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Abstract: Sphingolipid metabolism is an important process in sustaining the growth needs of rapidly
dividing cancer cells. Enzymes that synthesize sphingolipids have become attractive targets in
cancer pharmacology. Ceramide is a precursor for synthesizing sphingolipids such as sphingomyelin,
sphingosine-1-phosphate, and glucosylceramide. Sphingomyelin synthase (SMS) is the enzyme that
transfers a phosphatidylcholine to ceramide to generate sphingomyelin. To test the inhibition of
SMS, scientists assess the buildup of ceramide in the cell, which is cytotoxic. Because ceramide is
a small lipid molecule, there are limited tools like antibodies to detect its presence. Alternatively,
designated machines for small-molecule separation coupled with mass spectrometry detection can
be used; however, these can be cost-prohibitive. We used a commercially available NBD-ceramide
to apply to human cancer cell lines in the presence or absence of a known SMS inhibitor, jaspine
B. After short incubation times, we were able to collect cell lysates and using solvent extraction
methods, run the cellular material on a thin-layer chromatography plate to determine the levels of
intact fluorescently labeled ceramide. Brighter fluorescence on the TLC plate correlated to greater
SMS inhibition. Small molecules can then be screened quantifiably to determine the biological impact
of inhibiting the sphingolipid metabolism pathways involving ceramide.

Keywords: ceramide; synovial sarcoma; osteosarcoma; sphingomyelin synthase inhibitor; jaspine B;
cellular assay

1. Introduction

Cancer is a disparate disease driven by numerous and diverse metabolic needs [1]. Sphingolipid
metabolism is a pathway that is commonly upregulated in cancer and thus, has become a viable target
for drug screening purposes [2,3]. Ceramide is central to sphingolipid metabolism and serves as a
precursor to several functionally important sphingolipids [2]. Sphingomyelin synthase (SMS) 1 and 2
are essential enzymes in the conversion of ceramide to sphingomyelin [4]. Inhibition of sphingomyelin
synthases results in an accumulation of ceramide, resulting in cytotoxicity and eventually, apoptosis
(Figure 1) [5]. To prevent ceramide accumulation, cancer cells can divert ceramide to the synthesis of other
sphingolipids. Sphingosine-1 phosphate and glucosylceramide have likewise demonstrated the ability to
enhance tumorigenesis in several cancers, and are thus targets for cancer therapies [6,7]. Future combinations
of these targeted therapies should result in increased apoptosis in cancer cells, both in vitro and in vivo.

There are copious ways of measuring cell viability and events associated with apoptosis during
pharmacological screening of small-molecule inhibitors [8,9], but these methods do not pinpoint a
mechanism of action of how a cell arrived at that end fate. Understanding the molecular underpinnings
of how a drug works will lead to more precise applications in precision medicine and circumvent
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future developments of resistance. To this end, researchers have sought to understand the biological
relevance of SMS1 and SMS2 inhibitors in the context of the sphingolipid metabolism pathway [4,5].
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SMS2 [10]. One approach is to use an antibody, for which there are only four commercial options 
derived from two hybridoma clones (Table 1). All four products are mouse monoclonal antibodies, 
thus limiting their applications in preclinical mouse models. Additionally, immunohistochemical and 
ELISA-based assays require multiple steps and often 1–2 days to complete the assays. Furthermore, 
antibody detection methods can be fraught with non-specific recognition, thus obscuring positive 
results.  

Table 1. List of anti-ceramide monoclonal antibodies 

 Company Catalog Hybridoma Clone # Applications 
United States Biological C2777-95 6D311 AP, ELISA, FACS, IHC-F/P 

Epigentek A-0549-001 MID15B4 ELISA, ICC, IHC-F/P 

Enzo Life Sciences ALX-804-196-T050 MID15B4 
ELISA, FACS, ICC, IHC-
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Lifespan Biosciences LS-C79075 MID15B4 ELISA, FACS, ICC, IHC-F 
AP—affinity purification; ELISA—enzyme-linked immunosorbent assay; FACS—fluorescence-activated cell 
sorting; IHC—immunohistochemistry; ICC—immunocytochemistry; F—frozen; P—paraffin. 

Other analytical techniques that are more accurate in detecting ceramide levels include liquid 
chromatography–tandem mass spectrometry (LC/MS) such as HPLC, LC-ESI-MS/MS, HPLC-MSMS-
MRM [11–13]. These methods are more commonly used to measure small molecules, such as 
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Figure 1. Sphingolipid metabolism pathway. Schematic demonstrating the key enzymes and substrates
in sphingolipid metabolism. Increased levels of sphingosine-1 phosphate, glucosylceramide, and
sphingomyelin enhance cell proliferation, while administration of jaspine B, a sphingomyelin synthase
(SMS) inhibitor, results in ceramide accumulation and apoptosis. Inhibiting the sphingomyelin arm
of ceramide metabolism can also result in ceramide being shunted to other sphingolipids such as
sphingosine-1 phosphate and glucosylceramide.

Measuring ceramide levels is one of the most relevant outputs upon inhibition of SMS1 and
SMS2 [10]. One approach is to use an antibody, for which there are only four commercial options derived
from two hybridoma clones (Table 1). All four products are mouse monoclonal antibodies, thus limiting
their applications in preclinical mouse models. Additionally, immunohistochemical and ELISA-based
assays require multiple steps and often 1–2 days to complete the assays. Furthermore, antibody
detection methods can be fraught with non-specific recognition, thus obscuring positive results.

Table 1. List of anti-ceramide monoclonal antibodies.

Company Catalog Hybridoma
Clone # Applications

United States Biological C2777-95 6D311 AP, ELISA, FACS, IHC-F/P
Epigentek A-0549-001 MID15B4 ELISA, ICC, IHC-F/P

Enzo Life Sciences ALX-804-196-T050 MID15B4 ELISA, FACS, ICC, IHC-F/P
Lifespan Biosciences LS-C79075 MID15B4 ELISA, FACS, ICC, IHC-F

AP—affinity purification; ELISA—enzyme-linked immunosorbent assay; FACS—fluorescence-activated cell sorting;
IHC—immunohistochemistry; ICC—immunocytochemistry; F—frozen; P—paraffin.

Other analytical techniques that are more accurate in detecting ceramide levels include
liquid chromatography–tandem mass spectrometry (LC/MS) such as HPLC, LC-ESI-MS/MS,
HPLC-MSMS-MRM [11–13]. These methods are more commonly used to measure small molecules,
such as sphingolipids and their relative quantities. However, the sample preparation can be laborious,
the liquid chromatography separation can be time-consuming, the chemical preparation of samples
can result in sample loss thus creating run-to-run variation, and equipment costs and maintenance
could be prohibitive [13].
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2. Experimental Design

We have developed a rapid screening method to detect levels of ceramide in the presence of
an SMS inhibitor. This approach relies on the commercially available C6-NBD ceramide (N381205,
North York, ON, Canada). This is a fluorescently labeled ceramide analogue that is permeable to cell
membranes. Once internalized, the fluorescently labeled ceramide incorporates readily into membranes
that comprise the Golgi apparatus, the endoplasmic reticulum, and the nuclear envelope [10].

In our assay, we applied the C6-NBD ceramide to live cells with or without the SMS inhibitor,
jaspine B (Figure 2) [14]. Following shorter incubation times and higher concentrations of C6-NBD
ceramide compared to previously reported experiments [10], cell lysates were extracted. The extract
was mixed briefly with a precipitating solvent and blotted immediately to a silica gel for thin-layer
chromatography (TLC). Apart from differing in the cell types, short incubation times, and higher
ceramide concentrations, the extraction method did not focus on solubilization of the lipid fraction
like similar protocols [10]. Cell lysates were eluted and underwent separation of cellular molecules
based on the polarity. Cells incubated with C6-NBD ceramide were eluted along the TLC plate and
imaged in an Azure c600 imaging station for fluorescence using GFP excitation and emission filters
(488/520 nm). Levels of fluorescence were easily quantified and an inverse relationship between the
level of fluorescence detected and the inhibition of SMS was determined. This method allows for
simple and rapid identification of potent inhibitors of SMS by measuring the presence of exogenously
added fluorescently labeled ceramide to live human cancer cells.
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Figure 2. Schematic representation of sphingomyelin synthase inhibition by jaspine B. (a) Sphingomyelin
synthase catalysis involves conversion of ceramide to sphingomyelin utilizing the cofactor
phosphatidylcholine. The marine natural product, jaspine B, exhibits sphingomyelin synthase inhibition,
thus resulting in unchanged C-6 NBD ceramide fluorescence. (b) Hypothetical results after thin-layer
chromatography to show that the administration of jaspine B reduces the fluorescent presence of
C6-NBD ceramide.
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2.1. Materials

• C-6 NBD Ceramide (Toronto Research Chemicals, North York, ON, Canada; Cat. no.: N381205)
• Jaspine B (Pashikanti lab, Pocatello, ID, USA)
• SJSA-1 (ATCC, Manassas, VA, USA; Cat. no.: CRL-2098)
• U2-OS (ATCC, Manassas, VA, USA; Cat. no.: HTB-96)
• RPMI 1640 Medium (Caisson Labs, Smithfield, UT, USA; Cat. no.: RPL04-6)
• Fetal Bovine Serum (Atlanta Biologicals, Flowery Branch, GA, USA; Cat. no.: S11150)
• Penicillin/Streptomycin (Atlanta Biologicals, Flowery Branch, GA, USA; Cat. no.: B21110)
• Trypsin 0.25% EDTA (Atlanta Biologicals, Flowery Branch, GA, USA; Cat. no.: B81310)
• NaCl (Sigma Chemical Company, St. Louis, MO, USA; Cat. no.: S-9625)
• NP-40 (Fluka Analytical, Mexico City, Mexico; Cat. no.: 74385)
• Phosphate Buffered Saline (Genesee Scientific, El Cajon, CA, USA; Cat. no.: 25-508)
• Pyridine (Alfa Aesar, Haverhill, MA, USA; Cat. no.: A12005-AP)
• Silica gel plates TLC-G (Silicycle, Quebec, QC, Canada; Cat. no.: TLG-R10014BK-323)
• Toluene (ThermoFisher Scientific, Waltham, MA, USA; Cat. no.: S25611A)
• Tris HCl (ThermoFisher Scientific, Waltham, MA, USA; Cat. no.: EC 201-064-4)

2.2. Equipment

• Azure c600 Imaging Station (Azure Biosystems, Dublin, CA, USA; Cat. no.: c600)
• Countess II (ThermoFisher Scientific, Waltham, MA, USA; Cat. no.: AMQAX1000)
• Countess Slides (ThermoFisher Scientific, Waltham, MA, USA; Cat. no.: C10283)
• MiniSpin (Eppendorf, Hamburg, Germany; Cat. no.: 22620100)
• Spectrafuge 6C (Labnet, Edison, NJ, USA; Cat. no.: LI-CF-SF6C)
• EVOS FL (ThermoFisher Scientific, Waltham, MA, USA; Cat. no.: AMF4300)
• FORMA SERIES II CO2 Incubator (ThermoFisher Scientific, Waltham, MA, USA; Cat. no.: 31300)

3. Procedure

3.1. Preparing Single Cell Suspensions

i. Wash adherent cancer cells growing in a tissue-culture-treated flask with a surface area of 75
cm2 with 7 mL of 1 X phosphate buffered saline (without Ca2+ and Mg2+). Remove phosphate
buffer saline.

ii. Add 2 mL of pre-warmed 0.25% Trypsin-EDTA to each flask and return to the tissue culture
incubator with the following conditions of 37 ◦C and 5% CO2 and incubate for 5 min or until
most cells have detached from the bottom of the flask.

iii. Quench the trypsin by adding 2 X the volume (4 mL) of cell culture medium. Pipette the 6
mL solution up and down, pointing the tip towards the side of the flask on which the cells
were growing.

iv. OPTIONAL STEP. DMEM or RPMI supplemented with 10% fetal bovine serum and
penicillin/streptomycin are commonly used cell culture mediums for these cells, but this
can be adaptable as long as a solution with proteins is used to quench the trypsin.

v. Transfer the 6 mL of single cell suspensions to a 15 mL conical tube and centrifuge the solution
at 1800× g and room temperature for 4 min.

vi. Decant the media solution and resuspend the cell pellet in 4–5 mL of fresh cell culture medium.
vii. Count cell concentrations. Set aside 1−1.5 million cells for each treatment condition in its own

1.7 mL microcentrifuge tube.
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viii. Centrifuge cells again at 1800× g for four minutes and resuspend cells in 20 µL of
phosphate-buffered saline.

3.2. Treating Cells with an SMS Inhibitor and Adding C6-NBD Ceramide

i. For each cell line, test two conditions. Prepare a concentration of jaspine B, an SMS inhibitor, at
5 µM.

ii. OPTIONAL STEP. We prepare our stock solutions at a concentration of 10 mM in DMSO.
Dilution to a working concentration of 5 µM is achieved with phosphate-buffered saline.

iii. To test the inhibition of SMS, add either 2 µL of 5 µM jaspine B or 2 µL of phosphate-buffered
saline to the labeled microcentrifuge tubes containing 1−1.5 million cells in 20 µL of solution.
This will dilute the jaspine B to a final concentration of 500 nM.

iv. Add 2 µL of 100 µM C6-NBD ceramide to all the cell solutions, both treated and control. Thus
resulting in a final concentration of 10 µM.

v. Incubate at 37 ◦C for 30 min.
vi. Centrifuge the cells and solution at 1800× g for four minutes and, using a micropipette, remove

all liquid.
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3.3. Lysing Cells and Sample Preparation for Running Thin-Layer Chromatography

i. Incubate cells in 20 µL of mild cell lysis buffer for 10 min. NOTE: Mild cell lysis buffer consisted
of 10 mM Tris-HCl pH 8.1, 10 mM NaCl, 0.5% NP-40.

ii. Clarify cell lysates by centrifuging at >10,000× g for 10 min.
iii. Collect the supernatant fraction and add 20 µL of 100% methanol.

3.4. Running the Thin-Layer Chromatography

i. Load 40 µL of each sample by applying the liquid to a single location near the bottom of a silica
gel plate.

ii. Include a 2 µL standard of C6-NBD ceramide in 20 µL of methanol that will allow to detect
where the unmodified C6-NBD ceramide is located on the gel.

iii. Place the plate in a beaker that has a solvent (Toluene: Pyridine:Water – 46:46:8) just below the
blotted samples.

iv. Allow the solvent to carry the samples up the silica gel by capillary action.
v. Remove the silica gel and allow to air dry.

3.5. Imaging Samples on a Fluorescent Imaging Station

i. Using a fluorescent imaging station, expose the sample to 488 nm wavelength of light for
excitation, then capture the emission with 520 nm wavelength filters.

ii. OPTIONAL STEP. The Azure c600 imaging system takes simultaneous images with blue, green
and red filters. Fluorescence could be detected with both blue and green filters.

3.6. Analyzing the Images

i. Export TIF image files and open in FIJI software [15].
ii. Transform images to grayscale and invert the colors so as to have a white background with

gray blots (Figure 3a).
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iii. Create a rectangle box around the first blot and press 1 to mark as a region of interest. Drag the
box, which creates a second region of interest, to the next blot and press 2 to continue marking
regions of interest. Repeat for all blots on the silica gel by pressing 2 until the last blot and then
press 3. This generates area under the curve images (Figure 3b,c).

iv. Select the wand tool in FIJI and click in the middle of the area under the curve. This measures
the value and puts it in a separate window.

v. Transfer to a spreadsheet document and perform statistical analyses to compare the control
versus the treated samples (Figure 4).
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Figure 4. Representative bar graphs of fluorescent densitometry. U2-OS, SJSA-1, hFOB, and FUUR-1
were treated with either 0.5 µM jaspine B or control for 30 min and the spot intensities were averaged
together with standard deviations of the mean. These values were compared to C-6 NBD ceramide as
the standard control. The unit of measurement is the area under the curve. The p value = 0.0017, *.
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4. Expected Results

The methods outlined provide a rapid detection of inhibition of enzymes linked to ceramide
metabolism. Using the SMS inhibitor, jaspine B, we observed an increased presence of unmodified
C-6 NBD ceramide when these cells were treated with 0.5 µM of jaspine B (Figure 3). Additionally,
cells were treated with a range of serial dilutions of jaspine B and demonstrated effective inhibition of
C-6 NBD ceramide across the concentration range of 0.1−1.0 µM (Figure 5). These observations were
made after separating cellular lysates by thin-layer chromatography and imaging for fluorescence on
a fluorescent imaging station. In cells that have increased levels of SMS, the C-6 NBD ceramide is
metabolized presumably into sphingomyelin. However, inhibiting SMS allows for ceramide to persist
in the cell unchanged. The fluorescent spots are easily quantifiable using software that can convert size
and intensity into areas under the curve.
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Figure 5. Fluorescent image of C-6 NBD ceramide on a thin-layer chromatography plate. Synovial
sarcoma cells were treated with serial dilutions of jaspine B (0.05–1.0 µM) for 30 min and compared to
the standard of C-6 NBD without cells and no jaspine B treatment.

This method is an effective means of screening the biological consequence of inhibiting enzymes in
the ceramide metabolism pathway. While this method has focused exclusively on the effects of inhibiting
sphingomyelin synthase, there are multiple pathways involved in ceramide metabolism (Figure 1)
and similar approaches have been used to investigate inhibitors of ceramidase and sphingosine
kinase [2,3,6–8]. One limitation of the study is that because there are multiple pathways responsible
for ceramide metabolism, inhibiting one arm of the pathway does not fully prevent the metabolism of
ceramide, which could result in the loss of the fluorescent signal even in the presence of a potent and
specific inhibitor. We found that shorter incubation times of 30 min with 100 µM C-6 NBD ceramide
demonstrated the most dramatic effects between the treated and control samples (Figure 3). Conversely,
when we allowed samples to incubate for 90 min, the differences appeared more subtle (Figure 6).
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Figure 6. Raw image output from Azure c600 imaging station. Renal cell carcinoma and osteosarcoma
cells were treated with 0.5 µM jaspine B for 90 min and compared to no cell control of C-6 NBD ceramide.
TLC silica plate was imaged in an Azure c600 under blue, green, and red filters. The above image is an
overlay of the three channels.
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While our work was performed on adherent cells that readily internalized the C-6 NBD ceramide
(Figure 7), we preferred working with these cells in suspension after trypsinization because it
minimized the volume of working solutions while maximizing the cells to perform the experiment.
We considered working with cells adhered to a 96-well plate to minimize the volume and perform
more high-throughput analysis. However, cell numbers were limited to 50,000 cells per well and the
presence of a fluorescent signal does not indicate the metabolism of ceramide, as ceramide could be
metabolized and the fluorescent metabolite could still persist in the cell. To circumvent this issue, we
thought it was necessary to separate the cell lysate by TLC to see how much of the fully intact C-6 NBD
ceramide was present. We expected to see multiple-size fluorescent bands, especially in our control cell
lysates, but we were never able to find a metabolized product, just a diminished signal in the presence
of an uninhibited SMS enzyme.
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Figure 7. Fluorescent live cell imaging of C6-NBD ceramide. Cells were incubated with C-6 NBD
ceramide for 30 min while still adherent and imaged with an EVOS FL microscope. The green
represents the C-6 NBD ceramide and blue is a result of a NucBlue stain marking the nuclei. (a) U2-OS,
osteosarcoma (b) SJSA-1, osteosarcoma, (c) Yamato, synovial sarcoma (d) FUUR-1, renal cell carcinoma.
Scale bar = 50 µm.

Lastly, this method is preferable from a safety standpoint. Ten to fifteen years ago, radiolabeling
was prominent in sphingolipid molecular research [16,17]. However, working with radiolabeled
materials poses minor health risks and increases federal and institutional scrutiny [18]. The use of a
fluorescently labeled ceramide is a safer alternative, without comprising the integrity or sensitivity
of the assay. As such, more researchers are changing to fluorescently labeled small molecules within
basic sciences [19,20]. Not only is fluorescently labeled ceramide commercially available, but several of
the sphingolipids are being produced with fluorescent tags to facilitate safer and sensitive detection of
these lipid molecules to implement in biochemical experiments [21–23].

5. Reagents Setup

Jaspine B was prepared and stored at 4 ◦C as a 10 mM concentration in DMSO. Jaspine B was
prepared at a 10 × concentration of 5 µM in PBS as a working concentration. C-6 NBD ceramide was
shipped at room temperature and reconstituted at 100 µM in DMSO and then stored at −20 ◦C.

Author Contributions: Conceptualization, S.P. and J.J.B.; methodology, S.P. and J.J.B.; validation, F.A., T.C.M.,
Y.A.H., K.F., and A.P.; formal analysis, J.J.B. and A.P.; investigation, F.A., T.C.M., J.L.S., A.P., Y.A.H., K.F.; resources,
S.P. and J.J.B.; writing—original draft preparation, J.J.B.; writing—review and editing, S.P., F.A., T.C.M., A.P., and
J.J.B.; visualization, F.A., T.C.M., A.P.; supervision, S.P. and J.J.B.; project administration, J.J.B.; funding acquisition,
S.P. and J.J.B.
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