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Abstract

Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into
account in order to be reliable. Theory suggests that detection probability may be determined by population size but this
relationship has not yet been assessed empirically. Population size is particularly important because it may induce
heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model
to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain
variation in detection probability. An index to population size best explained detection probabilities for four out of six
species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current
population size). The relationship between the population index and detection probability was positive. Commonly used
weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities
differed depending on whether the population index was or was not used to model detection probability. The relationship
between the population index and detectability has implications for the design of monitoring and species conservation.
Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in
such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a
way that detection probabilities are constant. As we have shown here, one can easily account for variation in population
size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site
in previous years. Accounting for variation in population size is important because it can affect the results of long-term
monitoring programs and ultimately the conservation of imperiled species.
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Introduction

In order to assess distribution and abundance of species,

conservationists have initiated long-term monitoring programs.

Monitoring programs are an important element in the toolbox of

conservationists because they are often used to determine whether

conservation measures were successful, to evaluate the efficiency of

management policy and ultimately to decide where conservation

funds should be allocated [1–4].

There are various sources of error that can cause bias in

estimates of distribution and abundance [5–6]. One source of

error is imperfect detection on individuals, populations, or species

[1,7–8]. Imperfect detection means that individuals, populations

or species are not always found even when they are present at a

site. Imperfect detection will therefore cause negative bias in

estimates of abundance, distribution or species richness unless

imperfect detection is accounted for [8]. Furthermore, if imperfect

detection varies spatially or temporally, then spatial or temporal

patterns in abundance, distribution and biodiversity can appear,

even though in reality they are mere sampling artefacts [1,8–9].

Therefore, state-of-the-art monitoring programs should aim at

quantifying imperfect detection. That is, they estimate detection

probabilities in order to avoid biases in biodiversity estimates

[1,6,10]. Many analyses have revealed determinants of detection

probabilities [11–18]. In addition to removing bias in biodiversity

estimates, modelling and understanding determinants of detection

probability has several practical advantages. If one knows when

detection probabilities are highest, then field crews can be

instructed when to do field work. Moreover, if all field crews

conduct field work under similar conditions (e.g., weather), then

this may lead to standardization of methods. Standardization is

clearly an asset in monitoring programs because heterogeneity of

results is reduced. This increases data quality because detection

probabilities may be relatively constant [8,19].

Most analyses that attempted to identify determinants of

detection probabilities looked at factors such as weather,

phenology, observer experience and survey duration. While these

factors clearly may affect detection probabilities, these studies

largely overlooked a potentially important source of variation in

detection probabilities: population size [20]. If population size

determines detection probabilities of a population, then it should

be included in statistical analysis of the data because it induces

heterogeneity and therefore bias in parameter estimates [21]. In

addition, population-size dependent detection probabilities have
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clear conservation implications since small populations are more

likely to be overlooked. Royle and Nichols [22] and Peterson and

Bayley [23] explained how population size affects detection

probability of a population. They showed that the probability of

detecting a population on a sampling unit, p, can be written as

p~1� 1{rð Þ
N

where r is the detection probability of an individual and N is

abundance [22,23]. This simple equation establishes a clear link

between abundance and detection probability of a population. To

date it is unknown, however, whether the effect of abundance on

detectability is stronger than the effect of, say, weather conditions

or habitat characteristics on abundance. For example, if weather

conditions are unfavourable then few animals may be active and

thus detectable. Thus, environmental conditions may cause

variation in apparent abundance (the number of individuals that

are active and can be detected) that may be more important than

variation in true abundance.

Our goal was to compare various likely determinants of

detection probability, namely an index to population size, weather

conditions and habitat characteristics. To do so, we analyse data

from a volunteer-based amphibian monitoring program of the

Swiss canton Aargau [24,25]. Data from an amphibian monitoring

program are particularly suitable because some species –frogs and

toads– vocalize whereas others are mute (the newts). We expected

that for vocalizing species the population index may not matter

much because a single calling male would already indicate the

presence of the species. Newts, in contrast, must be actively

searched such that abundance is expected to be most important.

Materials and Methods

Study area and field methods
The volunteer-based amphibian monitoring program of the

Swiss Canton Aargau has been run since 1999. It has the goal to

survey status and population trend of summer breeding endan-

gered amphibian species [24,25]. The Canton is subdivided into

ten core areas, each one comprising ,30 breeding sites and

representing a spatial hotspot of amphibian diversity. Every year,

two to three core areas out of ten are selected randomly.

Therefore, not all core areas are monitored every year. Within

each selected core area, all amphibian breeding sites are visited

three times during that year. The first two visits are done at night

during April and May, the third visit during the day in the months

of June or July. A single, trained volunteer, who is usually

responsible for five to ten breeding sites every year, does all three

visits to a given site. Volunteers record anurans by walking along

the water’s edge and noting visual encounters and calls. Newts are

actively searched with nets in addition to visual encounters. The

survey is done accordingly to a standardised protocol, which

stipulates precise time rules for the visit of each site according to its

size. Volunteers report counts of all life history stages (eggs, larvae,

juveniles, adults) of all amphibian species encountered and the

date and time when they undertook the site visits. Volunteers also

have to describe some amphibian breeding site (i.e., pond)

characteristics regarding vegetation state and site structure during

the third (daytime) survey.

Data
This study is based on the data gathered within the frame of the

monitoring program in the years 1999–2006. Out of these years,

we selected only the most recent and the second most recent

survey available for each amphibian breeding site. The most

recent survey available is generally from the years 2004–2006, and

the second-most recent survey available for the same amphibian

breeding site was on average conducted two years earlier. For our

analysis, we used all amphibian breeding sites for which data on

amphibians and site characteristics was complete (i.e., no missing

values; n = 165).

We selected six amphibian species that allowed interesting

comparisons among species: loud calls vs. quiet calls and newts vs.

anurans. The species were: the midwife toad Alytes obstetricans, the

yellow-bellied toad Bombina variegata, the natterjack toad Bufo

calamita, frogs of the water frog Pelophylax esculentus-complex, and

the two newts alpine newt Mesotriton alpestris, and crested newt

Triturus cristatus (nomenclature follows [26]). Every species was

analysed individually. Although volunteers report counts of all life

history stages for all species, this analysis is based on adult counts

only. Adult counts usually underestimate true abundance but there

is a positive correlation between true abundance and the counts;

the counts may thus serve as a useful index to amphibian

population size [19].

Weather data was provided by the Swiss Meteorological Service

MeteoSchweiz (www.meteoschweiz.admin.ch). We used data from

the weather station Buchs-Aarau, which is located in the center of

the study area. Data on amphibian breeding site characteristics

were collected during the amphibian surveys.

Data analysis
We evaluated the explanatory power of different covariates on

detection probability by adding covariates to the mark-recapture-

like site occupancy models developed by MacKenzie et al. [27]

and Tyre et al. [11]. This approach assigns a ‘‘detection history’’

to each site, which can be read as a vector of ones and zeroes of

length equal to the number of surveys at a specific site. The ‘‘1’’

indicates that at least one individual of the target species was

observed, and the ‘‘0’’ that no individuals were observed. The

model assumes that the system is closed during the surveys, i.e. no

populations go extinct or empty patches are colonized. The

detection history for an amphibian breeding site visited three times

could be 1 1 0 (i.e., the species was detected during the first two

surveys but not during the third), and the corresponding

probability for the detection history would be defined as Y p1 p2

(12p3), where Y is the probability of site occupancy and pi is the

detection probability for visit i. The product of all probabilities

forms a model likelihood for the observed data set. Estimates of the

probability of site occupancy and detection probability can be

obtained by maximizing the likelihood function. If both occupancy

and detection probabilities are constant, the model likelihood can

be written as [27]:

L(y,p)~ yn: P
T

t~1
p

nt
t (1{pt)

n:{nt

� �
| y P

T

t~1
(1{pt)z(1{y)

� �N{n:

where yi is the probability that a species is present, pit is the

probability will be detected at site i at time t, given presence, N is

the total number of surveyed sites, T the number of distinct

sampling occasions, nt the number of sites where the species was

detected at time t and n. the total number of sites at which then

species was detected at least once [27]. We did not fit the Royle-

Nichols [22] model (which uses the equation mentioned in the

Introduction) to the data because detection of species was often

based on different life history stages. One cannot assume that the

relationship described in the equation in the Introduction holds if

detection/non-detection data is based on different life history

stages.

Abundance and Detectability
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The data analysis was carried out with the statistical software

PRESENCE 2.0, which allows the estimation of the detection

probability, and the site occupancy in relation to different

covariates [27]. We used the small sample Akaike information

criterion (AICc), DAICc and Akaike weights [28] to rank

candidate models. We considered models as well supported by

the data if their Akaike weight was greater than 0.05. Sample size

was the number of amphibian breeding sites included in the

analysis (n = 165).

Candidate models
For each species, we fitted a small number of candidate models

to the data. Models had a common intercept for all three surveys,

a single covariate per model for the two night-time surveys, and

also a single, but different constant term for the third daytime

survey. This yielded logistic regression models of the form:

logit pi1ð Þ~azb � covi1

logit pi2ð Þ~azb � covi2

logit pi3ð Þ~azc3

where pit is the detection probability and covit is an explanatory

covariate at site i during survey t. a, b and c are the parameters

(intercept and slopes) of the logistic regression. Site occupancy,

which was not the focus of this study, was modeled as a constant

term.

To determine which covariates explained detection probability

best, we used covariates that explained the data well in previous,

similar analyses (e.g., [14,16,18,25]), but also some novel ones.

Previously used covariates include pond characteristics (water

surface, reed cover, floating aquatic vegetation, submerged

vegetation, accessibility of the pond), phenology and weather

covariates (wind speed, air temperature, rain). Novel covariates

included the index to past population size and soil temperature. The

set of candidate models was adapted to the natural history of the

species (e.g. [29]). For the two newts, we did not include ‘‘wind’’ in

the set of candidate models because they are rarely exposed to wind

during their aquatic phase. For the three toads, we did not consider

the covariates describing pond vegetation since they either call on

land or prefer early successional ponds with little vegetation.

To determine whether population size affects detection

probability, we used the count of adult individuals recorded

during the most recent survey (one to six years ago) at the same

amphibian breeding site [number of adult individuals] as an index

to past population size (PASTPOP). Covariates that depend on

species detection must not be used to model detection. Hence, the

current count cannot be used (see [27]). However, past population

index can be used. This is analogous to the use of previous

captures as a covariate for detection probability in mark-recapture

models [30,31]. We used PASTPOP alone and also combined

with the time elapsed since the most recent survey [years]

(TIMESINCE). We modelled seasonality using day-of-the-year

[January 1st = 1] (VISIT). To allow for a peak of detection

probability during the season, we also included a quadratic day-of-

the-year term (VISITSQ).

Several pond characteristics were included in the analysis: pond

water surface [m2] (WSURFACE), the percentage of the pond

shore covered by reeds (mostly Typha sp.) [%] (REED), the

percentage of the water surface covered with floating aquatic

vegetation (e.g. Potamogeton sp. and Nuphar sp.) [%] (FLOATINGP),

the percentage of the pond covered with submersed vegetation

(e.g. Potamogeton sp., Myriophyllum sp., Hippuris sp. and Elodea sp.)

and underwater plants [%] (UNDERWP), as well as a binary

covariate describing the accessibility of the pond to volunteers

(RESTRICTED).

We modelled the effects of several weather covariates on

detection probability: wind speed [km/h] (WIND; not used for the

newts), soil temperature measured at a soil depth of 5 cm [uC]

(SOILT), air temperature measured at 2 meters above the ground

[uC] (AIRT), as well as the amount of rain on the survey day [mm]

(RAIN). Continuous covariates were standardised before analysis

to enhance convergence.

Results

Table 1 shows a summary of the model selection results: Only

models with an Akaike weight greater than 0.1 are shown. Table

S1 shows the full model selection results.

Alytes obstetricans
Two models including weather covariates had Akaike weights

,0.3 and two models past population index and phenology,

Table 1. Summary of model selection results for each species.

Model DAICca
Akaike
weightb Kc

2log-
likelihood

A. obstetricans

psi(.), p(SOILT) 0.00 0.347 4 279.78

psi(.), p(AIRT) 0.18 0.317 4 279.95

psi(.), p(PASTPOP) 2.35 0.107 4 282.12

B. variegata

psi(.), p(WIND) 0.00 0.518 4 289.22

psi(.), p(AIRT) 0.57 0.389 4 298.80

P. esculentus

psi(.), p(PASTPOP, TIMESINCE) 0.00 0.579 5 424.85

psi(.), p(PASTPOP) 0.64 0.420 4 427.49

B. calamita

psi(.), p(PASTPOP, TIMESINCE) 0.00 0.255 5 167.59

psi(.), p(PASTPOP) 1.00 0.154 4 170.58

psi(.), p(SOILT) 1.48 0.121 4 171.07

psi(.), p(AIRT) 1.62 0.113 4 171.20

M. alpestris

psi(.), p(PASTPOP) 0.00 0.236 4 513.53

psi(.), p(VISIT, VISITSQ) 1.03 0.141 5 512.55

psi(.), p(SOILT) 1.06 0.139 4 514.59

psi(.), p(PASTPOP, TIMESINCE) 1.15 0.133 5 512.67

psi(.), p(RAIN) 1.66 0.103 4 515.19

T. cristatus

psi(.), p(PASTPOP, TIMESINCE) 0.00 0.738 5 112.12

psi(.), p(PASTPOP) 3.17 0.151 4 117.29

aDAICc is the difference between the AICc of the best model and the focal
model.

bK is the number of parameters included in the model.
cThe sum of all Akaike weights in a set of candidate models is 1. The higher the
weight, the better the model is supported by the data.

doi:10.1371/journal.pone.0028244.t001
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respectively, had Akaike weights ,0.1 (Table 1). Together, they

accounted for almost 85% of the Akaike weight. The model best

supported by the data included the variable describing soil

temperature. For this model, soil temperature had a positive effect

on detection probability (slope estimate 6 SE on the logit scale:

b= 1.1460.47) (Fig. 1). The estimate of detection probability

during the daytime site visit (third site visit) was c= 0.2760.07

(estimate 6 SE on the normal scale). The model including only

past population index received weak support from the data. In this

model, past populations index had a positive impact on detection

probability (slope estimate 6 SE on the logit scale: b= 0.6860.50).

For the best model including past population index, the estimate of

the site occupancy probability was Y= 0.2660.06 (estimate 6

SE). For the best model without past population index, the

estimate of the site occupancy probability was Y= 0.2260.03

(estimate 6 SE).

Bombina variegata
Two models including weather covariates best explained the

data (Table 1). Together, they account for almost 90% of the

Akaike weight. The model including wind speed was best

supported by the data (Akaike weight = 0.518; Table 1). For this

model, wind speed had a negative impact on the detection

probability (slope estimate 6 SE on the logit scale:

b= 20.3960.35) (Fig. 1). The estimate of detection probability

during the daytime site visit (third site visit) was c= 0.4360.08

(slope estimate 6 SE on the normal scale). Models accounting for

past population index were not supported by the data. For the best

model including past population index, the estimate of the site

occupancy probability was Y= 0.2560.03 (slope estimate 6 SE).

For the best model without past population index, the estimate of

the site occupancy probability was Y= 0.2460.03 (slope estimate

6 SE).

Pelophylax esculentus-complex
The model including past population index (i.e., PASTPOP)

and time elapsed since the last survey was best supported by the

data, i.e. had the highest Akaike weight (Table 1). The second best

model included only past population index. These two models

accounted for almost 100% of the Akaike weight. In the best

model, past population index had a positive effect on detection

probability (slope estimate 6 SE on the logit scale: b= 4.7361.72),

while time elapsed had a negative effect (slope estimate 6 SE on

the logit scale: b= 20.4160.25) (Fig. 2). The estimate of detection

probability during the daytime site visit (third site visit) was

c= 0.7860.05 (estimate 6 SE on the normal scale). For the best

model including past population index, the estimate of the site

occupancy probability was Y= 0.5260.04 (estimate 6 SE). For

the best model without past population index, the estimate of the

site occupancy probability was Y= 0.5160.04 (estimate 6 SE).

Bufo calamita
Nine candidate models explained detection probability reason-

ably well, i.e., had Akaike weights greater than 0.05 (Table 1). The

model including past population index and time elapsed since the

last survey was best supported by the data. The second best model

included only past population index. For the best model, past

population index had a positive impact on detection probability

(slope estimate 6 SE on the logit scale: b= 0.2760.26), while time

elapsed had a negative effect (slope estimate 6 SE on the logit

scale: b= 20.8760.50) (Fig. 2). The estimate of detection

probability during the daytime site visit (third site visit) was

c= 0.2060.09 (estimate 6 SE on the normal scale). For the best

model including past population index, the estimate of the site

occupancy probability was Y= 0.1560.04 (estimate 6 SE). For

the best model without past population index, the estimate of the

site occupancy probability was Y= 0.1260.03 (estimate 6 SE).

Mesotriton alpestris
Seven candidate models explained detection probability rea-

sonably well, i.e., had Akaike weights greater than 0.05 (Table 1).

They accounted for approximately 90% of the Akaike weight. The

model including only past population index was best supported by

the data. In this model, past population index had a positive effect

on detection probability (the slope estimate 6 SE on the logit

scale: b= 0.4060.21) (Fig. 2). The estimate of detection probabil-

ity during the daytime site visit (third site visit) was c= 0.1660.04

(estimate 6 SE on the normal scale). For the best model including

past population index, the estimate of the site occupancy

probability was Y= 0.6660.05 (estimate 6 SE). For the best

model without past population index, the estimate of the site

occupancy probability was Y= 0.6460.04 (estimate 6 SE).

Triturus cristatus
Two models best explained the data (Table 1). Together, they

account for almost 90% of the Akaike weight. Both models

included past population index. The model including only past

population index and time elapsed since the last survey was by far

the best supported by the data. In this model, past population

index had a positive effect on detection probability (slope estimate

6 SE on the logit scale: b= 1.2560.42), while time elapsed had a

negative effect (slope estimate 6 SE on the logit scale:

b= 20.8460.42) (Fig. 2). The estimate of detection probability

during the daytime site visit (third site visit) was c= 0.0160.02

(estimate 6 SE on the normal scale). For the best model including

past population index, the estimate of the site occupancy

probability was Y= 0.3960.21 (estimate 6 SE). For the best

model without past population index, the estimate of the site

occupancy probability was Y= 0.1260.04 (estimate 6 SE).

Discussion

Imperfect detection is a phenomenon that all studies of

distribution and abundance have to deal with [5–8]. An in-depth

knowledge of the factors that determine detectability helps to

improve parameter estimation, as well as the design of field

studies and monitoring programs and ultimately leads to better

Figure 1. The relationship between meteorological variables
and detection probabilities in two anurans. Thin gray lines are
95% confidence intervals. Small ticks inside the box indicate observed
soil temperatures and wind speeds, respectively.
doi:10.1371/journal.pone.0028244.g001
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species conservation. As predicted by theory [22,23], the results

of our analyses clearly show that, for a majority of species, past

population index influenced detectability of amphibians in a

volunteer-based monitoring program. As expected [22,23], the

effect of past population index on detection probability was

positive for all species. In contrast, neither phenology, habitat nor

weather conditions played an important role for most species. We

believe that our results are general because we analysed data

recorded by many volunteers at many amphibian breeding sites

across a large area and across multiple years for amphibians with

different life history characteristics. Specifically (see Table 1), past

population index influenced detection probability for the species

with loud calls (P. esculentus and B. calamita) but had no effect for

the species with quiet calls (A. obstetricans, B. variegata). For the

newt species (M. alpestris, T. cristatus), past population index

influenced detection probability. We expected that past popula-

tion index would matter primarily for newts that must be actively

searched. For anurans, we did not expect a strong effect because

even a single calling male is easy to hear and detect.

Unexpectedly, our results clearly suggest that past population

index matters for both visual encounter surveys and acoustic

surveys. Our estimates of the effect of past population index likely

underestimate the effect of (current) population size on detection

probability. This is because past population size is only an index

of current population size that probably underestimates true

population size [19]. Nevertheless, counts and true abundance

are usually positively correlated [19]. This justifies their use as an

index to population size and as a covariate in our models since

the goal is simply to have a covariate that describes among-site

variation in abundance and adjusts detection probability in the

models accordingly.

For three species, the best model included both past population

index and time since last survey. The influence of population index

on detection probability became smaller as the number of years

between successive surveys at the same breeding site increased

(Fig. 2). The importance of latter variable is straightforward to

explain. Amphibian populations are known to fluctuate widely

[32–34]. Consequently, the more time has elapsed between

surveys, the less likely it is that past and present population size

are highly correlated [35]. An effect of past population size is

therefore likely disappear with time. We did not include models

with combinations of past population index and environmental

covariates in the set of candidate models. This does not affect our

conclusion that past population index is an important determinant

of detection probability. If such models were better than the our

candidate models, they would only strengthen the case for the

importance of past population index.

For two species, weather variables better explained the

detection/non-detection data than past population index. In some

previous studies weather variables were found to explain detection

probabilities well (e.g., [14,27,36]). Since volunteers are told to do

field work only when weather conditions are suitable for detecting

amphibians (i.e. warm and moist nights), field work was done over

a limited range of weather conditions. Given such a small range of

weather conditions, it is unlikely that weather conditions have a

strong effect on detection probability in our study. It is much more

likely that they determine how many amphibians are active. For

example, during warm and moist nights more male amphibians

Figure 2. The relationship between past population index, time since last survey (two, four and six years ago) and detection
probabilities in two anurans and two newts. Small ticks inside the box indicate observed population sizes.
doi:10.1371/journal.pone.0028244.g002

Abundance and Detectability

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e28244



may be calling [37]. This would render the population more easily

detectable. The result that detection probability of Bombina variegata

depends on wind may be an example for such a phenomenon. In

our own experience in the field, we often found that these toads

are hiding during windy nights. They are only active and calling

and therefore available for detection when there is no wind. This

suggests that weather would only indirectly affect detection

probability through its effect on the number of active individuals.

Conceptually, detection probability can be decomposed into

‘‘availability for detection’’ and ‘‘detection probability conditional

of availability for detection’’ [8,38,39]. If our explanation for an

indirect effect of weather on detectability through an effect on the

number of active individuals is correct, then weather would

determine whether amphibians are exposed to sampling (i.e.,

active or inactive) and population index would determine

detection probability given that toads are active and calling.

Spatial variation in population size and the design and
analysis of monitoring programs

Based on the observed relationship between detection proba-

bility and the population index, we make some comments on the

design of monitoring programs. Obviously, variation in popula-

tion size should be accounted for in monitoring programs.

Technically speaking, variation in abundance leads to heteroge-

neity in detection probabilities. Such heterogeneity will lead to

bias in site occupancy estimates [21]. Although counts usually

underestimate true abundance [5], there is often a positive

relationship between counts and abundance [19]. Thus, counting

individuals may yield data that is of great importance during the

analysis of monitoring data (as in this study). However, if one

counts individuals anyway, then one may also directly estimate

abundance and occupancy from the repeated count data

[21,40,41]. We suggest that this may be the best approach for

taxa such as birds, butterflies or reptiles where usually all

members of the population are synchronously present at the

sampling site and where a single life history stage (adults, pairs or

territories) is counted (e.g., [42–44]). For other taxa, such as

amphibians, the approach may be less suitable because detection

may involve many life history stages such as eggs, larvae,

juveniles, adults and calling males (that are not seen). Counts of

these life history stages cannot be compared. Focusing on, say,

only adults would probably result in lower detection probabilities

and therefore poor estimates [27]. Moreover, conditions for field

work might become more stringent because breeding adult

amphibians may only be present at the breeding sites for a

relatively short period of time. Thus, less time is available to

complete field work. Given a fixed budget, one may have to

reduce the number of sites that is surveyed. This, too, would lead

to poorer estimates [27]. Nevertheless, some method to account

for variation in abundance should be used, either using counts of

past population index as a covariate or through using mixtures

for modeling detection probabilities [45]. In long-term monitor-

ing programs, the past population index is available from site

visits in earlier years. In single-season surveys, mixture models

may be a useful method.

The relationship between population index and detection

probability suggests that small populations are more likely to be

missed than large ones. If there are three visits to a site and

detection probabilities of small and large populations are 0.4 and

0.8, respectively, then the probabilities to not detect a small and

large population are 0.216 and 0.008, respectively. One may

therefore decide to assign unequal numbers of site visits to

populations that were known to be large and small in the past. For

example, one may decide to visit small populations four times and

large populations twice. The resulting probabilities of not detecting

the populations would then be 0.1296 and 0.04, respectively. Such

an unequal-number-design would probably greatly enhance the

value of a long-term monitoring program because many more

small populations are detected.

The dependence of detection probability on past population

index implies that it is difficult to standardize field work in long-

term monitoring programs. We recommend standardization of

field protocols but one should keep in mind that standardization is

no panacea. In particular, it is evidently impossible to ‘‘standard-

ise’’ population size across sites and across years.

Spatial variation in population size and species
conservation

What are the implications of the relationship between

population size and abundance that we reported in this study for

the conservation of threatened species? The relationship implies

that small populations are likely to be missed during surveys and in

monitoring programs. This may have two consequences. First, if

small populations are undetected, then they cannot be the focus of

conservation action and therefore they may be more likely to go

extinct (also see [46]). Second, if a population that was known to

occur at a site is no longer detected because population size is

small, then conservation managers may stop species-specific

management actions. As a consequence, the species may go

locally extinct.

Conclusion
We do not want to deny an effect of weather or other variables

on detection probabilities. Rather, we would like to emphasize that

population index appears to be a predictor of detection probability

that is both theoretically and intuitively appealing. As we have

shown here, one can easily account for variation in population size

by using counts of individuals from surveys at the same site in

previous years. Accounting for variation in population size is

important because it can affect the results of long-term monitoring

programs and ultimately the conservation of imperiled species.

Supporting Information

Table S1 Models sets and model selection results for
each species. The table lists all candidate models for all species

and shows the results of the model selection process (DAICc,

Akaike weights, number of parameters (K) and -2log-likelihood).

(PDF)
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43. Kéry M, Dorazio RM, Soldaat L, van Strien A, Zuiderwijk A, et al. (2009)

Trend estimation in populations with imperfect detection. Journal of Applied

Ecology 46: 1163–1172.

44. Pellet J (2007) Seasonal variation in detectability of butterflies surveyed with
Pollard walks. Journal of Insect Conservation 12: 155–162.

45. Royle JA (2006) Site occupancy models with heterogeneous detection

probabilities. Biometrics 62: 97–102.

46. Alpizar-Jara R, Nichols JD, Hines JE, Sauer JR, Pollock KH, et al. (2004) The

relationship between species detection probability and local extinction
probability. Oecologia 141: 652–660.

Abundance and Detectability

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e28244


