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Metabolic cardiomyopathy is a significant global financial and health challenge;

however, pathophysiological mechanisms governing this entity remain poorly

understood. Among the main features of metabolic cardiomyopathy, the

changes to cellular lipid metabolism have been studied and targeted for

the discovery of novel treatment strategies obtaining contrasting results.

The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein

modification, sorting, and secretion activities that are more commonly studied

from the perspective of protein quality control; however, they also drive

the maintenance of lipid homeostasis. In response to metabolic stress, ER

and GA regulate the expression of genes involved in cardiac lipid biogenesis

and participate in lipid droplet formation and degradation. Due to the varied

roles these organelles play, this review will focus on recapitulating the

alterations and crosstalk between ER, GA, and lipid metabolism in cardiac

metabolic syndrome.
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Introduction

In the past five decades, the global prevalence of obesity, diabetes, and hypertension

has reached epidemic dimensions (1, 2). These disorders, collectively termed metabolic

syndrome, confer substantial morbidity and mortality of cardiovascular disease (3, 4). At

the same time, they are high-risk factors for the development of cardiomyopathy (5). The

metabolic syndrome encompasses a diverse set of conditions that exert chronic stress on

cellular functions, such as systemic dyslipidemia, hyperglycemia, and insulin resistance.

The pathophysiological changes induced in the heart by these stressors are termed

metabolic cardiomyopathy. Clinically, patients with metabolic cardiomyopathy initially

present diastolic dysfunction, followed by late-onset systolic dysfunction and, ultimately,

heart failure (HF) (6). Along with adverse structural remodeling and increased

presence of reactive oxygen species, cell death, and inflammation (7, 8), metabolic

cardiomyopathy features cardiac energetic impairment (9, 10). Lipid mishandling and

subsequent lipotoxicity are prominent effects of this alteration (11, 12). Efficacious

therapeutic options targeting cardiac lipid derangements are lacking, therefore advanced
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understanding of the pathogenesis is necessary. The

endoplasmic reticulum (ER) and the Golgi apparatus (GA) are

essential for lipid homeostasis, hosting and processing proteins

involved in triacylglycerol (TG) synthesis and lipolysis. Previous

reviews have focused on the central role the mitochondria

play in lipid oxidation in metabolic cardiomyopathy (13–16);

however, the role of the ER and GA in lipid metabolism in the

heart under metabolic stress remains poorly defined.

Cardiac lipid metabolism

Fatty acids (FAs) account for approximately 70% of the

energy sources required for ATP synthesis in cardiomyocytes. In

circulation, FAs are commonly found as triacylglycerols (TGs)

associated with lipoproteins or chylomicrons or as free FAs

bound to albumin. TGs are hydrolyzed by lipoprotein lipase

(LpL) Cardiomyocytes take up extracellular FAs by passive

diffusion across the plasma membrane or by surface receptors

such as protein cluster of differentiation 36 (CD36), fatty acid

transport protein 1, and fatty acid binding protein (17). Once

in the cytoplasm, FAs are shuttled into the mitochondria for

β-oxidation resulting in high energy molecules required for

cardiac function (18). Excessive FAs are converted back to

TGs by diacylglycerol acyltransferase (DGAT) and stored in

lipid droplets (LD). When required, FAs are released from

LDs by adipocyte triglyceride lipase (ATGL) and hormone-

sensitive lipase (HSL) (19). Lipid homeostasis also requires the

participation of other organelles. For example, peroxisomes

manage very long-chain fatty acid breakdown and β-oxidation,

lysosomes carry out lipid catabolism, and ER and GA handle

LD formation (20). It is widely accepted that in metabolic

syndrome the myocardium experiences an increase in lipid

consumption (9, 21), meaning that different organelles activate

stress responses to manage different stages of lipid homeostasis.

Lipotoxicity in cardiomyopathy

Cardiac lipotoxicity develops due to a build-up of FAs and

lipid intermediates that disrupt β-oxidation homeostasis.

Among such intermediates are ceramides and di-acyl

glycerol (DAG). In a mouse model of lipid-induced dilated

cardiomyopathy by LpL cardiac-overexpression, ceramides

were found to regulate substrate utilization, where inhibition of

ceramide biosynthesis normalized FAs and glucose oxidation

and improved survival. In addition, ceramides induce various

pathological processes that promote lipotoxicity, for instance,

insulin resistance, inflammation, and apoptosis (22).

Similarly, DAG induces apoptosis via mitochondrial

apoptotic pathways. It also impairs insulin signaling, an effect

that can be accelerated due to the reactive oxygen species

production (ROS) by free FAs (19). These pathological processes

associated with toxic lipid intermediates contribute to the

development of metabolic cardiomyopathy; therefore, it is

important to study the mechanisms available in the cell to

counteract such conditions.

ER stress response and UPR

The ER is involved in protein quality control (PQC), calcium

homeostasis, and lipidmetabolism. Chronic metabolic stress can

perturb ER homeostasis leading to ER stress and proteotoxicity

that consist of protein misfolding and protein accumulation.

Protein quality is vital to sustain cardiac function and in

metabolic cardiomyopathy it has been identified as an inducer of

cell death (23). ER stress triggers an adaptive signal transduction

pathway known as the unfolded protein response (UPR) which

neutralizes ER stress and sustains cellular function. Three

transmembrane proteins maintain ER homeostasis; inositol-

requiring enzyme 1α (IRE1α), protein kinase RNA-like ER

kinase (PERK), and activating transcription factor 6 (ATF6)

initiate the UPR (24). Under basal conditions, these sensor

proteins are associated with chaperone GRP78/Bip, rendering

them inactive (25). When proteostasis is disrupted, GRP78/Bip

detaches and these become active (26). IRE1α processes the

transcription factor X-box binding protein 1 (XBP1), forming

the transcriptionally active spliced-XBP1 (XBP1s) (25, 27).

XBP1s binds to a set of UPR-target genes that upregulate

organelle biosynthesis, PQC, and ER-associated degradation

(ERAD) (28). PERK phosphorylates the eukaryotic translation

initiating factor 2α (elf2α), attenuating protein synthesis (27,

29). In turn, elf2α also induces the translation of ATF4,

which regulates the expression of genes involved in autophagy,

apoptosis, antioxidant response, and the transcription factor

DNA damage-inducible 34 (GADD34). GADD34 can restore

protein synthesis by binding to protein phosphatase 1C (PP1C),

which dephosphorylates elf2α (27). PERK upregulates the

proapoptotic transcription factor CHOP/GADD153. Finally,

ATF6’s transcriptional activity induces the expression of ERAD

and XBP1 genes (24). These transcriptional events act in a

well-choreographed manner to maintain ER equilibrium.

ER regulation of lipid metabolism

In addition to its protein-centric role, the UPR is an

essential nutrient sensing ER apparatus critical for maintaining

lipid homeostasis (30, 31). Palmitate activates the PERK-eIF2α-

CHOP pathway and decreases Bip expression in HepG2 liver

cells. Accordingly, Bip overexpression reduced CHOP levels

and attenuated palmitate-induced ER stress and apoptosis

(32). Moreover, GADD34-mediated dephosphorylation of eIF2α

reduces hepatosteatosis in Alb::GC transgenic mice upon high-

fat diet (HFD) feeding (33). Following this, depletion of ATF4,

the downstream effector of the PERK-eIF2α pathway, protects

mice against hepatic steatosis and hypertriglyceridemia in
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FIGURE 1

ER and Golgi regulation of lipid metabolism. ER and Golgi functions are paramount for lipid metabolism. Aberrant ER and Golgi function induce

cellular lipid disequilibrium. In turn, lipotoxicity negatively regulates the function of these two organelles. Upon metabolic stress, ER dysfunction

inhibits TG degradation, eventually leading to oxidative stress. ER stress also reduces genes participating in ER function and lipid metabolism.

Impaired Golgi proteins or COPI/II pathways damage lipogenesis and lipolysis balance. CD36 (cluster of di�erentiation 36), FATP (fatty acid

transport protein), TG (triacylglycerol), FA (fatty acid), ROS (reactive oxygen species), ATGL (adipose triglyceride lipase), XBP1s (spliced X-box

binding protein 1), FoxO1 (Forkhead box protein O1), COPI (coat protein complex I) and COPII (coat protein complex II). Created with

Biorender.com.

response to high-fructose diet feeding (34), suggesting that the

PERK pathway regulates lipogenesis in hepatocytes. Similarly,

PERK depletion inhibits lipogenesis during the differentiation

of mouse embryonic fibroblasts to adipocytes (35) (Figure 1).
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The IRE1α-XBP1 branch of the UPR is also a critical

regulator of metabolic-stress-induced lipid disequilibrium (36).

Adipocyte Xbp1s overexpression prevents obesity in HFD-fed

mice and leptin-deficient ob/ob mice via increased uridine

biosynthesis (37). Added to this, ectopic adipocyte Xbp1s

expression promotes systemic glucose homeostasis in both lean

and ob/ob mice by increasing adiponectin serum levels (38).

XBP1 deletion reduces hepatic steatosis and improves insulin

sensitivity in mice fed a high-fructose diet despite increased

ER stress (39). In accordance, Lee et al. (40) demonstrated

that XBP1 regulates lipogenesis. Finally, ATF6 modulates lipid

metabolism in an XBP1-independent manner (41). ATF6α-

knockout mice administered the pharmacological ER-stress

inducer tunicamycin exhibit liver dysfunction and steatosis,

ensued from aberrant ß-oxidation and suppression of very-

low-density lipoproteins (VLDLs) formation. However, these

abnormalities are obliterated by ATF6 overexpression (42). A

similar account is observed in ATF6α deficient hepatocytes

following a high-fat and high-sucrose diet feeding (43). During

adipogenesis, ATF6α deficiency reduces the expression of key

audiogenic genes needed for adipocyte differentiation (44).

These studies highlight the importance of the ER stress response

regulating lipid homeostasis in metabolically active peripheral

tissues, such as adipose and liver. The crosstalk between such

tissues and the heart is a major subject of study and their

influence in the development of metabolic cardiomyopathy has

been reported (45, 46). However, the amount of evidence also

suggests that similar mechanisms could be present in the heart

and be worth exploring for a better understanding of the disease.

ERAD factors’ involvement in lipid
metabolism

ERAD is an integral part of the ER stress response. It

recognizes and labels abnormal proteins in the ER directing

them to the cytosol for proteasomal degradation. Cell-type-

specific ERAD mouse model studies are limited. Adipocyte-

specific Sel1L deficient mice are resistant to HFD-induced

obesity, developing postprandial hypertriglyceridemia and

displaying hepatic steatosis (47). Here, in the absence of Sel1L,

LPL is retained in the ER in the form of ERAD-resistant

aggregates. Similar observations were made on other LPL-

expressing cells, including cardiomyocytes and macrophages

(47). Hepatocyte-specific ER degradation enhancing alpha-

mannosidase-like protein 3 (EDEM3) knockdown mice had

increased LRP1 expression leading to enhanced VLDL uptake,

thereby reducing plasma TG levels (48). Concurrently, data

obtained from Gan et al. (49) showed that ischemic heart-

derived small extracellular vesicles (sEVs) carrying miR-23-

27-24 suppress adiponectin biosynthesis by downregulating

EDEM3. This pathological communication causes adipocyte ER

stress and endocrine dysfunction, which contributed to post-MI

metabolic disorders.

Furthermore, Choi et al. (50) reported that depletion of the

ER membrane-anchored E3 ligase gp78 stabilized DGAT2 in

hepatic cells, which increased LD levels. UBXD8 is a protein

that interacts with p97 during ERAD to facilitate proteasomal

degradation of ubiquitinated proteins; however, UBXD8 has also

emerged as a critical determinant of fatty acid (FA) metabolism

and TG storage (51–54). UBXD8 acts as an unsaturated FA

sensor. In FA-depleted cultured cells, UBXD8 inhibits the

conversion of DAGs to TGs; this effect is reversed upon

exposure to unsaturated FAs (53). Mechanistically, UBXD8

negatively regulates ATGL by promoting the dissociation of

its activator CGI-58 (51). Therefore, FAs increase TG content

by inactivating UBXD8. In line with this, UBXD8 depletion

in murine hepatocytes leads to periportal steatosis upon HFD

feeding (55). Whilst there is a vast body of literature evidencing

ERAD involvement in lipid metabolism, the role of ERAD

proteins in metabolic cardiomyopathy remains unexplored.

ER stress and cardiac lipid
metabolism

ER stress has been identified as a crucial pathophysiological

driver of cardiovascular disease in preclinical and clinical

studies (23). ER stress is implicated in cardiac lipotoxicity

(56–58); however, the mechanisms by which ER disruptions

contribute to lipotoxic alterations in cardiomyocytes are

unclear. Recently, Schiattarella et al. (59) reported that

cardiomyocyte-specific overexpression of Xbp1s ameliorates

cardiac dysfunction and reduces myocardial steatosis in a

preclinical model of HFwith preserved ejection fraction. Further

investigations revealed that Xbp1s promotes the ubiquitination

and degradation of Forkhead box protein O1 (FoxO1) via

E3 ubiquitin ligase STUB1. FoxO1 is a vital transcriptional

regulator of genes involved in cellular metabolism and its

transcriptional activity is increased in obese and diabetic animal

models (60, 61). In cardiac muscle cells, FoxO1 orchestrates

lipid accumulation; the sequential events underpining

this accumulation remain unknown. Conversley, FoxO1

overexpression inhibits lipid accumulation in hepatocytes

by mediating ATGL-dependent lipolysis (62). CGI-58 is an

LD-associated protein that plays a vital role in TG hydrolysis

by activating ATGL (63). it is decreased in failing human

hearts (64). CGI-58-deficient mice display adverse cardiac

remodeling accompanied by accentuated cardiac TG levels,

ROS production, and inflammation when after HFD feeding

(65). The chemical chaperone 4-PBA attenuated HFD-induced

cardiac remodeling and dysfunction; alleviated mitochondrial

dissonance, oxidative stress, and lipid accumulation in cardiac-

specific CGI58- knockout mice (65). Moreover, inhibiting
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calpains, calcium-activated proteases, prevents lipotoxicity-

associated myocardial injury in HFD-challenged mice by

attenuating ER stress, thereby improving cardiac function

(66). These studies suggest ER stress regulates cardiac lipid

homeostasis and acts as a potential therapeutic target for

metabolic cardiomyopathy.

While ER stress alters lipid metabolism, FAs can also

induce ER stress in a bidirectional loop, creating a vicious

cycle (67). Saturated fatty acids instigate lipotoxic injury in

cardiomyocytes via ER stress-mediated apoptosis pathways

(68–70). Cardiomyocyte-specific PPARβ/δ deletion perturbed

myocardial fatty acid oxidation, induced ER stress, and lead

to cardiac steatosis, hypertrophy, and congestive HF in a

preclinical mouse model (71, 72). The PPARβ/δ agonist,

GW501516, attenuated palmitate-induced ER-stress in AC16

cells, underscoring the therapeutic potential of PPARβ/δ

for ER-stress mediated cardiac lipotoxicity (72). Moreover,

CTRP9, a highly conserved paralog of adiponectin, has

also been reported to regulate lipid metabolism. CTRP9-

knockout mice displayed augmented ER-stressed induced

apoptosis; nevertheless, recombinant CTRP9 treatment

exerted anti-ER-stress-related apoptotic effects and anti-

oxidative stress effects to abate lipotoxicity in neonatal rat

cardiomyocytes (73).

The physiological function of the GA

The GA comprises a series of stacked membranes that

process ER proteins and lipids. Its main functions include

protein glycosylation, sorting and secretion, and phospholipid

and sphingomyelin synthesis. The GA network can be divided

into the cis and trans components. While the cis network

is responsible for receiving cargo from the ER, the trans-

Golgi network (TGN), on the other end, regulates cargo exit

from the Golgi. The cargo is carried in transport vesicles

formed by protein complexes that regulate their content and

direction. From the ER exit sites, coat protein complex II

(COPII) vesicles travel through the ER-Golgi intermediate

compartment (ERGIC) to the cis-component via anterograde

transport. In retrograde transport, COPI-coated vesicles recycle

ER-resident proteins. Finally, cargo directed to other organelles

or the plasma membrane exit the TGN in clathrin-covered

vesicles (74). Like the ER, the GA can experience stress

when unable to keep up with the flux of proteins and lipids,

leading to the activation of the Golgi stress response. Even

though this response has not been as well-characterized as

the UPR in the heart, pathways such as transcription factor

binding to IGHM enhancer 3 (TFE3), CAMP responsive

element binding protein 3 (CREB3), and heat shock protein

47 (HSP47) have been found to regulate GA structure and

functions (75).

GA regulation of lipid metabolism

The GA is mainly known for its role in lysosomal,

transmembrane, and secretory protein glycosylation and

trafficking activities. In addition to its protein processing

activities, its contributions to lysosomal function andmembrane

dynamics are vital for lipid recycling, lysosomal lipid signaling,

and membrane composition, all of which are key to lipid

metabolism in the setting of metabolic disease (76–78).

Presently, manifestations of direct GA involvement in lipid

signaling and metabolism not associated to membrane

dynamics that have not been clearly defined will be discussed.

Recent observations from Fan et al. (79) demonstrated that

hyperglycemia affects myocardial GA protein expression and

causes fragmentation in a preclinical model of type 1 diabetes.

Proofs of how this could impair lipid metabolism have been

found in different animal models or cell lines. For instance,

the membrane lipid transporter CD36 is processed in the GA

before its transport to the plasmatic membrane. A mutation that

blunted its passing through the GA resulted in ER accumulation

and low lipid uptake (80).

Knocking down COPI subunits in flies (81) and Hep62

(82) cells showed they are required for lipolysis activation.

They regulate LD surface proteins that inhibit lipolysis, such

as Perilipins 2 and 3, and promote the formation of ER-

LD bridges through which ATGL is transferred to the LDs.

The deletion of oxysterol binding protein-like 2 (OSBPL2),

an intracellular lipid receptor, disrupted LD localization of

the subunit COPBI, leading to lipid accumulation in larger

LDs and hypercholesterolemia in zebrafish (82). Furthermore,

genetic or chemical interference with the ADP-ribosylation

factor (ARF1)-COPI pathway at different stages gave similar

results. Golgi-specific brefeldin A-resistance guanine nucleotide

exchange factor 1 (GBF1) interacts directly with ATGL (83), and

its deletion hindered ATGL transport to nascent LDs, inducing

the lipase’s proteasomal degradation (84). In addition, impeding

the function of the COPII complex also disrupted lipolysis, but

the effect was smaller than that of COPI. In different cells,

knockdown of ARF1, a COPI complex initiator, showed that

this machinery has the ability to form nano-buds from the

LD membranes and target TG synthesis enzyme to the LD

membrane (85), suggesting that it affects LD composition as well

as degradation.

Similar to the observations above, deletion of GRASP55,

another Golgi-resident protein, impaired the trafficking of

ATGL and MGL to LDs, impairing lipolysis. In mice, this

systemic deletion conferred resistance to HFD-induced obesity

due to a decreased formation and secretion of chylomicrons

and VLDLs from enterocytes resulting in low lipid uptake (86).

Hepatic deletion of the initiator of COPII complex GTP-binding

protein SAR1b (SAR1) in mice showed increased accumulation

of TGs and cholesterol in the liver with reduced lipid plasma
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levels protecting them from atherosclerosis (87). In this study,

Wang et al. (87) identified surfeit locus protein 4 (SURF4)

as a receptor for specific VLDL secretion downstream of the

COPII pathway and as a protein with a COPI sorting signal

for recycling. Comparable effects were observed in liver-specific

IRE1 knockout mice where COPII transport was reduced. In this

case, XBP1 overexpression restored COPII gene expression and

trafficking, resolving the fatty liver and hypolipidemia (88). The

significance of the GA transport role in lipoprotein secretion

was confirmed by a report showing eight different mutations

of SARA2 (coding SAR1 protein) in patients with severe fat

absorption disorders (89). These results indicate that the ER-GA

transport network can be targeted for the systemic regulation of

metabolic diseases.

Finally, in addition to its role in protein and LD processing,

the GA is involved in metabolic and cell death signaling. In

the heart, activating an alternative isoform of calcineurin

presenting a new Golgi-localization signal was found to

regulate metabolism through AKT phosphorylation, reducing

mitochondrial dysfunction and preventing myocardial

remodeling following transaortic constriction (90). AKT

signaling is impaired in the hearts of obese mice (91), and this

pathway inhibits cardiac lipolysis (92). Furthermore, GA stress

pathways have been found to promote apoptosis, particularly

in neurological diseases, by modulating caspase cleavage and

calcium influx (93). In Hela cells, the ferroptosis pathway was

also activated by inducers of GA stress (94). Ferroptosis is an

iron-dependent cell death process driven by lipid peroxidation,

making these observations relevant for the study of GA and

metabolic stress. There is clear evidence that the GA regulates

lipid metabolism and that it responds to stress in relevant

metabolically active tissues. However, the specific links involved

in metabolic cardiomyopathy, particularly taking place in the

myocardium, need further study to identify better potential

therapeutic targets.

Conclusion

The ER and GA regulation of lipid metabolism are complex

and largely unexplored. Both organelles have a clear role in

sustaining protein synthesis and processing during metabolic

stress conditions, which is essential for preventing HF. However,

their part goes beyond protein quality control; they are deeply

involved in different stages of lipid metabolism, from synthesis

to storage and catabolism, by processing lipids and governing

lipid droplet dynamics. Moreover, their sensing abilities trigger

signaling pathways that coordinate their own functional capacity

and that of other organelles. In metabolic cardiomyopathy,

these tasks become even more critical due to the altered lipid

profile state and the high lipotoxicity risks. Therefore, it follows

that further studying and targeting ER and GA homeostasis

for the treatment of metabolic cardiomyopathy could provide

opportunities for the prevention of HF.
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