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Abstract

In linear regression, a residual measures how far a subject’s observation is from expecta-

tion; in survival analysis, a subject’s Martingale or deviance residual is sometimes inter-

preted similarly. Here we consider ways in which a linear regression-like interpretation is not

appropriate for Martingale and deviance residuals, and we develop a novel time-to-event

residual which does have a linear regression-like interpretation. We illustrate the utility of

this new residual via simulation of a time-to-event genome-wide association study, moti-

vated by a real study seeking genetic modifiers of Duchenne Muscular Dystrophy. By virtue

of its linear regression-like characteristics, our new residual may prove useful in other con-

texts as well.

1. Introduction

In this paper we develop a new form of survival analysis residual with linear regression-like

(LRL) properties, in a sense to be made clear in what follows. The simplest way to motivate

this work is by describing a target application: discovery of genes that modify the Duchenne

muscular dystrophy (DMD) phenotype.

DMD is an X-linked recessive disorder affecting� 1 in 5,000 live male births [1, 2]. DMD

involves progressive muscle tissue loss with replacement by fat and fibrotic tissue, and is cur-

rently without a cure. Patients typically become reliant on wheelchairs by early to mid-adoles-

cence, but some maintain ambulation substantially longer, and age at loss of ambulation

(LOA) is an important clinical indicator of disease progression. A great deal is known about

the gene (DMD) that causes DMD, including the fact that modifier genes influence the rate of

disease progression in a DMD mouse model [3, 4]; evidence for modifiers exists in humans as

well [5–8]. The discovery of modifier genes in humans has implications both for therapeutics

and for the design of DMD clinical trials.

Using data from the United Dystrophinopathy Project, a multisite consortium [9–11], we

are currently engaged in a search for modifier genes under a Genome-Wide Association Study
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(GWAS) design. The sample comprises� 500 DMD patients, among whom� 60% have an

observed age at LOA. The remaining individuals are censored (still ambulant at last contact or

lost to follow up prior to LOA). There is one binary covariate in the model: steroid use prior to

LOA. All subjects have been genotyped on a microarray chip, yielding approximately 1.5 mil-

lion single nucleotide polymorphisms (SNPs) for analysis.

A standard approach to analyzing these data would be to perform survival analysis, say,

under the proportional hazards (CPH) model [12], including both steroid use and genotype as

covariates, performing the regression separately for each SNP. However, there are several

drawbacks to this approach. One immediate issue is that the DMD dataset contains related

individuals (brothers, cousins, etc.). Because relatives will be genotypically correlated, we

would need to drop all but one individual from each family to satisfy the modeling assump-

tions of CPH regression, which would be wasteful of data. (Although partial- or pseudo-likeli-

hood methods could perhaps be used, see, e.g., [13]. Note too that there are also circumstances

in which dropping relatives is not even an option, e.g., in genetic linkage analysis where indi-

viduals without relatives are uninformative.) But also, we are interested in applying an

approach focused on measurement of the strength of statistical evidence (rather than hypothe-

sis testing), based on a quasi-Bayesian methodology implemented in the computer software

package KELVIN [14].

KELVIN has several advantages in the context of GWAS data. It seamlessly handles mix-

tures of unrelated individuals and pedigrees; it can accumulate evidence for or against asso-

ciation, while handling unknown parameters of the trait model in a robust way under only

mild distributional assumptions (in particular, it does not require normality for a quantita-

tive trait at the population level [15]); and it can detect genotypic effects on phenotypic vari-

ances as well as on means. KELVIN also supports Bayesian sequential updating (see Appendix

A) to accumulate evidence across data subsets, for example, based on mutation classes

within the DMD gene. Trait-marker association analysis in KELVIN produces a posterior

probability of linkage disequilibrium (PPLD), setting a prior probability π = 0.0004 of LD

between two random loci based in part on empirical calculations [16], and the PPLD does

not require adjustment for multiple testing [17, 18]. For all these reasons, KELVIN is ideally

tailored for our application.

However, KELVIN has no direct mechanism for handling survival data, and layering a sur-

vival model on top of KELVIN’s underlying pedigree-based likelihood would be prohibitively

complex. (For related work see, e.g., [19] and [20]; but these approaches would entail foregoing

some of KELVIN’s other features.) Our first thought for the DMD analysis, therefore, was to run

CPH regression and to use the resultant residuals as the phenotypes for analysis in KELVIN.

Indeed, as long as one can find a good model with which to compute covariate-adjusted resid-

uals, then replacing data by regression residuals could be a general approach for downstream

analysis whenever the target application cannot itself appropriately handle complications such

as censoring. (See, e.g., [21] for a related approach.)

Crucial to this approach, however, is the requirement that the residuals remain scaled in

terms of the original data. Our scientific hypothesis is that modifier genes influence age at

LOA. Whatever manipulations we make to the phenotype along the way, the scale of the

residuals must maintain a meaningful relationship to LOA. If the residuals were based on

linear regression, they would clearly have a suitable interpretation as measures of how
extreme is an individual’s observed LOA relative to expectation; this interpretation is simply

a rescaling of the original units of time. But CPH regression would generate a Martingale

residual (MR) or deviance residual (DR), and at the outset we were unclear on whether MR

or DR would retain this LRL interpretation vis a vis the underlying age-at-event phenotype.
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In this paper we argue that MR and DR do not lend themselves to an LRL interpretation,

but that we can modify DR to do so.

The paper is organized as follows. In (2) we review MR and DR and discuss ways in which

they thwart an LRL interpretation. We introduce a new form of residual, which we call an ordi-

nary time-to-event (OTE) residual, so called because it affords an ordinary LRL interpretation

in the context of time-to-event data (TE), and we compare OTE with MR, DR and with an

ordinary linear regression residual (OLRR). Then in (3) we assess the comparative behavior of

MR, DR, OTE and OLRR when used in conjunction with the PPLD for analysis of TE-GWAS

data, using simulations designed to mimic the DMD application.

2. Various residuals for time-to-event data and their interpretations

Section 2.1 reviews the definitions of MR and DR and their interpretation; 2.2 introduces the

OTE residual, and also the form of OLRR we will use for comparisons; 2.3 discusses handling

of a covariate; 2.4 then further illustrates key aspects of MR, DR and OTE compared with each

other and with OLRR.

2.1 MR, DR and Their Interpretation

The MR for individual xi at survival time tsurv(xi) is defined as

MRðxiÞ ¼ di � CHF
^

ftsurvðxiÞg ð1Þ

where δi = 1 if the individual is uncensored and δi = 0 if the individual is censored; and

CHF^ ftsurvðxiÞg is the estimated cumulative hazard function evaluated at min[tfail(xi), tcens(xi)],
the individual’s failure time and censoring time, respectively. (Eq 1 assumes fixed, rather than

time-dependent, covariates [22, 23], as we have in our DMD application. Technically MR is an

estimate, but for notational convenience we omit the caret over expressions for residuals.) The

range of MR is (-1, 1], and asymptotically its expectation is 0. MR(xi) is sometimes said to

represent the observed of events minus the expected # of events for the ith individual over (0,

ti], suggesting an LRL interpretation. Its range, however, is markedly non-LRL.

DR is then defined as:

DRðxiÞ ¼ sign½MRftsurvðxiÞg� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ðMRftsurvðxiÞg þ dilog½di � MRftsurvðxiÞg�Þ

p
: ð2Þ

Eq 2 “corrects” for the fact that MR is bounded above by 1 but unbounded below. DR main-

tains the sign of MR, while expanding MR values close to one and contracting large negative

MR values to achieve a more symmetric distribution [22]. DR thus behaves more like a resid-

ual from linear regression than does MR. We focus here on DR for this reason, but points

raised in the remainder of this section apply equally to MR.

There are three reasons why DR should not be interpreted in an LRL manner. First, as pre-

viously noted, for a censored individual DR is based on CHF^ ftcensðxiÞg. However, the informa-

tion we have regarding the individual’s actual failure time is only that tfail(xi)> tcens(xi). If we

are interested in evaluating CHF^ ftsurvðxiÞg at a value that lends itself to an LRL interpretation

in terms of underlying failure times (as opposed to a value chosen for its utility in Martingale

theory), then evaluating the CHF at tcens(xi) seems an arbitrary and unsatisfactory choice.

There is a difference here between the time-to-event scale we seek to preserve and the num-

ber-of-events framework of DR.

Second, DR assigns a different value to δi for uncensored and censored individuals. This

makes sense if we define δi as the observed number of events at time of evaluation. One conse-

quence of this assignment, however, is that two individuals, one censored and the other
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uncensored, with the same covariate status and the same survival time, are guaranteed to have

a difference of 1 in their MR, with a corresponding difference in DR. Whether these two indi-

viduals should have different residuals is one question; whether the difference between their

MR values should always be exactly equal to 1 is another. (See 2.4 below for a detailed illustra-

tion of this issue.) To maintain an LRL interpretation, we would like the residual to reflect only

how extreme is the individual’s survival time relative to expectation, but DR’s dependence on

δi confounds such an interpretation.

The third issue applies equally to uncensored and censored individuals. In linear regression,

an individual with observation equal to expectation would be assigned a residual equal to 0.

But DR = 0 does not correspond to the situation in which an individual’s observed survival

time is equal to the expected survival time, even for uncensored individuals; we consider this

point in greater detail in 2.2.

In aggregate these issues introduce scaling issues for DR (and MR) that undercut an LRL

interpretation. And as we will show below, ignoring the non-LRL qualities of DR has implica-

tions for downstream analyses.

2.2 OTE and OLRR

OTE is obtained by making three modifications to DR, designed to remedy the three issues

raised above. First, for censored individuals, we define the predicted failure time tpred(xi) as the

median time to event conditional on tfail(xi)> tcens(xi), which can be calculated from the esti-

mated survival function ŜðtÞ; tpred(xi) represents the information afforded by censoring time

regarding an individual’s (expected) failure time. (Our reason for using the median rather

than the mean will become clear below.) In the context of OTE, we therefore define t�survðxiÞ as

tfail(xi) for uncensored individuals and tpred(xi) for censored individuals.

Second, we set δi = δ for all i. Heuristically, this reflects the new definition of t�survðxiÞ for cen-

sored individuals; we are in effect treating everyone as having had one event (either observed

or predicted) at the time of evaluation. More importantly, this choice removes scaling anoma-

lies between uncensored and censored individuals, as we return to below.

Third, we set δ = −log(0.5) for all individuals (uncensored and censored). The rationale for

this choice is that CHF(t
�

) = −log S(t
�

) = −log(0.5)� 0.7, regardless of the shape of S(t), where

t
�

is the median survival time. Thus an uncensored individual with survival time t
�

is assigned a

positive DR, while a censored individual with survival time t
�

is assigned a negative DR. By set-

ting δ = −log(0.5) we ensure OTE = 0 if and only if t�survðxiÞ is the median survival time. This is

also our justification for defining tpred(xi) in terms of the median survival time rather than the

predicted mean. The latter depends on the shape of Ŝ ðtÞ, so that there would be no fixed LRL

meaning for a residual = 0.

To summarize, OTE is calculated as follows: Ŝ ðtÞ is estimated in the usual way based on

tsurv(xi), i.e., tfail(xi) for uncensored individuals and tcens(xi) for censored individuals. (For fam-

ily data, only unrelated individuals would be used for this step.) Ŝ ðtÞ is used to calculate the

median survival time t
�

, and, for each censored individual (including any relatives, in the case

of family data), the predicted median survival time tpred(xi) given tfail(xi)> tcens(xi). Ŝ ðtÞ is also

used to obtain the corresponding CHF^(t). A modified MR (MMR) is then calculated for each

individual (including any relatives) as MMR = −log(0.5) − CHF^ft�survðxiÞg. Finally a DR-like
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transformation is applied to MMR, setting δ = −log(0.5):

OTEðxiÞ ¼ signðMMRðt�survðxiÞÞÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2ðMMRðt�survðxiÞÞ � δ log dþ d ln½d � MMRft�survðxiÞg�Þ
q

: ð3Þ

(See Appendix B for details.)

We note that for censored individuals with tcens(xi)� 0, tpredðxiÞ � t
�

, which yields a residual

� 0; as tcens(xi) increases, the corresponding residual decreases. Thus, as with MR and DR,

there is no such thing as a positive OTE residual for a censored individual. Of course this pro-

duces an asymmetry with respect to uncensored individuals, but this asymmetry is inherent in

the available information.

For purposes of comparison, we also consider OLRR, which is computed on the original

time scale as would be done in ordinary linear regression:

OLRRðxiÞ ¼ t
�

� t�survðxiÞ: ð4Þ

(We center OLRR on the median, rather than the mean, in order to maintain comparability

with OTE. OLRR is in the form “expected—observed,” where ordinarily we would use

“observed—expected.” This is again for comparability, since for DR and OTE positive values

represent individuals with earlier survival times and negative values represent individuals with

later survival times.) OLRR is naïve with respect to the shape of CHF: it represents residuals on

the original time scale ignoring the cumulative hazard function, whereas OTE transforms time

differences onto a hazard scale. OLRR is therefore not correct for time-to-event data. (OLRR

makes partial use of Ŝ ðtÞ, but only insofar as Ŝ ðtÞ is used to obtain tpred(xi) in the first place.)

But because we seek a residual that is OLRR-like in interpretation, OLRR provides a useful

point of reference.

2.3 Handling the covariate

We restrict our attention here to a single binary covariate y, in keeping with our intended

DMD application. In a regression setting (e.g., under the CPH model), a separate CHF is esti-

mated for each level of y, and for the ith individual MR is calculated based on the CHF^ corre-

sponding to that individual’s covariate status; i.e., the covariate “adjustment” is made at the

level of estimation of the CHF. The same is true for linear regression, where the residual is cal-

culated relative to a covariate-adjusted conditional mean. Accordingly, DR and OTE take the

covariate into account by estimating separate survival curves based on y; similarly, OLRR sub-

tracts t�survðxiÞ from the y-specific median.

For our purposes we need to place the resulting residuals on the same scale across levels of

y, in order to effectively “remove” the covariate effect prior to downstream analyses. Therefore,

before combining residuals across levels of y, they are standardized separately for each level of

y, using
RESðxiÞ� RES�y
s:d:ðRESyÞ

, where RES�y is the mean of the residual distribution (RES = MR, DR, OTE

or OLRR) for given y, and s.d.(RESy) is the corresponding standard deviation. (We note here

that for OTE, this standardization is effectively a rescaling by s.d.(OTEy) without any addi-

tional shifting in the numerator, because OTE�y � 0; see below.) All steps described in 2.2

above are carried out separately for each level of y, including calculation of t
�

and tpred(xi).
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2.4 Additional contrasts among DR, OTE and OLRR

Our central claim is that the modifications to DR that lead to OTE change the meaning of the

residual to a quantity that accurately reflects how extreme is an individual’s survival time rela-

tive to expectation (i.e., the median), on a hazard scale, after adjusting for covariate effects. Fig

1 illustrates this claim in part, by showing each residual as a function of time of evaluation.

(For purposes of illustration, the calculations use a Weibull distribution without a covariate.)

Recall that OTE and OLRR depend only on the (observed or predicted) survival time, without

further distinguishing uncensored from censored individuals. Hence each is represented as a

single line {Fig 1A}. We see that OTE preserves the same rank-ordering as OLRR. The differ-

ences between the two reflect the fact that, while OLRR is strictly linear in t, OTE correctly

incorporates information from the hazard function. Note too that t
�
¼ 11:69 coincides with

the intercept with y = 0 for both residuals. DR, however, not only differs in value from OTE

(and OLRR) for given t, it also disrupts the rank-ordering across values for uncensored and

censored individuals {Fig 1B}. Note too the slightly different placement of the intercept with

y = 0, which for DR occurs at t = λ = 12.89.

Fig 2 further illustrates this disruption of rank-ordering. For simplicity only DR and OTE

are shown, since OLRR is quite similar to OTE. Consider 3 hypothetical individuals, as indi-

cated on the figure. Individual 1 is censored at tcens(x1) = 10, yielding DR(x1) = −0.90. Individual

2 is uncensored, with failure time set such that DR(x2) = DR(x1), which gives tfail(x2) = 15.80.

Individual 3 is uncensored with failure time equal to the value of tpred corresponding to tcens =

Fig 1. (A) OLRR and OTE, and (B) DR and OTE, as a function of time t at evaluation. Calculations shown here are based on a Weibull distribution with scale parameter λ
= 12.89 and shape parameter k = 3.75, selected for illustrative purposes.

https://doi.org/10.1371/journal.pone.0232300.g001
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10, which for this particular CHF yields tfail(x3) = 13.15 and DR(x3) = −0.18. OTE assigns the

same value to individuals 1 and 3, who share the same evaluation time (predicted or observed).

DR, on the other hand, assigns different values to individuals 1 and 3, despite the fact that all

the information we have regarding underlying failure times says that the two are equally

extreme relative to the median. By contrast, DR assigns the same value to individuals 1 and 2,

despite the fact that individual 1’s predicted failure time is less than individual 2’s observed fail-

ure time. Because of the other small differences between DR and OTE, OTE also assigns a differ-

ent value to Individual 3 than does DR, with OTE(T3) = −0.50. Note that DR preserves the

Fig 2. Illustration of key differences between DR and OTE. Calculations based on the same Weibull distribution used for Fig 1.

https://doi.org/10.1371/journal.pone.0232300.g002

Table 1. Linear regression-like (LRL) properties for time-to-event residuals.

LRL Property of Residual MR DR OLRR OTE

When an individual’s event time is exactly at its expectation (i.e., the median) given

covariates, the residual is 0

No No Yes Yes

All individuals, whether censored or uncensored, are consistently rank-ordered with

respect to available information regarding event time

No No Yes Yes

Deviation of an individual’s event time from expectation is measured on the hazard scale No No No Yes

https://doi.org/10.1371/journal.pone.0232300.t001
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rank-ordering of MR; thus, while the residual values will differ between MR and DR, the differ-

ences illustrated above in rank-ordering and interpretation with respect to OTE remain for MR.

In summary: in contrast to MR or DR, OTE brings the scale for censored individuals into

alignment with uncensored individuals, and situates the 0-point so that individuals with obser-

vation at the median are assigned OTE = 0. By replacing tcens(xi) with tpred(xi) for censored

individuals, OTE more accurately represents the failure time information provided by cen-

sored individuals. Finally, OTE preserves the OLRR rank order with respect to deviation from

the median, in (standardized) units of time-to-event, while incorporating information from

CHF^(t). It is on this basis that we call OTE an LRL residual for time-to-event data. Table 1

summarizes these conclusions.

3. Simulation studies

In this section we evaluate the effectiveness of using OTE in the context of our intended

genetic application using simulated data. Because our primary interest is in developing a resid-

ual for use in downstream KELVIN analyses, and because in reality the underlying genetic

model cannot be known in advance of gene discovery, this is a situation in which simulated

data can be far more informative than real data for purposes of methods validation. Section 3.1

describes the simulation methods, and 3.2 presents results.

3.1 Simulation methods

In order to mimic features of our DMD data set, our base model uses a sample size of N = 500

individuals, half of whom come from each of two covariate levels (y = 1, 2). Individuals were

randomly assigned a genotype for a 2-allele locus (with alleles 1, 2) as a function of q = P(allele

1) = 0.5, assuming Hardy Weinberg Equilibrium. (This is in anticipation of genetic association

analysis based on SNPs. Assuming q = 0.5 keeps things simple while generating sufficient data

for all 3 genotypes; but it is also not unrealistic, since allele frequencies at modifier loci could

be quite high in the general population.)

Failure time was simulated via a random draw from a mixture of normal distributions in

the form Ny = 1,k(μk, σk), for given genotype k = 11, 12, 22 and y = 1, and in the form Ny = 2,k (μk
+ 3, σk) for y = 2. We also considered one model with a more complicated covariate effect (see

below). The generating parameter values were chosen to mimic LOA in the real DMD data set

for uncensored individuals with no history of steroid use (x�¼ 11:6, s. d. = 3.4). All normal

Table 2. Simulation generating Models†.

Model μ11 (σ11) μ12 (σ12) μ22 (σ22)

1 0 (1) 0 (1) 0 (1)

2 –0.5 (1) 0 (1) 0.5 (1)

3 –0.5 (1.25) 0 (1.25) 0.5 (1.25)

4 –0.5 (1.25) 0.5 (1.25) 0.5 (1.25)

5 –0.5 (1.25) –0.5 (1.25) 0.5 (1.25)

6 –0.5 (0.5) 0 (1) 0.5 (1.5)

7 0 (0.5) 0 (1) 0 (1.5)

8 –0.5, 1.26 (1, 2) 0, 1.76 (1, 2) 0.5, 2.26 (1, 2)

† Models shown on the standard normal scale for the y = 1 group. For Models 1–6, 3 years are added to the y = 1

means for the y = 2 group, as described in the text. For Model 8, y = 2 affects the means differently for the 3 genotypic

groups in addition to affecting the variance; a comma separates the generating means (s.d.s) for y = 1, y = 2,

respectively.

https://doi.org/10.1371/journal.pone.0232300.t002
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distributions were left-truncated at 0 in order to preclude non-positive age at event. (While the

normal distribution was chosen for convenience, the resulting distribution was effectively

Weibull; see SI.)

The genetic model was varied as shown in Table 2. Model 1 has no genotypic effect, so that

the generating model is a single (non-mixed) normal distribution. Model 2 creates a simple

additive mixture model for age-at-event while maintaining comparable x� and s. d. at the popu-

lation level. The remaining models vary effect size by increasing the genotypic variances

(Model 3), introducing dominance (Models 4, 5), and by generating genotypic effects on vari-

ances as well as means (Model 6) or solely on variances (Model 7). Model 8 complicates the

covariate effect. The models were chosen to illustrate a range of possible trait distributions,

and are by no means intended to exhaustively cover what we might find in a real application.

For each generating model, an individual was simulated based on a random draw of te(xi)
from the corresponding age-at-event (AE) distribution and an independent random draw of

to(xi) from an age-at-observation (AO) distribution. If te(xi)< to(xi), the individual was consid-

ered uncensored with failure time tfail(xi) = te(xi); otherwise, the individual was considered

censored with censoring time tcens(xi) = to(xi). AO was simulated under a negative binomial

distribution with r = 10, p = 0.4 in order to roughly mimic the censoring distribution in the

real data, with� 40% of individuals censored. We simulated only unrelated individuals.

For each simulated data set, we obtained S^y(t) and CHF^
y(t), as a function of age t, via maxi-

mum likelihood estimation of a pair of 2-parameter Weibull distributions, one for each level of

y, based on tfail(xi) for uncensored individuals and tcens(xi) for censored individuals. We veri-

fied visually that the Weibull distribution provided a reasonable fit to the simulated data in

comparison to Kaplan Meier curves. We simulated 1,000 replicates per model for Models 2–8;

for the “null” Model 1, we simulated 1,000,000 replicates. PPLD-RES (RES = MR, DR, OTE or

OLRR) was calculated for each replicate, using the residuals as data, and distributions of the

PPLD across replicates were obtained for each model.

Recall that the PPLD does not require normality or even symmetry of the trait distribution.

Therefore the distribution of the residuals is not our primary interest here. However, addi-

tional information on these distributions is given in Appendix C.

3.2 Simulation results

Table 3 shows summary statistics of the PPLD distributions for the 8 models shown in Table 2.

(Recall that PPLD is on the probability scale, with values < 0.0004 indicating evidence against

association and values > 0.0004 indicating (some degree of) evidence in favor of association.)

For the “null” (non-genetic) Model 1, we see that all four forms of residual return very small

PPLDs on average, below the prior of 0.0004, indicating evidence against association, with

Table 3. Mean (standard deviation) of PPLD distributions for each Model in Table 1.

Model PPLD-MR PPLD-DR PPLD-OTE PPLD-OLRR

1 0.0002 (0.0002) 0.0002 (0.0002) 0.0002 (0.0002) 0.0002 (0.0002)

2 0.72 (0.41) 0.78 (0.37) 0.84 (0.33) 0.84 (0.32)

3 0.27 (0.39) 0.36 (0.42) 0.42 (0.44) 0.41 (0.44)

4 0.73 (0.41) 0.82 (0.33) 0.87 (0.28) 0.87 (0.28)

5 0.69 (0.42) 0.75 (0.37) 0.78 (0.36) 0.79 (0.35)

6 0.98 (0.12) 0.97 (0.12) 1.00 (0.01) 1.00 (0.01)

7 0.54 (0.43) 0.80 (0.34) 0.95 (0.17) 0.95 (0.16)

8 0.28 (0.39) 0.23 (0.36) 0.27 (0.39) 0.28 (0.39)

https://doi.org/10.1371/journal.pone.0232300.t003

PLOS ONE New time-to-event residual with linear regression-like interpretation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232300 May 4, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0232300.t003
https://doi.org/10.1371/journal.pone.0232300


very little variability across replicates. For the remaining models, and based on Table 3 alone,

we might conclude that PPLD-OTE and PPLD-OLRR are virtually identical in their behavior;

with PPLD-DR also working reasonably well for the models considered here, although with a

lower mean in general, and even worse performance for MR. Recall too that MR and DR pre-

serve rank-order with respect to one another, so that performance differences are due to scal-

ing differences. This underscores the importance of having a residual that maintains

appropriate scaling with respect to the scientific hypothesis, in our case, regarding time to

event.

Fig 3 shows selected violin plots for the sampling distribution of each PPLD-RES, chosen to

illustrate a model with high mean PPLD and similar standard deviations across PPLD-RES

(Model 2); a model with lower means and similar standard deviations (Model 3); and a model

Fig 3. PPLD distributions (violin plots) for (a) Model 2, (b) Model 3 and (c) Model 7, using the indicated form of residual (MR, DR, OTE, OLRR) as input data. The mean

of each distribution is marked with an ‘o’.

https://doi.org/10.1371/journal.pone.0232300.g003

Table 4. Pair-wise correlation coefficients between PPLDs.

Model

1 2 3 4 5 6 7 8

MR & OTE 0.21 0.77 0.75 0.69 0.83 0.22 0.33 0.83

MR & OLRR 0.19 0.76 0.75 0.68 0.83 0.18 0.32 0.85

MR & DR 0.26 0.86 0.83 0.75 0.90 0.70 0.58 0.87

DR & OTE 0.32 0.83 0.87 0.90 0.88 0.20 0.54 0.89

DR & OLRR 0.40 0.84 0.87 0.90 0.88 0.15 0.56 0.89

OTE & OLRR 0.82 0.99 0.99 0.99 0.99 0.75 0.96 0.98

https://doi.org/10.1371/journal.pone.0232300.t004

PLOS ONE New time-to-event residual with linear regression-like interpretation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232300 May 4, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0232300.g003
https://doi.org/10.1371/journal.pone.0232300.t004
https://doi.org/10.1371/journal.pone.0232300


with dissimilar standard deviations (Model 7). As can be seen, models for which the PPLD

means are similar to one another can have different distributions depending on the form of

residual, with the chances of obtaining a large PPLD in general higher for PPLD-OTE com-

pared to PPLD-MR or PPLD-DR.

In addition, pairwise correlation coefficients between PPLD-MR or PPLD-DR and

PPLD-OTE across replicates can be quite low, as shown in Table 4; even PPLD-OLRR and

PPLD-OTE show lower correlations for some models. Thus in any given data set, depending

upon the underlying genetic model (which is in practice always unknown), the PPLD can vary

substantially depending on which form of residual has been used as data, even when the sam-

pling distributions of the PPLD appear similar. This can impact rank-ordering of SNPs and

lead to follow-up of different genes.

4. Discussion

We have developed a novel OTE residual for use in conjunction with time-to-event data, and

we have argued that OTE has an interpretation much like that of an ordinary linear regression

residual. OTE was designed to satisfy certain requirements of scaling and interpretation. It is

notable, then, that in operational terms (Table 3 and Fig 3) it out-performs the alternatives

considered here in application to simulated TE-GWAS data. In general, a statistical method

that retains more information and/or uses that information more accurately ought to, on aver-

age, outperform methods that rely on assumptions violated by the data or that distort the scal-

ing of the data. Thus the superior operational characteristics of OTE, over a range of genetic

generating models and across a large number of replicates, is indirect confirmation that OTE

does indeed do what we intended it to do.

When designing and evaluating test statistics, operational behavior is important. But in

measuring the strength of evidence for or against an hypothesis in any given data set, what

counts is not just operational effectiveness, but more importantly, how accurately and effi-

ciently the statistical method utilizes the relevant information in the data at hand. In our actual

study of DMD, we have at present only the one data set to work with, and we need to know

that our chosen outcome measure represents the evidence as accurately as possible in this par-

ticular data set. Key to this objective is ensuring meaningfulness for the measurement scale on

which data are represented. The strikingly low correlations (Table 4) for some generating

models between PPLD-MR or PPLD-DR and PPLD-OTE underscores this issue. If we are to

take results in any one data set at face value, we must ensure up front that the form of residual

we use accurately and reliably captures the information we set out to model: how extreme is an
individual’s survival time relative to expectation. On this score we hope to have made a con-

vincing case in favor of OTE.

While we have focused on application to TE-GWAS data, OTE could be useful in other

contexts as well. In particular, in any setting for which it is desirable to remove covariate effects

prior to combining data across covariate levels, these new residuals represent a methodology

for so doing that retains a direct connection to the original scale of the dependent variable,

simply shifting from survival time to the deviation of survival time from expectation, on a haz-

ard scale, and expressed for each covariate level in units of level-specific standard deviations.

But of course, nothing we have presented guarantees that OTE is optimal in all settings. We

have not, for example, considered the handling of more complex covariate structures, includ-

ing continuous covariates or covariate interactions. OTE will also depend upon the choice of a

functional form for the estimated survival function. While the Weibull distribution fit our sim-

ulated data well in comparison with Kaplan Meier curves, the robustness of downstream
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analyses to the fit of the survival curve would need to be considered in cases where that fit

could be poor, and other survival models might need to be considered.

One additional aspect of our simulation results worth noting concerns the importance of

including censored individuals, who are sometimes said to contribute relatively little to the

power of survival analyses. In our application censored individuals turn out to contribute

quite a bit. For instance, under Model 2, if we drop censored individuals prior to analysis the

average PPLD-OTE drops from 84% to 12.5%. This is not particularly surprising given that

censored individuals represent� 40% of each data set, so that dropping them results in a sub-

stantial reduction in sample size. But it illustrates the importance of being able to properly

incorporate censored individuals into such analyses. Recall too that the only information we

have used for these individuals in constructing OTE is that tfail(xi)> tcens(xi). Even so, they

prove to be quite informative; and of course, they are critical to proper estimation of S^y in the

first place.

Finally, we note a difference in the handling of the covariate between what we are doing

and the standard GWAS approach. The latter in effect imposes a random-effects model for the

covariate, because the regression is performed separately at each SNP, with the covariate effect

re-estimated each time. Along with the myriad other sources of sampling variability in the

data, if a fixed effects model is more appropriate, then this practice introduces additional

noise. By contrast, we have in essence assumed a fixed-effects model, factoring in the effect of

the covariate just once in calculating the residuals. One disadvantage of this is that we might

be sacrificing power to find genotype x covariate interactions. For instance, in our DMD data

set, it is unclear whether using OTE as described here would support discovery of genes that

influence response to steroids among DMD patients. This is an interesting topic for further

investigation.

Appendix A

Brief description of the PPLD

Here we give a brief overview of the form of PPLD used in the main text; for additional details

see [14]. The PPLD is based on the Bayes ratio (BR), defined as

BR ¼
Z

LRðγÞ f ðγÞ dγ

where LR is a likelihood ratio representing “trait-marker association” in the numerator and

“no association” in the denominator [24], and the single integral stands in for multiple integra-

tion over the vector γ = μ11, μ12, μ22, σ11, σ12, σ22, the means and standard deviations of three t-
distributions, one for each of the three SNP genotypes [15]. For present purposes additional

parameters of the likelihood are fixed as follows: recombination fraction θ = 0; standardized

linkage disequilibrium (LD) parameter D’ = 1 (see [24]); admixture parameter α = 1 (see [25]);

disease minor allele frequency (MAF) = SNP MAF. These simplifications allow us to model

genotypic effects of the SNP itself (whether direct effects or indirect through LD) on either μ
or σ or both; without them one would need to include the MAF, which determines the mixing

proportions for the genotypes, as an additional free parameter, which would result in a severely

underdetermined parameter space and unreliable behavior for the PPLD.

BR is proportional to a likelihood for the marker data conditioned on the trait data, and for

reasons having to do with ascertainment corrections [14, 26] it is integrated as a unit, rather

than separately in the numerator and denominator like a Bayes factor [27], using highly accu-

rate numerical methods [28]. Sequential updating across data subsets can be done by multiply-

ing the BRs [13]. The underlying likelihood is based on the Elston-Stewart pedigree peeling
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algorithm ([29]. Let π be the probability that a randomly selected SNP is within detectable LD

distance of a trait locus. Then the Posterior Probability of LD is simply PPLD ¼ pBR
pBRþð1� pÞ.

Appendix B

Derivation of Eq 3

Define a function g(x) with parameter b:

gðxÞ ¼ b � x � b logðbÞ þ b logðxÞ ð5Þ

This function has a maximum value of 0, which occurs at x = b. Let x = CHF(t). If we set δ =

b = 1, the term b log(b) = 0 and we can write

gfCHFðtÞg ¼ 1 � CHFðtÞ þ logfCHFðtÞg: ð6Þ

The usual formula for DR (Eq 2) can then be written by substituting Eq 6 under the square

root sign, yielding

DRðtÞ ¼ signf1 � CHFðtÞg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2gfCHFðtÞg

p
: ð7Þ

However, if we wish to have a function that maximizes at some other value of b 6¼ 1 then

we need to restore the term b log(b). In particular, we would like to have OTE = 0 at b = − log

(0.5). Setting δ = b = − log(0.5)� 0.7, from Eq 5 we have

gfCHFðtÞg ¼ 0:7 � CHFðtÞ � ð0:7Þ logð0:7Þ þ ð0:7Þ logfCHFðtÞg: ð8Þ

Substituting Eq 8 under the square root sign we arrive at the formula for OTE (Eq 3).

Appendix C

Distribution of residuals

Results shown here are based on 100 replicate data sets each of size N = 10,000, generated

under Model 1 (y = 1). The age-at-observation (AO) distribution was varied by randomly sam-

pling parameters of the negative binomial distribution from 2.5� r� 14.5 and 0.25�

Fig 4. Simulated mean (o’s) and median (� ’s) of RES distributions for (A) MR, (B) DR, (C) OLRR, (D) OTE.

https://doi.org/10.1371/journal.pone.0232300.g004
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p� 0.35 in order to vary the proportion censored across replicates. Data were then generated

and residuals calculated as described in the main text. (We confirmed that Weibull estimates

across replicates varied from 12.70–12.93 (scale) and 3.61–3.92 (shape), producing virtually no

visually discernable effect of the variable AO distribution on the survival function itself.) Fig 4

shows the mean z�RES and median z�RES for each replicate, plotted as a function of the observed

proportion of censored (OPC) individuals. As expected, z�MR ¼ 0, and z�OLRR = 0 as well, regard-

less of OPC; z�DR, however, depends on OPC, and for all three z�RES depends on OPC. OTE is the

closest to LRL behavior: z�OTE � 0 and z�OTE � 0, regardless of OPC, implying that the underly-

ing distributions of OTE residuals are highly symmetric.

Supporting information

S1 Fig. The figure below shows the fit of the Weibull distribution to the Kaplan-Meier curves

for the simulated data under Model 1 (non-mixture model), based on all 1,000 replicates of

N = 500 individuals each, for (A) y = 0 and (B) y = 1.

(TIF)
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