributes in U. For instance, when there are 12 attributes in a relation, the search space for 
FDs climbs to 24,564. This gives reason to be cautious of runtime and memory costs when deploying a rule  
mining algorithm to discover FDs.

Partition
The algorithms used to discover FDs differ in their approach to navigating the complete search space of a  
relation. Their candidate pruning methods vary and sometimes the methods used to validate FDs do as well. These  
differences affect runtime and memory behavior when used to process tables of different dimensions.

A common data structure used to validate FDs is the partition. A partition places tuples that have the same values  
on an attribute into the same group (Yao et al., 2002).

Definition 2. Let X ⊆ U and let t
1
,…,t

n
 be all the tuples in a relation r(U). The partition over X, denoted 

∏
X
, is a set of the groups such that t

i
 and t

j
, 1 ≤ i, j ≤ n, i≠ j, are in the same group if and only if t

i
 [X] = t

j
 [X]  

(Yao et al., 2002).

It follows from Definition 2 that the cardinality of the partition card(∏
A
(r)) is the number of groups in partition  

∏
A 

(Yao & Hamilton, 2008). The cardinality of the partition offers a quick approach to validating FDs in a dataset.

Theorem 1. An FD X → Y is satisfied by a relation r(U) if and only if card(∏
X
) = card(∏

XY
) (Huhtala et al.,  

1999).

Theorem 1 provides an efficient method to check whether an FD X → Y holds in a relation2. Huhtala et al.  
(1999) proved it to support a fast validation method for relations consisting of a large number of tuples.

Closure
Efforts in relational database theory have led to more runtime and memory efficient methods to check the  
complete search space of a relation for FDs. In place of needing each arrow in a semi-lattice checked, we can infer 
the FDs that logically follow from those already discovered. Such FDs are to be discovered as a consequence of 
Armstrong’s Axioms (Maier, 1983) and the inference axioms derivable from them (Ramakrishnan & Gehrke, 2000),  
which are

–   Reflexivity: Y ⊆ X implies X → Y;

–   Augmentation: X → Y implies XZ → YZ;

–   Transitivity: X → Y and Y → Z imply X → Z;

–   Union: X → Y and X → Z imply X → YZ;

–   Decomposition: X → YZ implies that X → Y and X → Z.

These axioms signal the distinction between FDs that can be inferred from already discovered FDs and those 
that cannot (Maier, 1983). Exploiting what can be derived from Armstrong’s Axioms allows us to avoid having  
to check many of the candidates in a search space.

Definition 3. Let F be a set of functional dependencies over a dataset D and X be a candidate over D. The  
closure of candidate X with respect to F, denoted X+, is defined as {Y | X → Y can be deduced from F by  
Armstrong’s Axioms} (Yao & Hamilton, 2008).

The nontrivial closure3 of candidate X with respect to F is defined as X* = X+ \ X and written X* (Yao &  
Hamilton, 2008). Definition 3 gives room to elegantly define keys. Informally, a key implies that a relation does  
not have two distinct tuples with the same values on those attributes. Keys uniquely identify all tuple records in a 
dataset.

2FDTool uses Theorem 1 as means to check FDs in the GetFDs module with the pandas data analysis library functions nunique()  
and dropduplicates.count().
3FDTool saves the closure of candidates at each level before releasing it from memory at levels that follow.
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Definition 4. Let R be a relational schema and X be a candidate of R over a dataset D. If X ∪ X* = R, then X is  
a key (Yao et al., 2002).

A candidate key X of a relation is a minimal key for that relation. This means that there is no proper subset of  
X for which Definition 4 holds.

Rule mining algorithms
Existing functional dependency algorithms are split between three categories: Difference- and agree-set  
algorithms (e.g., Dep-Miner, FastFDs), Dependency induction algorithms (e.g., FDEP), and Lattice traversal  
algorithms (e.g., TANE, FUN, FD_Mine, DFD) (Papenbrock et al., 2015).

Difference- and agree-set algorithms model the search space of a relation as the cross product of all tuple 
records (Papenbrock et al., 2015). They search for sets of attributes agreeing on the values of certain tuple pairs. 
Attribute sets only functionally determine other attribute sets whose tuple pairs agree, i.e., agree-sets (Asghar &  
Ghenai, 2015; Papenbrock et al., 2015). Then, agree-sets are used to derive all minimal FDs.

Dependency induction algorithms assume a base set of FDs in which each attribute functionally determines each  
other attribute (Papenbrock et al., 2015). While iterating through row data, observations are made that require 
certain FDs to be removed from the base set and others added to it. These observations are made by compar-
ing tuple pairs based on the equality of their projections. After each record in a dataset is compared, the FDs left  
in the base set are considered valid, minimal and complete (Papenbrock et al., 2015).

Lattice traversal algorithms model the search space of a relation as a power set lattice. Most of such algo-
rithms, (i.e., TANE, FUN, FD_Mine) use a level-wise approach to traversing the search space of a relation from 
the bottom-up (Papenbrock et al., 2015). They start by checking4 for FDs that are singleton sets on the left-hand  
side and iteratively transition to candidates of greater cardinality.

Performance
Papenbrock et al. (2015) released an experimental comparison of the aforementioned FD discovery algorithms. 
The seven algorithms were re-implemented in Java based on their original publications and applied to 17 data-
sets of various dimensions. They found that none of the algorithms are suited to yield the complete result set of 
FDs from a dataset consisting of 100 columns and 1 million rows (Papenbrock et al., 2015). Hence, it is a matter  
of discretion to choose the algorithm best fitting the dimensions of a dataset.

The experimental results show that lattice traversal algorithms are the least memory efficient, since each  
k-level5 can be a factor greater than the size of the previous level (Papenbrock et al., 2015). Difference- and 
agree-set algorithms and dependency induction algorithms perform favorably in memory experiments as a 
result of their operating directly on data and efficiently storing result sets. Lattice traversal algorithms scale  
poorly on tables with many columns (≥ 14 columns) due to memory limits (Papenbrock et al., 2015).

Lattice traversal algorithms are the most effective on datasets with many rows, because their validation method6 

operates on attribute sets as opposed to data (Papenbrock et al., 2015). This puts such algorithms in a special 
position to rule mine clinical and demographic record datasets, which often consist of long and narrow sets 
of participant records. Difference- and agree-set algorithms and dependency induction algorithms commonly  
reach time limits when applied to datasets of these dimensions (> 100,000 rows) (Papenbrock et al., 2015).

Lattice traversal algorithms
Lattice traversal algorithms iterate through k-levels represented in a power set lattice. If the lattice is traversed  
from the bottom-up, we say the algorithm is level-wise.

Definition 5. Let X
1
, X

2
,…, X

k
, X

k+1 
be (k + 1) attributes over a database D. If X

1
X

2
… X

k 
→ X

k+1
 is an FD with  

k attributes on its left hand side, then it is called a k-level FD (Yao et al., 2002).

4We say that an FD is checked when Theorem 1 is used to see if it holds or not (Yao et al., 2002).
5Definition 5.
6Theorem 1.

Page 5 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019



The search space for FDs is reduced at the end of each iteration using pruning rules. Pruning rules check 
the validity of candidates not yet checked with FDs already discovered and those inferred from Armstrong’s  
Axioms (Yao & Hamilton, 2008). After a search space is pruned, an Apriori_Gen principle generates k-level  
candidates with the (k – 1)-level candidates that were not pruned (Yao & Hamilton, 2008).

Apriori_Gen:

– oneUp: generates all possible candidates in C
k 
from those in C

k–1
.

– oneDown: generates all possible candidates in C
k–1 

from those in C
k
.

Level-wise lattice traversal algorithms stop iterating after all candidates in a search space are pruned. In this 
case, Apriori_Gen generates the null set ∅ raising a flag for the algorithm to terminate. This has the effect of  
shortening runtime to the degree that FDs are discovered and others are inferred.

Tane
The level-wise lattice traversal algorithms TANE, FUN, and FD_Mine differ in terms of pruning rules. FUN and 
FD_Mine expand on the pruning rules of TANE. Released by Huhtala et al. (1999), TANE prunes a search 
space on the basis that only minimal and non-trivial7 FDs need be checked. TANE restricts the right-hand  
side candidates C+ for each attribute combination X to the set
                                             { }{ }( ) | : \ , does not hold ,C X A R B X X A B B+ = ∈ ∀ ∈ →

which contains all the attributes that the set X may still functionally determine (Papenbrock et al., 2015). The set C+ is 
used in the following pruning rules (Papenbrock et al., 2015).

•   Minimality pruning: If an FD X \ A → A holds, A and all B ∈ C+ (X) \ X can be removed from C+ (X).

•    Right-hand side pruning: If C+ (X) = ∅, the attribute combination X can be pruned from the lattice, as there  
are no more right-hand side candidates for a minimal FD.

•   Key pruning: If the attribute combination X is a key, it can be pruned from the lattice.

Key pruning implies that all supersets of a key, i.e., super keys, can be removed, since they are by definition non- 
minimal (Huhtala et al., 1999).

FD_Mine
Like TANE and FUN, FD_Mine is structured around the level-wise lattice traversal approach and the aforemen-
tioned pruning rules. Unlike the other two algorithms, FD_Mine, authored by Yao et al. (2002), uses the concept 
of equivalence as means to more exhaustively prune the search space of a candidate (Papenbrock et al., 2015). 
Informally, attribute sets are equivalent if and only if they are functionally dependent on each other (Papenbrock  
et al., 2015).

The proofs demonstrating that no useful information is lost in pruning candidates from equivalent attribute 
sets are reproduced in this section and were originally developed by Yao & Hamilton (2008). The equivalence  
pruning method can be derived directly from Armstrong’s Axioms.

Definition 6. Let X and Y be candidates over a dataset D. If X → Y and Y → X hold, then we say that X and Y  
are an equivalence and denote it as X ↔ Y.

After a k-level is fully validated, i.e., each k-level candidate is checked, FD_Mine determines equivalent attribute  
sets using the FDs already discovered.

Theorem 2. Let X, Y ⊆ U. If Y ⊆ X+ and X ⊆ Y+, then X ↔ Y (Yao & Hamilton, 2008).

Proof. Since X → X+ and Y ⊆ X+, Decomposition implies that X → Y. By a similar argument, Y → X holds. Because  
X → Y and Y → X, we have by definition that X ↔ Y holds.

7An FD X → A is non-trivial if and only if X ∉ A (Huhtala et al., 1999).
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Lemma 3 and Lemma 4 are derived from Armstrong’s Axioms with the assumption of the equivalence X ↔ Y.

Lemma 3. Let W,X,Y,Y’,Z ⊆ U and Y ⊆ Y’. If X ↔ Y and XW → Z, then Y’W → Z (Yao & Hamilton, 2008).

Proof. Suppose that X ↔ Y and XW → Z. This implies that X → Y. By Augmentation, YW → XW. By Transitivity, 
YW → XW and XW → Z give that YW → Z. By Augmentation, Y’ \ Y can be added to both sides of YW → Z  
to give that YW(Y’ \ Y) → Z(Y’ \ Y). By Y ⊂ Y’, we know that Y’W → Z(Y’ \ Y). Then, by Decomposition, Y’W → Z.

Lemma 4. Let W,X,Y,Z ⊆ U. If X ↔ Y and WZ → X, then WZ → Y (Yao & Hamilton, 2008).

Proof. By X ↔ Y, we know that X → Y. By Transitivity, WZ → X and X → Y imply WZ → Y.

Theorem 2 checks attribute sets X and Y for the equivalence X ↔ Y. FD_Mine assumes that the attribute set 
Y is generated before X. By Lemma 3 and Lemma 4, we know that for equivalence X ↔ Y, no further attribute 
sets Z such that Y ⊆ Z need be checked (Yao & Hamilton, 2008). Hence, Y is deleted as a result of the following  
pruning rule.

•    Equivalence pruning: If X ↔ Y is satisfied by relation r(U), then candidate Y can be deleted. (Yao &  
Hamilton, 2008).

Exploiting the equivalence pruning method leaves FD_Mine in a more aggressive position to prune candidates  
than TANE. This offers an advantage in terms of runtime and memory behavior (Yao et al., 2002).

Non-minimal FDs
The pseudo-code proposed in the second version of FD_Mine (Yao & Hamilton, 2008) will under certain  
circumstances output non-minimal FDs (Papenbrock et al., 2015). FD_Mine references an Apriori_Gen method 
(Agrawal et al., 1996) stating that for each pair of candidates p, q ∈ C

k–1 
the set p ∪ q is to be placed in C

k 
if  

card(p ∪ q) = k. Example 1 shows that the Apriori_Gen method referenced and utilized by FD_Mine can violate  
minimality pruning by checking supersets that need not be checked. Figure 2 gives the power set lattice of the  
relation described in Example 1 pruned by FD_Mine.

Example 1. Let r(U) be a relation such that U = {A,B,C,D,E}. Suppose that AB is a key and that there are no  
other FDs in r(U). Since AB is a key, we know by definition that AB ∪ AB* = U. Provided this and that there are 
no other FDs in r(U), the candidates ABC, ABD and ABE are deleted from C

3
, and so C

3 
= Prune(Apriori_Gen(C

2
)) 

= {ACE, BCE, ACD, BCD, ADE, CDE, BDE}8. Then, C
4 

= {ABCD, ABCE, ACDE, ABDE, BCDE}. Because 

Figure 2. A pruned power set lattice. FD_Mine deletes the candidates ABC, ABE, and ABD (red ovals) as a result of 
finding the candidate key AB (blue hexagon). It generates supersets of AB (yellow rectangles) at the next level.

8Since E = ∅ in this example, we can ignore the argument E in the function Prune(). For simplicity’s sake, we ignore the  
argument Closure.
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it must be that AB* = {C, D, E}, the algorithm validates the FDs ABCD → E, ABCE → D, and ABDE → C.  
Since E, for example, is functionally dependent on the proper subset AB ⊆ ABCD, ABCD → E is non-minimal.

The Apriori_Gen principle presented in TANE (Huhtala et al., 1999) more effectively generates candidate 
level C

k+1 
from C

k
. It requires that C

k+1 
only contains the attribute sets of size k + 1 which have all their subsets  

of size k in C
k 
(Huhtala et al., 1999); i.e.,

                    { }1 | ( ) 1 and for all with and ( ) we have kk+C X X k X k Ccard card= = + ϒ ϒ ⊆ ϒ = ϒ ∈ ⋅

In reference to Example 1, this method does not insert the candidate ABCD in C
4
, without loss of generality,  

because ABC ⊆ ABCD but ABC ∉ C
3
. Thus, the non-minimal FD ABCD → E is not checked.

Prune(C
k
, E, Closure)9–11

01 for each :

02 for each [ ]:

03 if ( ) then:

04 if ( { | }) then: # Pruning rule 1

05 delete from 

06 if then: # Pruning rule 2

07 delete from 

08 # Pruning rule 3

09 if then: # Prunin

k

k

k

k

S  C
X oneDown C

X S
X Z Z E

S C

S X
S C

S S X
U S

ϒ

+

+ +

+

∈

∈

⊂

∈ ↔ ∈

⊂

= ∪

==

∗

g rule 4

10 delete from 

11 return , ;
k

k

S C
C Closure

FD_Mine will under the circumstance described in Example 1 set closure values incorrectly. In line 2, FD_Mine 
iterates through C

k–1
, as opposed to oneDown [C

k
], which can cause the Prune() function to ignore setting 

the closure values of certain candidates. In Example 1, FD_Mine does not accurately set the closure 
ABCD* to E, since E is not saved to the closure values of the candidates ACD, BCD ⊆ ABCD at the previ-
ous level. Iterating through oneDown [C

k
] sets the closure of a candidate to the union of the closure values of its  

proper subsets, so that the closure values of deleted candidates are not lost among their supersets.

Properly assigned closure values can allow the algorithm to avoid checking many non-minimal FDs. This is 
because the ObtainFDs module, i.e., the validation method, only checks12 the right-hand side attributes v

i 
for 

which v
i 
∈ U \ X+ (Yao & Hamilton, 2008). Hence, provided that Pruning rule 3 asserts the equality ABCD* = E,  

ABCD → E need not be checked.

Operation
FDTool (Buranosky, 2018) is a command line Python application executed with the following state-
ment: $ fdtool /path/to/file13. For Windows users, this is to be run from the working direc-
tory of fdtool.exe, which will likely be C:\Python27\Scripts for those installing with pip 
install fdtool. For other systems, installation automatically inserts the file path to the fdtool command 
in the PATH variable. /path/to/file is the absolute or relative path to a .txt, .csv, or .pkl file containing 
a tabular dataset. If the data file has the extension .txt or .csv, FDTool detects the following separators: comma  
(‘,’), bar (‘|’), semicolon (‘;’), colon (‘:’), and tilde (‘∼’). The data is read in as a Pandas data frame14.

9Closure = {X+ | X ∈ C
k
 V X ∈ oneDown [C

k
]}.

10Equivalent candidates are stored in E.
11All candidates at level k are stored in C

k
.

12Assume the left-hand side attribute set X.
13Edit FDTool/fdtool/config.py prior to building setup with python setup.py install to change preset time limit or max 
k-level.
14The data is read in with the Pandas function read_csv(), which is subject to the usual spacing errors associated with reading in delimiter-
separated values.
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Dependencies:

1. Python2 (https://www.python.org/), recommended version 2.7.8 or later.

2. Pandas data analysis library (https://pandas.pydata.org/) via: pip install pandas.

FDTool provides the user with the minimal FDs, equivalent attribute sets and candidate keys mined from 
a dataset. This is given with the time (s) it takes for the code to terminate (after reading in data), the row count 
and attribute count of the data, the number of FDs and equivalent attribute sets found, and the number of FDs 
checked. This is printed on the terminal after the code is executed as shown in Figure 3. The information is  
saved to a .FD_Info.txt file.

Figure 3 shows the printed output of FDTool.exe applied to the contents of Table 1. The output file Table1.  
FD_Info.txt is saved to the user’s current working directory.

Implementation
FDTool is a Python based re-implementation of the FD_Mine algorithm with additional features added to auto-
mate typical processes in database architecture. FD_Mine was published in two papers with more detail given 
to the scientific concepts used in algorithms of its kind (Yao et al., 2002; Yao & Hamilton, 2008). The two  

Figure 3. Printed output of FDTool.exe.

Table 1. Example 
dataset.

A B C D E

0 0 0 2 0

0 1 0 2 0

0 2 0 2 2

0 3 1 2 0

4 1 1 1 4

4 3 1 1 2

0 0 1 2 0
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versions of FD_Mine were released with different structures but make use of the same theoretical foundation  
(Papenbrock et al., 2015), which is fully supported in mathematical proofs of the pruning rules used (Yao &  
Hamilton, 2008). FDTool was coded15 with special attention given to the pseudo-code presented in the second  
version of FD_Mine (Yao & Hamilton, 2008).

The Python script dbschema.py in FDTool/fdtool/modules/dbschema is taken from dbschemacmd 
(https://www.elstel.org/database/dbschemacmd.html.en): a tool for database schema normalization work-
ing on functional dependencies (Elmasri & Navathe, 2011). It is used to take sets of FDs and infer candidate 
keys from them. The operation first assigns the left-hand side attribute combinations of a set of FDs to diction-
ary keys and their closures to the corresponding values. It then reduces the set of FDs to a minimum coverage16. 
Candidate keys are assembled using the minimum coverage and closure structure by adding attributes to key 
candidates until each minimal attribute set X for which X+ = U is found. Details on the dbschema operations are  
described in FDTool/fdtool/modules/dbschema/Docs.

Use cases
FDTool was initially created to help decompose datasets of medical records as part of Clinical Archived 
Records research for Environmental Studies (CARES). CARES currently contains 13 datasets obtained from 
the medical software firms Epic and Legacy. The attribute count in this database ranges from 4 to 18; the row  
count ranges from 42,369 to 8,201,636.

Experimental results
To limit the strain on computational resources, FDTool has a built in time limit of 4 hours. FDTool reaches 
this preset limit (triggering program termination) when applied to the PatientDemographics dataset (42,369 
rows × 18 columns) and the EpicVitals_TobaccoAlcOnly dataset (896,962 rows × 18 columns). The  
remaining 11 CARES datasets are given in Table 217.

Experimental summary
The results from Table 2 show that runtime is primarily determined by the number of attributes in a dataset. For 
instance, the LegacyPayors dataset (1,465,233 rows × 4 columns) has slightly more rows (13% increase) but 
far fewer attributes (60% decrease) as compared to the AllLabs dataset (1,294,106 rows × 10 columns). The  
runtime of LegacyPayers (9.4 s.) is much less than that of AllLabs (999.8 s.), because AllLabs has many more  
arrows in its powerset lattice,

                                                                  
–1 10–1.. 2 – 10 2 –10 5110,nn n = =

than does LegacyPayers (28). Hence, FDTool has more FDs to check when applied to AllLabs. It is clear  
that the attribute count of a dataset has a much greater effect on the runtime of FDTool than does row count.

Many of the arrows in the powerset lattice of a candidate are pruned by FDTool. AllLabs has 5,110 arrows in its 
powerset lattice. However, FDTool only checks 818 FDs, as there are many inferred from the 43 FDs found. This 
follows from the Prune() function, which deletes many of the candidates to check partially as a result of mining  
4 equivalent attribute sets. FDTool terminates after 5 k-levels when applied to AllLabs.

Future development
We want to improve its performance so that FDTool is better equipped to handle datasets of different dimen-
sions. Using the dependency induction algorithm FDEP, the reach of FDTool could be extended to datasets 
with fewer rows and more than 100 columns (Papenbrock et al., 2015). This might also require upgrading the 
source code with multicore processing methods, such as a Java API, to reduce runtime and avoid reaching  
memory limits. A formal proof of the dbschema operations is also desired.

15FDTool was tested regularly throughout the implementation process so as to accomodate to changes made to improve  
runtime and memory behavior.
16A set of FDs F is a coverage of another set of FDs G if every FD in G can be inferred from F; i.e., G+ ⊆ F+ (Soule, 2014).  
F is a minimum coverage of G if F is the smallest set of FDs that covers G (Soule, 2014). 

17OS: Windows 10; Installed memory (RAM): 256 GB; Processor: Intel Core, 1 CPU; Clock speed: 2.19 GHz; Python: 2.7.12; Pandas: 
0.18.1.
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Another goal is to increase the functionality provided by FDTool. This would mean implementing the pen and 
paper methods typically used to normalize relational schema and decompose tables. Our intent is to incorpo-
rate these changes in newer versions of FDTool, released at regular periods, so as to develop it as Python software  
that could automate much of what is done in the database design process.

Data availability
Zenodo: USEPA/FDTool: FDTool. https://doi.org/10.5281/zenodo.14428423.

While the authors fully support the open dissemination of data for verification and replication purposes, CARES  
data cannot be released as it contains Protected Health Information. For the purpose of testing the runtime and  
memory behavior of FDTool, we have produced simulated copies of all 13 datasets in the CARES collection.  
These datasets are publically available in FDTool/data/input/CARES as part of the FDTool repository and 
archived in the above Zenodo project. 

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
FDTool is available from the Python Package Index: https://pypi.org/project/fdtool/

Latest source code: https://github.com/USEPA/FDTool.git

Source code at time of publication: https://doi.org/10.5281/zenodo.14428423

License: CC0 1.0 Universal. Module FDTool/fdtool/modules/dbschema released under a modified  
C-FSL license.

Author contributions
MB and ES designed and implemented the software. MB wrote the manuscript. CWC supervised MB, and 
reviewed the manuscript. EP maintained the research data. DDS coordinated the funding for the project.  
All authors agreed to the final content of the manuscript.
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Table 2. Experimental results of FDTool on 11 CARES datasets, which terminate in less than 4 hours 
(preset limit).

Dataset Name Attribute Count Row Count No. of FDs checked No. of FDs 
found

No. of 
Equivalences Time (s)

AllDxs 7 8,201,686 112 7 1 577.9

AllLabs 10 1,294,106 818 43 4 999.8

AllVisits 9 2,019,117 346 44 7 804.1

EpicMeds 10 1,281,731 453 26 0 551.9

EpicVitals2015 7 1,246,303 127 2 0 86.5

EpicVitals2016 7 988,327 127 2 0 63.0

FamHx 4 93,725 15 0 0 0.7

LegacyIPMeds 8 647,122 79 14 1 28.2

LegacyOPMeds 7 740,616 33 18 1 7.7

LegacyPayors 4 1,465,233 15 4 1 9.4

LegacyVitals 8 1,453,927 146 7 0 134.4
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