

Open Peer Review

Any reports and responses or comments on the
article can be found at the end of the article.

SOFTWARE TOOL ARTICLE

 FDTool: a Python application to mine for functional
 dependencies and candidate keys in tabular data [version 2;

peer review: 2 approved]
Matt Buranosky , Elmar Stellnberger , Emily Pfaff , David Diaz-Sanchez ,
Cavin Ward-Caviness1

National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, NC, USA
University of Klagenfurt, Klagenfurt, Austria
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract
Functional dependencies (FDs) and candidate keys are essential for table
decomposition, database normalization, and data cleansing. In this paper,
we present FDTool, a command line Python application to discover minimal
FDs in tabular datasets and infer equivalent attribute sets and candidate
keys from them. The runtime and memory costs associated with seven
published FD discovery algorithms are given with an overview of their
theoretical foundations. Previous research establishes that FD_Mine is the
most efficient FD discovery algorithm when applied to datasets with many
rows (> 100,000 rows) and few columns (< 14 columns). This puts it in a
special position to rule mine clinical and demographic datasets, which often
consist of long and narrow sets of participant records. The structure of
FD_Mine is described and supplemented with a formal proof of the
equivalence pruning method used. FDTool is a re-implementation of
FD_Mine with additional features added to improve performance
and automate typical processes in database architecture. The experimental
results of applying FDTool to 13 datasets of different dimensions are
summarized in terms of the number of FDs checked, the number of FDs
found, and the time it takes for the code to terminate. We find that the
number of attributes in a dataset has a much greater effect on the runtime
and memory costs of FDTool than does row count. The last section
explains in detail how the FDTool application can be accessed, executed,
and further developed.

Keywords
Functional dependencies, Data mining, Electronic health records,
Relational database, FDTool, Rule discovery

This article is included in the Python Collection
collection.

1 2 3 1

1

1

2

3

 Reviewer Status

 Invited Reviewers

version 2
published
19 Jun 2019

version 1
published
19 Oct 2018

 1 2

report report

, University of Regina,Howard J. Hamilton

Regina, Canada
, University of Regina, Regina,Shubhashis Shil

Canada

1

, Duke University,Sayan Mukherjee

Durham, USA
2

 19 Oct 2018, :1667 (First published: 7
)https://doi.org/10.12688/f1000research.16483.1

 19 Jun 2019, :1667 (Latest published: 7
)https://doi.org/10.12688/f1000research.16483.2

v2

Page 1 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://f1000research.com/articles/7-1667/v2
https://f1000research.com/articles/7-1667/v2
https://orcid.org/0000-0001-9778-243X
https://f1000research.com/collections/python
https://f1000research.com/collections/python
https://f1000research.com/articles/7-1667/v2
https://f1000research.com/articles/7-1667/v1
https://orcid.org/0000-0002-6715-3920
https://doi.org/10.12688/f1000research.16483.1
https://doi.org/10.12688/f1000research.16483.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.16483.2&domain=pdf&date_stamp=2019-06-19

 Matt Buranosky ()Corresponding author: mburanosky17@gmail.com
 : Software, Writing – Original Draft Preparation; : Software; : Data Curation; :Author roles: Buranosky M Stellnberger E Pfaff E Diaz-Sanchez D

Funding Acquisition; : Supervision, Writing – Review & EditingWard-Caviness C
 No competing interests were disclosed.Competing interests:

 This work was funded by the US Environmental Protection Agency. The work presented here does not necessarily reflect theGrant information:
views or policy of the EPA. Any mention of trade names does not constitute endorsement by the EPA.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Buranosky M . This is an open access article distributed under the terms of the ,Copyright: et al Creative Commons Attribution Licence
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Buranosky M, Stellnberger E, Pfaff E How to cite this article: et al. FDTool: a Python application to mine for functional dependencies and
 F1000Research 2019, :1667 (candidate keys in tabular data [version 2; peer review: 2 approved] 7

)https://doi.org/10.12688/f1000research.16483.2
 19 Oct 2018, :1667 () First published: 7 https://doi.org/10.12688/f1000research.16483.1

Page 2 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.16483.2
https://doi.org/10.12688/f1000research.16483.1

Introduction
Functional dependencies (FDs) are key to understanding how attributes in a database schema relate to one another.
An FD defines a rule constraint between two sets of attributes in a relation1 r(U), where U = {v

1
,v

2
,…,v

m
} is

a finite set of attributes (Yao et al., 2002). A combination of attributes over a dataset is called a candidate (Yao
et al., 2002). An FD X → Y asserts that the values of candidate X uniquely determine those of candidate Y (Yao
et al., 2002). For example, the social security number (SSN) attribute in a dataset of public records functionally
determines the first name attribute. Because the FD holds, we write {SSN} → {first_name}.

Definition 1. A functional dependency X → Y, where X,Y ⊆ U, is satisfied by r(U), if for all pairs of tuples
t
i
, t

j
∈ r(U), we have that t

i
 [X] = t

j
 [X] implies t

i
 [Y] = t

j
 [Y] (Yao & Hamilton, 2008).

In this case, X is the left-hand side of an FD, and Y is the right-hand side (Yao et al., 2002). If Y is not functionally
dependent on any proper subset of X, then X → Y is minimal (Yao et al., 2002). Minimal FDs are our only con-
cern in rule mining FDs, since all other FDs are logically implied. For instance, if we know {SSN} → {first_name},
then we can infer that {SSN, last_name} → {first_name}.

Power set lattice
The search space for FDs can be represented as a power set lattice of nonempty attribute combinations.
Figure 1 gives the nonempty attribute combinations of a relation r(U) such that U = {A,B,C,D}. There are
2n – 1 = 24 – 1 = 15 attribute subsets in the power set lattice (Yao & Hamilton, 2008). Each combination X of
the attributes in U can be the left-hand side of an FD X → Y such that X → Y is satisfied by relation r(U) (Yao &
Hamilton, 2008). Since the attribute set itself U trivially determines each one of its proper subsets, it can be ignored
as a candidate. There remain 2n – 2 = 24 – 2 = 14 nonempty subsets of U that are to be considered candidates.

There are n · 2n–1 – n = 4 · 24–1 – 4 = 28 edges (or arrows) in the semi-lattice of the complete search space for
FDs in relation r(U) (Yao & Hamilton, 2008). The size of the search space for FDs is exponentially related
to the number of attributes in U. Hence, the search space for FDs increases quite significantly when there is

Figure 1. Nonempty combinations of attributes A, B, C, and D by k-level.

1Each attribute v
i
 has a finite domain, written dom(v

i
), representing the values that v

i
 can take on. For a subset X = {v

i
,…,v

j
}

of U, we write dom(X) for the Cartesian product of the domains of the individual attributes in X, namely, dom(X) = dom(v
i
)

× … × dom(v
j
) (Yao & Hamilton, 2008). A relation r on U, denoted r(U), is a finite set of mappings {t

1
,…, t

n
} from U

to dom(U) with the restriction that for each mapping t ∈ r(U), t[v
i
] must be in dom(v

i
), 1 ≤ i ≤ m, where t[v

i
] denotes the

value obtained by restricting the mapping t to v
i
. Each mapping t is called a tuple and t(v

i
) is called the v

i
-value of t (Maier, 1983).

 Amendments from Version 1

In response to the reviewers’ comments, in this revision we corrected grammatical and typographical errors.
In the abstract, we clarify that the experimental comparison of several functional dependency algorithms is referenced
from previous research.
In the sentence following Definition 6, we substituted the phrase “determines equivalent attributes sets with” with
“determines equivalent attribute sets using”, since the FDTool code uses the functional dependencies discovered at
each level to generate equivalent attribute sets.
We uploaded publicly available data with the same shape and structure as the 13 CARES datasets. We base all
simulation studies on the publicly available data, which can be found in FDTool/data/input/CARES/ as part of the FDTool
repository and archived our Zenodo project.

See referee reports

REVISED

Page 3 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://doi.org/10.5281/zenodo.1442842

a greater number of attributes in U. For instance, when there are 12 attributes in a relation, the search space for
FDs climbs to 24,564. This gives reason to be cautious of runtime and memory costs when deploying a rule
mining algorithm to discover FDs.

Partition
The algorithms used to discover FDs differ in their approach to navigating the complete search space of a
relation. Their candidate pruning methods vary and sometimes the methods used to validate FDs do as well. These
differences affect runtime and memory behavior when used to process tables of different dimensions.

A common data structure used to validate FDs is the partition. A partition places tuples that have the same values
on an attribute into the same group (Yao et al., 2002).

Definition 2. Let X ⊆ U and let t
1
,…,t

n
 be all the tuples in a relation r(U). The partition over X, denoted

∏
X
, is a set of the groups such that t

i
 and t

j
, 1 ≤ i, j ≤ n, i≠ j, are in the same group if and only if t

i
 [X] = t

j
 [X]

(Yao et al., 2002).

It follows from Definition 2 that the cardinality of the partition card(∏
A
(r)) is the number of groups in partition

∏
A

(Yao & Hamilton, 2008). The cardinality of the partition offers a quick approach to validating FDs in a dataset.

Theorem 1. An FD X → Y is satisfied by a relation r(U) if and only if card(∏
X
) = card(∏

XY
) (Huhtala et al.,

1999).

Theorem 1 provides an efficient method to check whether an FD X → Y holds in a relation2. Huhtala et al.
(1999) proved it to support a fast validation method for relations consisting of a large number of tuples.

Closure
Efforts in relational database theory have led to more runtime and memory efficient methods to check the
complete search space of a relation for FDs. In place of needing each arrow in a semi-lattice checked, we can infer
the FDs that logically follow from those already discovered. Such FDs are to be discovered as a consequence of
Armstrong’s Axioms (Maier, 1983) and the inference axioms derivable from them (Ramakrishnan & Gehrke, 2000),
which are

– Reflexivity: Y ⊆ X implies X → Y;

– Augmentation: X → Y implies XZ → YZ;

– Transitivity: X → Y and Y → Z imply X → Z;

– Union: X → Y and X → Z imply X → YZ;

– Decomposition: X → YZ implies that X → Y and X → Z.

These axioms signal the distinction between FDs that can be inferred from already discovered FDs and those
that cannot (Maier, 1983). Exploiting what can be derived from Armstrong’s Axioms allows us to avoid having
to check many of the candidates in a search space.

Definition 3. Let F be a set of functional dependencies over a dataset D and X be a candidate over D. The
closure of candidate X with respect to F, denoted X+, is defined as {Y | X → Y can be deduced from F by
Armstrong’s Axioms} (Yao & Hamilton, 2008).

The nontrivial closure3 of candidate X with respect to F is defined as X* = X+ \ X and written X* (Yao &
Hamilton, 2008). Definition 3 gives room to elegantly define keys. Informally, a key implies that a relation does
not have two distinct tuples with the same values on those attributes. Keys uniquely identify all tuple records in a
dataset.

2FDTool uses Theorem 1 as means to check FDs in the GetFDs module with the pandas data analysis library functions nunique()
and dropduplicates.count().
3FDTool saves the closure of candidates at each level before releasing it from memory at levels that follow.

Page 4 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

Definition 4. Let R be a relational schema and X be a candidate of R over a dataset D. If X ∪ X* = R, then X is
a key (Yao et al., 2002).

A candidate key X of a relation is a minimal key for that relation. This means that there is no proper subset of
X for which Definition 4 holds.

Rule mining algorithms
Existing functional dependency algorithms are split between three categories: Difference- and agree-set
algorithms (e.g., Dep-Miner, FastFDs), Dependency induction algorithms (e.g., FDEP), and Lattice traversal
algorithms (e.g., TANE, FUN, FD_Mine, DFD) (Papenbrock et al., 2015).

Difference- and agree-set algorithms model the search space of a relation as the cross product of all tuple
records (Papenbrock et al., 2015). They search for sets of attributes agreeing on the values of certain tuple pairs.
Attribute sets only functionally determine other attribute sets whose tuple pairs agree, i.e., agree-sets (Asghar &
Ghenai, 2015; Papenbrock et al., 2015). Then, agree-sets are used to derive all minimal FDs.

Dependency induction algorithms assume a base set of FDs in which each attribute functionally determines each
other attribute (Papenbrock et al., 2015). While iterating through row data, observations are made that require
certain FDs to be removed from the base set and others added to it. These observations are made by compar-
ing tuple pairs based on the equality of their projections. After each record in a dataset is compared, the FDs left
in the base set are considered valid, minimal and complete (Papenbrock et al., 2015).

Lattice traversal algorithms model the search space of a relation as a power set lattice. Most of such algo-
rithms, (i.e., TANE, FUN, FD_Mine) use a level-wise approach to traversing the search space of a relation from
the bottom-up (Papenbrock et al., 2015). They start by checking4 for FDs that are singleton sets on the left-hand
side and iteratively transition to candidates of greater cardinality.

Performance
Papenbrock et al. (2015) released an experimental comparison of the aforementioned FD discovery algorithms.
The seven algorithms were re-implemented in Java based on their original publications and applied to 17 data-
sets of various dimensions. They found that none of the algorithms are suited to yield the complete result set of
FDs from a dataset consisting of 100 columns and 1 million rows (Papenbrock et al., 2015). Hence, it is a matter
of discretion to choose the algorithm best fitting the dimensions of a dataset.

The experimental results show that lattice traversal algorithms are the least memory efficient, since each
k-level5 can be a factor greater than the size of the previous level (Papenbrock et al., 2015). Difference- and
agree-set algorithms and dependency induction algorithms perform favorably in memory experiments as a
result of their operating directly on data and efficiently storing result sets. Lattice traversal algorithms scale
poorly on tables with many columns (≥ 14 columns) due to memory limits (Papenbrock et al., 2015).

Lattice traversal algorithms are the most effective on datasets with many rows, because their validation method6

operates on attribute sets as opposed to data (Papenbrock et al., 2015). This puts such algorithms in a special
position to rule mine clinical and demographic record datasets, which often consist of long and narrow sets
of participant records. Difference- and agree-set algorithms and dependency induction algorithms commonly
reach time limits when applied to datasets of these dimensions (> 100,000 rows) (Papenbrock et al., 2015).

Lattice traversal algorithms
Lattice traversal algorithms iterate through k-levels represented in a power set lattice. If the lattice is traversed
from the bottom-up, we say the algorithm is level-wise.

Definition 5. Let X
1
, X

2
,…, X

k
, X

k+1
be (k + 1) attributes over a database D. If X

1
X

2
… X

k
→ X

k+1
 is an FD with

k attributes on its left hand side, then it is called a k-level FD (Yao et al., 2002).

4We say that an FD is checked when Theorem 1 is used to see if it holds or not (Yao et al., 2002).
5Definition 5.
6Theorem 1.

Page 5 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

The search space for FDs is reduced at the end of each iteration using pruning rules. Pruning rules check
the validity of candidates not yet checked with FDs already discovered and those inferred from Armstrong’s
Axioms (Yao & Hamilton, 2008). After a search space is pruned, an Apriori_Gen principle generates k-level
candidates with the (k – 1)-level candidates that were not pruned (Yao & Hamilton, 2008).

Apriori_Gen:

– oneUp: generates all possible candidates in C
k
from those in C

k–1
.

– oneDown: generates all possible candidates in C
k–1

from those in C
k
.

Level-wise lattice traversal algorithms stop iterating after all candidates in a search space are pruned. In this
case, Apriori_Gen generates the null set ∅ raising a flag for the algorithm to terminate. This has the effect of
shortening runtime to the degree that FDs are discovered and others are inferred.

Tane
The level-wise lattice traversal algorithms TANE, FUN, and FD_Mine differ in terms of pruning rules. FUN and
FD_Mine expand on the pruning rules of TANE. Released by Huhtala et al. (1999), TANE prunes a search
space on the basis that only minimal and non-trivial7 FDs need be checked. TANE restricts the right-hand
side candidates C+ for each attribute combination X to the set
 { }{ }() | : \ , does not hold ,C X A R B X X A B B+ = ∈ ∀ ∈ →

which contains all the attributes that the set X may still functionally determine (Papenbrock et al., 2015). The set C+ is
used in the following pruning rules (Papenbrock et al., 2015).

• Minimality pruning: If an FD X \ A → A holds, A and all B ∈ C+ (X) \ X can be removed from C+ (X).

• Right-hand side pruning: If C+ (X) = ∅, the attribute combination X can be pruned from the lattice, as there
are no more right-hand side candidates for a minimal FD.

• Key pruning: If the attribute combination X is a key, it can be pruned from the lattice.

Key pruning implies that all supersets of a key, i.e., super keys, can be removed, since they are by definition non-
minimal (Huhtala et al., 1999).

FD_Mine
Like TANE and FUN, FD_Mine is structured around the level-wise lattice traversal approach and the aforemen-
tioned pruning rules. Unlike the other two algorithms, FD_Mine, authored by Yao et al. (2002), uses the concept
of equivalence as means to more exhaustively prune the search space of a candidate (Papenbrock et al., 2015).
Informally, attribute sets are equivalent if and only if they are functionally dependent on each other (Papenbrock
et al., 2015).

The proofs demonstrating that no useful information is lost in pruning candidates from equivalent attribute
sets are reproduced in this section and were originally developed by Yao & Hamilton (2008). The equivalence
pruning method can be derived directly from Armstrong’s Axioms.

Definition 6. Let X and Y be candidates over a dataset D. If X → Y and Y → X hold, then we say that X and Y
are an equivalence and denote it as X ↔ Y.

After a k-level is fully validated, i.e., each k-level candidate is checked, FD_Mine determines equivalent attribute
sets using the FDs already discovered.

Theorem 2. Let X, Y ⊆ U. If Y ⊆ X+ and X ⊆ Y+, then X ↔ Y (Yao & Hamilton, 2008).

Proof. Since X → X+ and Y ⊆ X+, Decomposition implies that X → Y. By a similar argument, Y → X holds. Because
X → Y and Y → X, we have by definition that X ↔ Y holds.

7An FD X → A is non-trivial if and only if X ∉ A (Huhtala et al., 1999).

Page 6 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

Lemma 3 and Lemma 4 are derived from Armstrong’s Axioms with the assumption of the equivalence X ↔ Y.

Lemma 3. Let W,X,Y,Y’,Z ⊆ U and Y ⊆ Y’. If X ↔ Y and XW → Z, then Y’W → Z (Yao & Hamilton, 2008).

Proof. Suppose that X ↔ Y and XW → Z. This implies that X → Y. By Augmentation, YW → XW. By Transitivity,
YW → XW and XW → Z give that YW → Z. By Augmentation, Y’ \ Y can be added to both sides of YW → Z
to give that YW(Y’ \ Y) → Z(Y’ \ Y). By Y ⊂ Y’, we know that Y’W → Z(Y’ \ Y). Then, by Decomposition, Y’W → Z.

Lemma 4. Let W,X,Y,Z ⊆ U. If X ↔ Y and WZ → X, then WZ → Y (Yao & Hamilton, 2008).

Proof. By X ↔ Y, we know that X → Y. By Transitivity, WZ → X and X → Y imply WZ → Y.

Theorem 2 checks attribute sets X and Y for the equivalence X ↔ Y. FD_Mine assumes that the attribute set
Y is generated before X. By Lemma 3 and Lemma 4, we know that for equivalence X ↔ Y, no further attribute
sets Z such that Y ⊆ Z need be checked (Yao & Hamilton, 2008). Hence, Y is deleted as a result of the following
pruning rule.

• Equivalence pruning: If X ↔ Y is satisfied by relation r(U), then candidate Y can be deleted. (Yao &
Hamilton, 2008).

Exploiting the equivalence pruning method leaves FD_Mine in a more aggressive position to prune candidates
than TANE. This offers an advantage in terms of runtime and memory behavior (Yao et al., 2002).

Non-minimal FDs
The pseudo-code proposed in the second version of FD_Mine (Yao & Hamilton, 2008) will under certain
circumstances output non-minimal FDs (Papenbrock et al., 2015). FD_Mine references an Apriori_Gen method
(Agrawal et al., 1996) stating that for each pair of candidates p, q ∈ C

k–1
the set p ∪ q is to be placed in C

k
if

card(p ∪ q) = k. Example 1 shows that the Apriori_Gen method referenced and utilized by FD_Mine can violate
minimality pruning by checking supersets that need not be checked. Figure 2 gives the power set lattice of the
relation described in Example 1 pruned by FD_Mine.

Example 1. Let r(U) be a relation such that U = {A,B,C,D,E}. Suppose that AB is a key and that there are no
other FDs in r(U). Since AB is a key, we know by definition that AB ∪ AB* = U. Provided this and that there are
no other FDs in r(U), the candidates ABC, ABD and ABE are deleted from C

3
, and so C

3
= Prune(Apriori_Gen(C

2
))

= {ACE, BCE, ACD, BCD, ADE, CDE, BDE}8. Then, C
4

= {ABCD, ABCE, ACDE, ABDE, BCDE}. Because

Figure 2. A pruned power set lattice. FD_Mine deletes the candidates ABC, ABE, and ABD (red ovals) as a result of
finding the candidate key AB (blue hexagon). It generates supersets of AB (yellow rectangles) at the next level.

8Since E = ∅ in this example, we can ignore the argument E in the function Prune(). For simplicity’s sake, we ignore the
argument Closure.

Page 7 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

it must be that AB* = {C, D, E}, the algorithm validates the FDs ABCD → E, ABCE → D, and ABDE → C.
Since E, for example, is functionally dependent on the proper subset AB ⊆ ABCD, ABCD → E is non-minimal.

The Apriori_Gen principle presented in TANE (Huhtala et al., 1999) more effectively generates candidate
level C

k+1
from C

k
. It requires that C

k+1
only contains the attribute sets of size k + 1 which have all their subsets

of size k in C
k
(Huhtala et al., 1999); i.e.,

 { }1 | () 1 and for all with and () we have kk+C X X k X k Ccard card= = + ϒ ϒ ⊆ ϒ = ϒ ∈ ⋅

In reference to Example 1, this method does not insert the candidate ABCD in C
4
, without loss of generality,

because ABC ⊆ ABCD but ABC ∉ C
3
. Thus, the non-minimal FD ABCD → E is not checked.

Prune(C
k
, E, Closure)9–11

01 for each :

02 for each []:

03 if () then:

04 if ({ | }) then: # Pruning rule 1

05 delete from

06 if then: # Pruning rule 2

07 delete from

08 # Pruning rule 3

09 if then: # Prunin

k

k

k

k

S C
X oneDown C

X S
X Z Z E

S C

S X
S C

S S X
U S

ϒ

+

+ +

+

∈

∈

⊂

∈ ↔ ∈

⊂

= ∪

==

∗

g rule 4

10 delete from

11 return , ;
k

k

S C
C Closure

FD_Mine will under the circumstance described in Example 1 set closure values incorrectly. In line 2, FD_Mine
iterates through C

k–1
, as opposed to oneDown [C

k
], which can cause the Prune() function to ignore setting

the closure values of certain candidates. In Example 1, FD_Mine does not accurately set the closure
ABCD* to E, since E is not saved to the closure values of the candidates ACD, BCD ⊆ ABCD at the previ-
ous level. Iterating through oneDown [C

k
] sets the closure of a candidate to the union of the closure values of its

proper subsets, so that the closure values of deleted candidates are not lost among their supersets.

Properly assigned closure values can allow the algorithm to avoid checking many non-minimal FDs. This is
because the ObtainFDs module, i.e., the validation method, only checks12 the right-hand side attributes v

i
for

which v
i
∈ U \ X+ (Yao & Hamilton, 2008). Hence, provided that Pruning rule 3 asserts the equality ABCD* = E,

ABCD → E need not be checked.

Operation
FDTool (Buranosky, 2018) is a command line Python application executed with the following state-
ment: $ fdtool /path/to/file13. For Windows users, this is to be run from the working direc-
tory of fdtool.exe, which will likely be C:\Python27\Scripts for those installing with pip
install fdtool. For other systems, installation automatically inserts the file path to the fdtool command
in the PATH variable. /path/to/file is the absolute or relative path to a .txt, .csv, or .pkl file containing
a tabular dataset. If the data file has the extension .txt or .csv, FDTool detects the following separators: comma
(‘,’), bar (‘|’), semicolon (‘;’), colon (‘:’), and tilde (‘∼’). The data is read in as a Pandas data frame14.

9Closure = {X+ | X ∈ C
k
 V X ∈ oneDown [C

k
]}.

10Equivalent candidates are stored in E.
11All candidates at level k are stored in C

k
.

12Assume the left-hand side attribute set X.
13Edit FDTool/fdtool/config.py prior to building setup with python setup.py install to change preset time limit or max
k-level.
14The data is read in with the Pandas function read_csv(), which is subject to the usual spacing errors associated with reading in delimiter-
separated values.

Page 8 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

Dependencies:

1. Python2 (https://www.python.org/), recommended version 2.7.8 or later.

2. Pandas data analysis library (https://pandas.pydata.org/) via: pip install pandas.

FDTool provides the user with the minimal FDs, equivalent attribute sets and candidate keys mined from
a dataset. This is given with the time (s) it takes for the code to terminate (after reading in data), the row count
and attribute count of the data, the number of FDs and equivalent attribute sets found, and the number of FDs
checked. This is printed on the terminal after the code is executed as shown in Figure 3. The information is
saved to a .FD_Info.txt file.

Figure 3 shows the printed output of FDTool.exe applied to the contents of Table 1. The output file Table1.
FD_Info.txt is saved to the user’s current working directory.

Implementation
FDTool is a Python based re-implementation of the FD_Mine algorithm with additional features added to auto-
mate typical processes in database architecture. FD_Mine was published in two papers with more detail given
to the scientific concepts used in algorithms of its kind (Yao et al., 2002; Yao & Hamilton, 2008). The two

Figure 3. Printed output of FDTool.exe.

Table 1. Example
dataset.

A B C D E

0 0 0 2 0

0 1 0 2 0

0 2 0 2 2

0 3 1 2 0

4 1 1 1 4

4 3 1 1 2

0 0 1 2 0

Page 9 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://www.python.org/
https://pandas.pydata.org/
https://raw.githubusercontent.com/USEPA/FDTool/master/data/output/Table1.FD_Info.txt
https://raw.githubusercontent.com/USEPA/FDTool/master/data/output/Table1.FD_Info.txt

versions of FD_Mine were released with different structures but make use of the same theoretical foundation
(Papenbrock et al., 2015), which is fully supported in mathematical proofs of the pruning rules used (Yao &
Hamilton, 2008). FDTool was coded15 with special attention given to the pseudo-code presented in the second
version of FD_Mine (Yao & Hamilton, 2008).

The Python script dbschema.py in FDTool/fdtool/modules/dbschema is taken from dbschemacmd
(https://www.elstel.org/database/dbschemacmd.html.en): a tool for database schema normalization work-
ing on functional dependencies (Elmasri & Navathe, 2011). It is used to take sets of FDs and infer candidate
keys from them. The operation first assigns the left-hand side attribute combinations of a set of FDs to diction-
ary keys and their closures to the corresponding values. It then reduces the set of FDs to a minimum coverage16.
Candidate keys are assembled using the minimum coverage and closure structure by adding attributes to key
candidates until each minimal attribute set X for which X+ = U is found. Details on the dbschema operations are
described in FDTool/fdtool/modules/dbschema/Docs.

Use cases
FDTool was initially created to help decompose datasets of medical records as part of Clinical Archived
Records research for Environmental Studies (CARES). CARES currently contains 13 datasets obtained from
the medical software firms Epic and Legacy. The attribute count in this database ranges from 4 to 18; the row
count ranges from 42,369 to 8,201,636.

Experimental results
To limit the strain on computational resources, FDTool has a built in time limit of 4 hours. FDTool reaches
this preset limit (triggering program termination) when applied to the PatientDemographics dataset (42,369
rows × 18 columns) and the EpicVitals_TobaccoAlcOnly dataset (896,962 rows × 18 columns). The
remaining 11 CARES datasets are given in Table 217.

Experimental summary
The results from Table 2 show that runtime is primarily determined by the number of attributes in a dataset. For
instance, the LegacyPayors dataset (1,465,233 rows × 4 columns) has slightly more rows (13% increase) but
far fewer attributes (60% decrease) as compared to the AllLabs dataset (1,294,106 rows × 10 columns). The
runtime of LegacyPayers (9.4 s.) is much less than that of AllLabs (999.8 s.), because AllLabs has many more
arrows in its powerset lattice,

–1 10–1.. 2 – 10 2 –10 5110,nn n = =

than does LegacyPayers (28). Hence, FDTool has more FDs to check when applied to AllLabs. It is clear
that the attribute count of a dataset has a much greater effect on the runtime of FDTool than does row count.

Many of the arrows in the powerset lattice of a candidate are pruned by FDTool. AllLabs has 5,110 arrows in its
powerset lattice. However, FDTool only checks 818 FDs, as there are many inferred from the 43 FDs found. This
follows from the Prune() function, which deletes many of the candidates to check partially as a result of mining
4 equivalent attribute sets. FDTool terminates after 5 k-levels when applied to AllLabs.

Future development
We want to improve its performance so that FDTool is better equipped to handle datasets of different dimen-
sions. Using the dependency induction algorithm FDEP, the reach of FDTool could be extended to datasets
with fewer rows and more than 100 columns (Papenbrock et al., 2015). This might also require upgrading the
source code with multicore processing methods, such as a Java API, to reduce runtime and avoid reaching
memory limits. A formal proof of the dbschema operations is also desired.

15FDTool was tested regularly throughout the implementation process so as to accomodate to changes made to improve
runtime and memory behavior.
16A set of FDs F is a coverage of another set of FDs G if every FD in G can be inferred from F; i.e., G+ ⊆ F+ (Soule, 2014).
F is a minimum coverage of G if F is the smallest set of FDs that covers G (Soule, 2014).

17OS: Windows 10; Installed memory (RAM): 256 GB; Processor: Intel Core, 1 CPU; Clock speed: 2.19 GHz; Python: 2.7.12; Pandas:
0.18.1.

Page 10 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://www.elstel.org/database/dbschemacmd.html.en

Another goal is to increase the functionality provided by FDTool. This would mean implementing the pen and
paper methods typically used to normalize relational schema and decompose tables. Our intent is to incorpo-
rate these changes in newer versions of FDTool, released at regular periods, so as to develop it as Python software
that could automate much of what is done in the database design process.

Data availability
Zenodo: USEPA/FDTool: FDTool. https://doi.org/10.5281/zenodo.14428423.

While the authors fully support the open dissemination of data for verification and replication purposes, CARES
data cannot be released as it contains Protected Health Information. For the purpose of testing the runtime and
memory behavior of FDTool, we have produced simulated copies of all 13 datasets in the CARES collection.
These datasets are publically available in FDTool/data/input/CARES as part of the FDTool repository and
archived in the above Zenodo project.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
FDTool is available from the Python Package Index: https://pypi.org/project/fdtool/

Latest source code: https://github.com/USEPA/FDTool.git

Source code at time of publication: https://doi.org/10.5281/zenodo.14428423

License: CC0 1.0 Universal. Module FDTool/fdtool/modules/dbschema released under a modified
C-FSL license.

Author contributions
MB and ES designed and implemented the software. MB wrote the manuscript. CWC supervised MB, and
reviewed the manuscript. EP maintained the research data. DDS coordinated the funding for the project.
All authors agreed to the final content of the manuscript.

Grant information
This work was funded by the US Environmental Protection Agency. The work presented here does not
necessarily reflect the views or policy of the EPA. Any mention of trade names does not constitute endorsement by
the EPA.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Table 2. Experimental results of FDTool on 11 CARES datasets, which terminate in less than 4 hours
(preset limit).

Dataset Name Attribute Count Row Count No. of FDs checked No. of FDs
found

No. of
Equivalences Time (s)

AllDxs 7 8,201,686 112 7 1 577.9

AllLabs 10 1,294,106 818 43 4 999.8

AllVisits 9 2,019,117 346 44 7 804.1

EpicMeds 10 1,281,731 453 26 0 551.9

EpicVitals2015 7 1,246,303 127 2 0 86.5

EpicVitals2016 7 988,327 127 2 0 63.0

FamHx 4 93,725 15 0 0 0.7

LegacyIPMeds 8 647,122 79 14 1 28.2

LegacyOPMeds 7 740,616 33 18 1 7.7

LegacyPayors 4 1,465,233 15 4 1 9.4

LegacyVitals 8 1,453,927 146 7 0 134.4

Page 11 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://doi.org/10.5281/zenodo.1442842
https://creativecommons.org/licenses/by/4.0/legalcode
https://pypi.org/project/fdtool/
https://github.com/USEPA/FDTool
https://doi.org/10.5281/zenodo.1442842
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://raw.githubusercontent.com/USEPA/FDTool/master/fdtool/modules/dbschema/C-FSL-v1.1.txt
https://raw.githubusercontent.com/USEPA/FDTool/master/fdtool/modules/dbschema/C-FSL-v1.1.txt

References

	 Agrawal R, Mannila H, Srikant R, et al.: Fast discovery of
association rules. Advances in knowledge discovery and data
mining. 1996; 12(1): 307–328.
Reference Source

	 Asghar N, Ghenai A: Automatic discovery of functional
dependencies and conditional functional dependencies: A
comparative study. 2015.
Reference Source

	 Buranosky M: USEPA/FDTool: FDTool (Version v0.1.7). Zenodo.
2018.
http://www.doi.org/10.5281/zenodo.3245414

	 Elmasri R, Navathe SB: Database Systems: Models, Languages,
Design, and Application Programming. Pearson. 2011.
Reference Source

	 Huhtala Y, Kärkkäinen J, Porkka P, et al.: Tane: An efficient
algorithm for discovering functional and approximate
dependencies. Comput J. 1999; 42(2): 100–111.
Publisher Full Text

	 Maier D: Theory of Relational Databases. Computer Science Pr. 1983.
Reference Source

	 Papenbrock T, Ehrlich J, Marten J, et al.: Functional dependency
discovery: An experimental evaluation of seven algorithms. Proc
VLDB Endow. 2015; 8(10): 1082–1093.
Publisher Full Text

	 Ramakrishnan R, Gehrke J: Database Management Systems.
McGraw-Hill, Inc., New York, NY, USA, 2nd edition, 2000.
Reference Source

	 Soule R: Functional dependencies and finding a minimal cover.
2014.
Reference Source

	 Yao H, Hamilton HJ: Mining functional dependencies from data.
Data Min Knowl Discov. 2008; 16(2): 197–219.
Publisher Full Text

	 Yao H, Hamilton H, Butz C: Fd_mine: Discovering functional
dependencies in a database using equivalences. 2002.
Publisher Full Text

Page 12 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://dl.acm.org/citation.cfm?id=257975
https://pdfs.semanticscholar.org/83f3/60a90c11ae3625793682af0dfb7ab7d84b5d.pdf
http://www.doi.org/10.5281/zenodo.3245414
https://books.google.co.in/books/about/Database_Systems.html?id=NRsCQwAACAAJ
http://dx.doi.org/10.1093/comjnl/42.2.100
https://dl.acm.org/citation.cfm?id=1097039
http://dx.doi.org/10.14778/2794367.2794377
https://dspace.utamu.ac.ug/bitstream/123456789/85/1/{Ramakrishnan_R.,_Gehrke_J.]_Database_Management_S(BookFi.org).pdf
http://www.inf.usi.ch/faculty/soule/teaching/2014-spring/cover.pdf
http://dx.doi.org/10.1007/s10618-007-0083-9
http://dx.doi.org/10.1109/ICDM.2002.1184040

Open Peer Review

 Current Peer Review Status:

Version 1

 29 April 2019Reviewer Report

https://doi.org/10.5256/f1000research.18017.r46574

© 2019 Mukherjee S. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 Sayan Mukherjee
Department of Statistical Science, Duke University, Durham, NC, USA

This paper outlines in detail FDTool: a Python application to mine for functional dependencies. The paper
is about developing a database tool that improves FD Mine a previous tool for functional dependencies

The definitions, problem statement and explanations in this paper are well written and clear. The authors
also provide a good comparison of several functional dependence discovery algorithms.

In my opinion, it would be nice to have the experimental results and summary in some more detail. Also
since the CARES data is not public it would be nice to have some results on available data.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Statistical and computation methods.a

Page 13 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://doi.org/10.5256/f1000research.18017.r46574
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-6715-3920

Reviewer Expertise: Statistical and computation methods.a

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 10 December 2018Reviewer Report

https://doi.org/10.5256/f1000research.18017.r39685

© 2018 Hamilton H et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 Howard J. Hamilton
Department of Computer Science, University of Regina, Regina, SK, Canada

 Shubhashis Shil
University of Regina, Regina, SK, Canada

The article is well-structured and well-written. It contains nice presentations of appropriate definitions,
theorems, algorithms, examples, and use-cases.

The article has :clear contributions

In the part: It enhances the FD_Mine algorithm by improving performance and automating typicaltheory
processes.

In the part: The authors re-implement the FD_Mine algorithm, which is otherwise notimplementation
publicly available as a software tool.

In the part: The authors apply FDTool to 12 datasets of different dimensions.experiment

: The effect of the attributes is greater than the records on the runtime and memory costs of theFindings
FDTool.

:Additional contributions

The article clearly describes the features of the FDTool, such as its usage and execution. It also depicts
future research opportunities with respect to the further development of the FDTool.

Major Comment:

In the abstract, it says, “We conclude that FD_Mine is the most efficient FD discovery algorithm when
applied to datasets with many rows (> 100,000 rows) and few columns (< 14 columns).” The word
“conclude” does not seem appropriate here. If this result indeed follows from your research, please
explain how the results shown in Table 2 support this claim with respect to all datasets shown in the table
[This explanation could be added in the experimental results or experimental summary section]. However,
if the conclusion is in fact being taken from Papenbrock, then wording might be adjusted to “Previous
research established that FD_Mine ….” You may want to state your conclusions about your software tool.

Page 14 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

https://doi.org/10.5256/f1000research.18017.r39685
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Minor corrections:

Please use either " " or " " everywhere. The original paper had FD_Mine.FD_Mine FD Mine

Please use same format (comma or no comma) for large numbers [e.g. “the row count ranges from
 to ” in the use cases section versus “AllLabs dataset (” and “AllLabs has 42,369 8,201,636 1294106 5110

arrows in its powerset lattice” in the experimental summary]. Also please check the experimental results
section.

In Definition 2, please correct “ ”, presumably to “i ≠ j”.i 1≠ j

In the text immediately after Definition 6, please change “ ” todetermines equivalent attribute sets with
“determines attribute sets equivalent to”.

In the first line of the closure section, please change “ ” to “led”.lead

In the future development section, please remove the extra "the" from "A formal proof of the the
dbschema operations is also desired".

Table 1 has no title. Please give a title for Table 1.

Table 2 shows 11 datasets but the table title [and the description in the experimental results section]
mentions 10 datasets. Could you please correct this inconsistency.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: knowledge discovery, data mining, machine learning

We confirm that we have read this submission and believe that we have an appropriate level of

Page 15 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

Page 16 of 16

F1000Research 2019, 7:1667 Last updated: 19 JUN 2019

