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Abstract: As narcotic control has become worse in the past decade and the death toll of drug abuse
hits a record high, there is an increasing demand for on-site rapid detection of illegal drugs. This
work developed a portable digital linear ion trap mass spectrometer based on separate-region corona
discharge ionization source to meet this need. A separate design of discharge and reaction regions was
adopted with filter air as both carrier gas for the analyte and protection of the corona discharge needle.
The linear ion trap was driven by a digital waveform with a low voltage (±100 V) to cover a mass
range of 50–500 Da with a unit resolution at a scan rate of 10,000 Da/s. Eighteen representative drugs
were analyzed, demonstrating excellent qualitative analysis capability. Tandem mass spectrometry
(MS/MS) was also performed by ion isolation and collision-induced dissociation (CID) with air as a
buffer gas. With cocaine as an example, over two orders of magnitude dynamic range and 10 pg of
detection limit were achieved. A single analysis time of less than 10 s was obtained by comparing
the information of characteristic ions and product ions with the built-in database. Analysis of a
real-world sample further validated the feasibility of the instrument, with the results benchmarked
by GC-MS. The developed system has powerful analytical capability without using consumables
including solvent and inert gas, meeting the requirements of on-site rapid detection applications.

Keywords: digital linear ion trap; corona discharge; on-site rapid detection; illegal drugs

1. Introduction

According to the 2021 World Drug Report of the United Nations Office on Drugs and
Crime (UNODC) [1], the number of people using illegal drugs increased by 22% globally
between 2010–2019. In addition, a massive amount of novel psychoactive substances
(NPS) such as fentanyl and synthetic cannabinoid are merging. Therefore, for scenarios
such as border control, airport, court security, and prison, there is enormous demand
for instruments for narcotic detection on the site, which should be sensitive, reliable,
rapid, and easy to use. Currently, a number of technologies have been applied in this
particular field, such as IMS (ion mobility spectrometry) [2,3], Raman spectrometry [4],
FT-IR (Fourier transform infrared spectroscopy) [5], fluorescence techniques [6], and so
on [7,8]. However, as the number of target analytes continues to increase, especially NPS,
the current technologies and solutions are largely outpaced and found difficult to cope
with the growing challenges.

The mass spectrometer, one of the most powerful analytical instruments, features high
sensitivity, rapid analysis time, and powerful qualitative analysis capability. Miniaturiza-
tion of MS for on-site rapid detection is an important direction for the further development
of the field. Ion trap mass spectrometer has been considered an optimum choice because of
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its moderate vacuum requirements, simple structure, and tandem analysis capability [9].
The development of ambient ionization methods without sample preparation or separa-
tion such as desorption electrospray ionization (DESI) [10,11], direct analysis in real-time
(DART) [11,12], photoionization (PI) [13–15], low temperature plasma (LTP) [16,17], paper
spray ionization (PSI) [18,19], further paved the way for MS technology from the laboratory
use to onsite applications. The feasibility of combining these ambient ionization meth-
ods and miniaturized ion trap mass spectrometer for rapid on-site illegal drugs detection
has been demonstrated [13,14,20–23]. However, it normally requires the use of special
consumables such as solvent and inert gas, which largely restrain the application.

Corona discharge ionization source has been widely used as a type of atmospheric
pressure chemical ionization (APCI) [24–28], which is essentially an ion-molecule reaction
in the gas phase. Therefore, the sample introduction method needs to turn the target
analyte into the gas-phase. According to the different states of the analyte, various sample
introduction methods are required including direct sampling (for gas-phase samples),
headspace sampling (for volatile substances in liquid or solid phase), nebulizer (for liquid-
phase samples), and thermal desorption (TD, for liquid or solid-phase samples) [29–32].
However, in most cases, the analyte flow is in direct contact with the discharge needle,
which may result in undesired ion fragmentation and further complicate the mass spectrum.
Moreover, it also leads to contamination caused by the adsorption of the analyte on the
needle tip over time, and eventually failure of discharge. In this work, we proposed
a novel construction of septate-region corona discharge ionization source, which is the
spatial separation of reactive ion generation and analyte reaction. Meanwhile, filtered air
is used as discharge region shielding gas to protect the discharge needle and supplies a
stable discharge environment. Controlled reactant ions formed the discharge region and
then were introduced into the reaction region by the electrical field and the analytes were
ionized. Filtered air is also used for analytes carrier gas, removing the need for an inert gas
such as helium or argon as special consumables, which meets the needs of on-site rapid
detection. The thermal desorption method was employed to free analyte molecules from
the liquid phase or solid phase. Considering the complex background of on-site application,
a semi-permeable membrane inlet was introduced to prevent the introduction of unwanted
interference. A more detailed design is described in the next section.

Coupling with the novel separate-region corona discharge ionization source, a portable
digital linear ion trap mass spectrometer (DLIT-MS) was developed. The sample ions pro-
duced from the reaction zone were introduced into the linear ion trap by the discontinuous
atmospheric pressure interface (DAPI) method [33]. Although different structures of the lin-
ear ion trap mass analyzers have been developed in recent years, such as rectilinear ion trap
(RIT) [34], triangular-electrode linear ion trap (TeLIT) [35], and half-round rod electrodes
(HreLIT) [36,37], hyperbolic-shaped electrodes ion trap provides most ideal quadrupole
electric field and good performance [38] and hence was adopted in our work. For the
driving signal, the digital ion trap (DIT) invented by L. Ding et al. in 2002 [39,40] was con-
structed at a lower voltage (±100 V) which had the advantage of low power consumption
and the reduction of the low mass cutoff in tandem mass spectrometry (MS/MS) [40,41].
The qualitative, quantitative, and MS/MS analysis abilities of the developed portable
DLIT-MS for eighteen typical illegal drugs were characterized. By comparing information
of product ions from the tandem mode with a self-developed database, analysis can be
completed within 10 s. Furthermore, analysis of a real-world sample from border custom
validated the feasibility of the system for practical use, with the results benchmarked and
confirmed by laboratory-based GC-MS.

2. Materials and Methods
2.1. Materials and Reagents

HPLC-grade acetonitrile and methanol were purchased from Sigma-Aldrich. The stock
solutions of narcotic samples at a concentration of 1000 ng/µL were supplied from Shanghai
Yuansi Standard Science and Technology Co., Ltd. (Shanghai, China). The suspected real-
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world sample, in the form of plant leaves, was provided by border customs of Suzhou city.
Molecular sieve was supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Disposable Nomex swab was purchased from Suzhou Chuanche Specialty Materials Co.,
Ltd. (Suzhou, China). High purity helium (99.999%) for GCMS was purchased from Suzhou
Jinhong Gas Co., Ltd. (Suzhou, China).

2.2. Sample Preparation and Introduction

The working solutions of narcotic samples were prepared by diluting the stock solution
with acetonitrile to target concentrations. Standard liquid solution of analyte was added
dropwise onto the Nomex substrate using a pipette with 1 µL aliquot. After evaporation
of the solvent in about 10 s, the substrate carrying the analyte was inserted directly into
the desorption sampler. For the actual real-world sample, the surface of the sample was
scrubbed with the Nomex substrate to collect the analyte, followed by the direct insertion
of substrate into the sampler. The Nomex swab was used as disposable to avoid possible
interference from residual samples. For GC-MS validation, 1 mg of sample was dissolved in
1.5 mL of methanol for 5 min ultrasonic extraction. The product solution was then filtered
with 0.25 µm syringe filter and 1 µL of the resulting solution was analyzed.

2.3. GC-MS Characterization and Settings

The measurement was performed on a laboratory-based GC-MS system (Agilent
7000C-7890B) with a DB-5 chromatographic column (30 m × 0.25 mm × 0.25 µm, Agilent
Technology Co., Ltd.). The experiment conditions include 280 ◦C for inlet temperature,
3 min for the solvent delay, 40 ◦C to 300 ◦C at 10 ◦C/min for GC temperature and He with
0.8 mL/min as carrier gas.

2.4. Design of the Portable DLIT-MS System

The schematic diagram of the portable DLIT-MS system is shown in Figure 1. The
instrument consists of two main parts, a fully integrated sample/ionization assembly
including membrane sample inlet, thermal desorption unit and separate-region corona
discharge ionization source, and a miniaturized DLIT mass analyzer.
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The sample/ionization assembly comprises a thermal desorption sampler and an
ionization chamber with an APCI. The two parts were integrated into a single mechanical
structure made of Polyether ether ketone (PEEK). The temperature of the thermal desorp-
tion sampler can be controlled from room temperature to 230 ◦C. The semi-permeable
polydimethylsiloxane (PDMS) membrane was used in the sampler which can overcome
the problem of contamination introduced by dust, fiber, and airborne particles. The com-
bination of thermal desorption and the use of a membrane can effectively remove the
interference of non-volatile substances and reduce the matrix effect. A test paper made of
Nomex fiber, which is one of the standard swab materials for commercial explosive trace
detector (ETD) instruments [42], was used as the substrate to carry the sample either in
the liquid or solid phase. While heated, the analyte passing through the PDMS membrane
was carried by the flow of filtered air at 180 mL/min into the ionization chamber. The
ionization chamber shown in Figure S1a with the dimension of 32 × 30 × 39 mm has
a discharge region and a reaction region, which are separated by structure design. The
discharge electrode is a piece of a tungsten filament of 80 µm in diameter, which is 2 mm
away from the counter electrode with a potential difference of 3000 V. The discharge region
is shielded by filtered air to maintain a stable discharge environment over an extended
period. The reaction region has an electric field at gradient of 49 V/cm set by the ring
electrodes. Shielding gas with a flow rate of 800 mL/min was introduced against the
direction of the discharge electric field. The carrier gas and shielding gas were driven by a
small diaphragm pump (KVP04-1.1-12, Kamoer Fluildtech (Shanghai, China) Co., ltd.). The
product ion is introduced to the vacuum chamber through the DAPI method as described
by Cooks’ group [33].

A customized DLIT mass analyzer was designed and constructed in this study. The
vacuum chamber has dimensions of 73 × 74 × 52 mm and was driven by a 5 L/min
diaphragm pump (MVP 003, Pfeiffer Vacuum Inc., Asslar, Germany) and 10 L/s molecular
turbo pump (HiPace 10, Pfeiffer Vacuum Inc., Asslar, Germany). The working pressure of
the chamber is under 0.01 Pa at stabilized conditions, measured by a Pirani gauge (TPR
280, Pfeiffer Vacuum Inc., Asslar, Germany). The customized linear ion trap we developed
comprises two sets of conjugated hyperboloid electrodes and two end cap electrodes. The
half-distance between the y (orthogonal direction of ion ejection) electrodes was 5 mm,
while the x (direction of ion ejection) electrodes were 0.8 mm stretched and 0.6 mm slotted.
The length of the ion trap along z (direction of ion introduction) direction was 40 mm. The
structure of the ion trap mass analyzer is shown in Figure S1b. The ejected ions from the
trap were detected by the combination of a dynode with−6000 V and an electron multiplier
(R14747, Hamamatsu Photonics K. K., Hamamatsu, Japan) with −1100 V.

A set of periodic rectangular RF waves with opposite phases between a high voltage
level (100 V) and a low voltage level (−100 V) was applied to the x and y electrodes of the
ion trap. The scanning RF frequency was decreased from 1.044 MHz to 0.330 MHz with
scan rate of 10,000 Da/s, and an auxiliary dipole AC signal with 1.0~2.5 V was coupled to
x electrodes. The AC frequency is fixed at 1/3 of RF frequency, so ions with the mass range
of 50–500 Da would be resonantly ejected at β = 2/3. More details about the operation
of digital ion trap could be found in other papers [40,41]. Ion isolation and CID can be
operated in this DIT system and MS/MS analysis can be performed.

The integrated sample/ionization assembly, the DAPI system, and the DLIT mass
analyzer were incorporated within the instrument housing. All the described hardware and
supporting electronics, together with a PC and a power control system, were integrated in
a 310 × 310 × 405 mm instrument with a weight of under 15 kg. The whole MS instrument
is shown in Figure S1c.

3. Results and Discussion
3.1. Ionization Characteristic of Illegal Drugs in the Ion Source

Eighteen types of illegal drugs were analyzed with the developed instrument, demon-
strating its excellent analytical capability. The mass spectra of six representative narcotic
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samples covering low to high mass range are shown in Figure 2, with the rest to be found in
Figure S2 of the supporting material. A unit resolution could be achieved, as demonstrated
by the characteristic isotopes of ketamine embedded in Figure 2b. From the measured
spectra, 16 out of the 18 samples characterized only resulted in [MH]+, with the other
two also have a small amount of fragment ions, which is similar to that reported in other
literature using different soft ionization methods [13,14,20]. Benefit from the design of
a separated discharge region, the contamination of the discharge tip can be effectively
avoided, resulting in stable conditions for the generation of initial reactant ions. The ion-
ization of analyte molecules is undergoing by the way of charge transfer process in the
reaction region. For air as discharge gas as investigated in this work, the initial reactant ion
is mainly H(H2O)n

+, and the ionization process for analyte M can be described as:

H(H2O)n
+ +M↔MH+ (H2O)n

* ↔MH+ + n(H2O) (1)
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This ionization method with minimal fragmentation is beneficial for the qualitative
identification of target analytes from the unknown sample, and is, therefore, a crucial factor
for the use of portable DLIT-MS instruments in on-site rapid detection applications.

Using the last electrode of the reaction region as a faradic plate detector, the measured
current due to the initial reactant ion is about 3 nA, much higher than hundreds of pA
as in the case of traditional radioactive ionization source [43]. According to the above
reaction, a higher density of initial reactant ion moves the reaction to the right and results
in a significant amount of analyte ions and hence better sensitivity.
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3.2. MS/MS and Quantitative Analysis for Illegal Drugs

It is well-known that an ion trap has a limit capacity for ion capture and storage. If
there are too many ions in the ion trap, ions with different m/z will interfere with each
other, leading to a compromised analytical result. Especially for the real-world samples, the
target analyte is usually presented in a complex background matrix. Tandem mass analysis
can significantly reduce this limitation. By isolation of chosen ions in the ion trap, chemical
noise can be largely suppressed. Therefore, the tandem MS function for the LDIT-MS
was developed in this paper. The full process of tandem MS analysis in the LDIT-MS
we developed includes ion introduction, cooling, isolation including digital asymmetric
waveform isolation (DAWI) and forward/backward scanning [44], gas introduction, and
CID of precursor ion by dipole resonance. This sequence is similar to that described by
B. Xue et al. [41]. However, an important alteration is that air was chosen as collision
gas instead of helium, which makes the LDIT-MS more practical for the requirement of
on-site applications.

Figure 3 shows MS/MS spectra of six typical narcotic samples collected with the devel-
oped instrument. The Methamphetamine with the precursor ion of m/z 150.1 is dissociated
into product ions of m/z 119.1 ([M-CH4N]+) and 91.1 ([M-C3H8N]+). For ketamine, the pre-
cursor ion of m/z 238.1 mainly produces 220.1 ([M-H2O]+), 207.1 ([M-CH4N]+), and 163.0
[M-CH3NH-CH2OCH2]+. The morphine of m/z 286.1 mainly gives the product ions of
268.1([M-H2O]+), 229.1([M-CH3NC2H4]+), 201.1 ([M-C4H7NO]+), and 211.1([M-C3H6O2]+).
The other samples of the product ions are shown in Figure 3. Spectra of more samples with
the product ion information can be found in Figure S3 in Supplementary Material. It could
be seen from Figure 3 and Figure S3 that the information of product ions with air as CID
gas is similar to that obtained from the laboratory-based equipment [45,46]. By dissociating
the isolated ions and collecting information on product ions, the analytical capability of the
LDIT-MS can be greatly improved.
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The tandem MS function offers not only increased capability of identification but also
improved ability of quantitative analysis. Although in the application of on-site rapid
detection of illegal drugs, quantification of analyte is not the emphasis. It is still valuable to
know the dynamic range of the instrument. Taking cocaine as an example, by isolating and
dissociating the parent ion of m/z 304, which is the characteristic ion (MH+) for cocaine, the
amplitude of the product ion peak at m/z 182 ([M-C7H6O2]+) can be taken as an indicator
for quantification. As shown in Figure 4, over two orders of magnitude dynamic range and
10 pg of detection limit could be performed.
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3.3. Database Construction for Illegal Drugs

For the application of on-site rapid detection, ease of operation, especially by non-
professional personnel, is a crucial factor. Therefore, it is essential to have a built-in library
for fully automated identification. With the developed instrument, the characteristic ion
peaks of all 18 samples have been studied in MS and MS/MS spectra, as shown in Table S1.
A full scan is performed first to find the MS feature of targeted parent ions, followed by
CID and MS/MS measurement to check the information of product ions once the parent
ion matches. Analysis time of less than 10 s could be achieved in this measuring procedure.

On the other hand, the ionization method mainly causes [MH+] which makes it possi-
ble to predict the composition of the product ion, laying the foundation for the detection
of emerging NPS. The list of narcotics keeps growing and it is practically impossible for
a laboratory to have all the samples for study and testing. In case a standard sample is
absent, it is possible to use [MH]+ as the predicted product ion for the library extension.
The MS/MS spectra studied in this work showed that the product ions of the developed
instrument are very similar to that of laboratory-based standard equipment [45,46], so it is
also possible to expand the library from public data.

3.4. Application of the Developed DLIT-MS

A real-world case study has also been included to demonstrate the applicability of
the developed instrument. A suspicious unknown item in the form of plant leaves was
collected from the border custom of Suzhou city. MS and MS/MS measurements were
performed with a simple swab using Nomex substrate, as shown in Figure 5. The main
peaks are m/z 331.2 and 314.2 shown in the mass spectra, matching features of synthetic
cannabinoid AB-PINACA and ADB-BUTINACA. Analysis of m/z 331.2 and 314.2 using the
MS/MS method found that the product ion peaks information matched ADB-BUTINACA
but not AB-PINACA. Product ions of m/z 201.1 and 219.1 were further analyzed with
MS/MS/MS, resulting in smaller pieces of m/z 145.0 and 163.0. The product ions pattern
found fitted well with the tandem MS analysis result of ADB-BUTINACA reported in the
literature [47].
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To confirm the findings, the sample was also characterized by laboratory-based GC-
MS, with its total ion current chromatogram shown in Figure 6b. Corresponding MS
spectrum of GC peak with retention of 14.3 min is shown in Figure 6a, which matches
well with the standard EI spectrum of ADB-BUTINACA [48] and confirms the accuracy
of test results using our portable DLIT-MS instrument. In fact, ADB-BUTINACA is a
rather new synthetic cannabinoid which was first found in Europe in 2019 [49]. This case
study demonstrated that by following up-to-date literature and analytical information
from standard equipment, it is possible to expand the library and detect new analytes even
without testing with standard samples.
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4. Conclusions

A portable digital linear ion trap mass spectrometer based on separate-region corona
discharge ionization source was developed for rapid on-site detection of narcotics. The
separation of discharge from the reaction region and the use of shield gas were adopted
for the design of the ionization source. The developed instrument is fully integrated with
compact size and light-weight, and does not require any special consumables such as
solvent and inert gas. The investigation of 18 representative narcotic samples with both
MS and MS/MS functions demonstrated excellent analytical ability, with over two orders
of magnitude dynamic range and 10 pg of the detection limit. In addition, the predictable
ionization products and MS/MS product ions pattern enable promising applications, such
as forensic analysis and roadside drug screening.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113506/s1. Table S1. Characteristic precursor ions
and corresponding product ions of 18 illegal drugs in this study; Figure S1. Photos of the inte-
grated sample/ionization assembly with the sampler and ion source (a), ion trap (b), and the whole
portable mass spectrometer (c); Figure S2: Mass spectra of 12 narcotic samples. (a. Methcathinone;
b. Ephedrine; c. MDA; d. MDMA; e. Pethidine; f. THC; g. LSD; h. Fentanyl; i. Papaverine; j. 4-FiBF;
k. Ocfentanil; l. Sufentanil); Figure S3: MS/MS spectra of 12 narcotic samples. (a. Methcathinone;
b. Ephedrine; c. MDA; d. MDMA; e. Pethidine; f. THC; g. LSD; h. Fentanyl; i. Papaverine; j. 4-FiBF;
k. Ocfentanil; l. Sufentanil).
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