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Abstract
FSH acts through the Sertoli cell to ensure normal testicular development and function. To identify transcriptional

mechanisms through which FSH acts in the testis, we have treated gonadotrophin-deficient hypogonadal (hpg) mice with

recombinant FSH and measured changes in testicular transcript levels using microarrays and real-time PCR 12, 24 and

72 h after the start of treatment. Approximately 400 transcripts were significantly altered at each time point by FSH

treatment. At 12 h, there was a clear increase in the levels of a number of known Sertoli cell transcripts (e.g. Fabp5,

Lgals1, Tesc, Scara5, Aqp5). Additionally, levels of Leydig cell transcripts were also markedly increased (e.g. Ren1,

Cyp17a1, Akr1b7, Star, Nr4a1). This was associated with a small but significant rise in testosterone at 24 and 72 h. At

24 h, androgen-dependent Sertoli cell transcripts were up-regulated (e.g. Rhox5, Drd4, Spinlw1, Tubb3 and Tsx) and this

trend continued up to 72 h. By contrast with the somatic cells, only five germ cell transcripts (Dkkl1, Hdc, Pou5f1, Zfp541

and 1700021K02Rik) were altered by FSH within the time-course of the experiment. Analysis of canonical pathways

showed that FSH induced a general decline in transcripts related to formation and regulation of tight junctions. Results

show that FSH acts directly and indirectly to induce rapid changes in Sertoli cell and Leydig cell transcript levels in the hpg

mouse but that effects on germ cell development must occur over a longer time-span.
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Introduction

Postnatal testicular growth, spermatogenesis and
fertility are dependent upon the pituitary gonado-
trophins FSH and LH. LH acts directly on Leydig cells
to stimulate androgen production, while androgens
and FSH stimulate spermatogenesis through direct
action on the Sertoli cells (McLachlan et al. 2002). The
role of gonadotrophins is clearly seen in the hypogo-
nadal (hpg) mouse that lacks GnRH (Mason et al. 1986)
and, consequently, has undetectable circulating levels
of LH and FSH (Cattanach et al. 1977). The gonads of
the hpg mouse remain in a pre-pubertal state
throughout life, with spermatogenesis blocked at
early meiosis (Cattanach et al. 1977, Myers et al.
2005) although treatment with exogenous gonado-
trophins or androgens will increase testicular growth
and restore germ cell development (Charlton et al.
1983, Singh & Handelsman 1996a,b, Haywood et al.
2003). In recent years, generation of mice lacking
individual hormones or hormone receptors has
allowed us to investigate more clearly the roles played
by LH, FSH and androgen in the regulation of
testicular function. In particular, study of mice lacking
androgen receptors (AR) in the Sertoli cells (SCARKO
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(De Gendt et al. 2004)) has shown that androgens are
essential for spermatocyte progression through meio-
sis. By contrast, mice lacking FSH (FSHbKO (Kumar
et al. 1997)) or the FSH receptor (FSHRKO; Dierich
et al. 1998, Abel et al. 2000) are fertile with all stages
of spermatogenesis present. Nevertheless, in FSHRKO
and FSHbKO mice there is a reduction in sperm
number and quality (Krishnamurthy et al. 2001,
Wreford et al. 2001) suggesting that FSH action
optimises spermatogenesis. In addition, comparison
of SCARKO mice with mice lacking both FSHR and AR
on the Sertoli cells has shown that FSH acts to increase
Sertoli cell number, total germ cell number and the
number of germ cells associated with each Sertoli cell
(Abel et al. 2008). This is achieved by an increase in the
number of spermatogonia and enhanced entry of
these cells into meiosis (Abel et al. 2008).

Previous studies have identified a number of Sertoli
cell products or mRNA transcripts that are FSH-
sensitive including, for example, inhibin, AR, transfer-
rin, doublesex and mab-3 related transcription factor1
(DMRT), androgen-binding protein and inducible
cAMP early repressor (Morris et al. 1988, Verhoeven &
Cailleau 1988, Skinner et al. 1989, Monaco et al. 1995,
Chen & Heckert 2001). In addition, an earlier study has
DOI: 10.1677/JME-08-0107
Online version via http://www.endocrinology-journals.org

ty for Endocrinology’s Re-use Licence which permits unrestricted
rovided the original work is properly cited.

http://dx.doi.org/10.1677/JME-08-0107
http://www.endocrinology.org/journals/reuselicence/


M H ABEL and others . Effects of FSH on testicular transcript levels292
used arrays to examine the short-term effects (up to
24 h) of a single injection of FSH on testicular gene
expression in vivo (Sadate-Ngatchou et al. 2004). From
these studies, we can now identify a number of
transcripts acutely regulated by FSH but we continue
to lack a clear understanding of how FSH acts to
regulate testicular development and function over the
longer term. To address this issue, we have carried out a
comprehensive review of the effects of more prolonged
FSH treatment (multiple injections up to 72 h) on
transcript levels in the testis of the hpg mouse.
Materials and methods

Animals and treatments

hpg mice from the original colony first identified at the
MRC Laboratories, Harwell, Oxford (Cattanach et al.
1977) were bred at Oxford. The hpg mutation was
identified by PCR analysis of tail DNA as previously
reported (Lang 1995). All procedures were carried out
in accordance with the UK Animals (Scientific
Procedures) Act 1986 and with the approval of a local
ethical review committee.

Male hpg mice, 10 weeks of age and in group sizes of
3–4, were injected subcutaneously with 8 IU recombi-
nant human FSH (rhFSH) (Serono Ltd) in 0.2 ml PBS
(PBS, pH 7.4, Sigma Aldrich) at the start of the
experiment and every 12 h thereafter for 12, 24
or 72 h. This dose of recombinant hormone had
previously been shown to induce a significant increase
in testis weight in hpgmice when given for 1 week (Abel
and Charlton unpublished). Mice were killed 1 h after
the last injection, testes removed, snap frozen in liquid
nitrogen and stored at K70 8C.
Testicular histology

Three hpgmice treated as above were killed at each time
point. The testes were weighed and one testis from
each animal was fixed in 1% glutaraldehyde, 4%
paraformaldehyde, in phosphate buffer, 0.1 M, pH 7.2
for 24 h at 4 8C, and embedded in araldite. Semi-thin,
1 mm sections were cut and stained with toluidine blue.
DNA microarray

Three or four animals from FSH-treated or control hpg
groups were killed at each time point and the RNA from
testes of individual animals extracted on RNeasy
columns (Qiagen). RNA was quantified using a
NanoDrop ND-1000 (NanoDrop, Wilmington, DE,
USA) and RNA quality was checked using the Agilent
bioanalyzer 2100 (Agilent, Santa Clara, CA, USA).
Samples of total RNA (8 mg) from individual animals
Journal of Molecular Endocrinology (2009) 42, 291–303
were reverse transcribed and then in vitro transcribed
and hybridised to mouse MOE430A arrays (Affymetrix,
Santa Clara, CA, USA) (nZ3 or 4 for each group)
according to the GeneChip expression technical
manual (Affymetrix) as previously reported (Baban &
Davies 2008). All the experiments were designed and
information compiled in compliance with MIAME
guide lines. Gene transcript levels were determined
from data image files using algorithms in Gene Chip
Operating Software (GCOS1.2, Affymetrix).

The array data were generated in two batches. In the
first experiment control, 12 and 72 h FSH groups were
extracted and hybridised to the arrays and in a
subsequent experiment control and 24 h FSH groups
were processed in the same way. Each treatment group
was analysed against its own control. Differentially
expressed genes were identified using the Welch
t-test, variance not assumed equal, P!0.05. Analysis of
canonical pathways was carried out using Ingenuity
Pathways Analysis (www.ingenuity.com).

The data discussed in this publication have been
deposited in NCBIs Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) and are accessible
through GEO Series accession GSE8924.
Real-time PCR

Total RNA was extracted from individual testes of
control or FSH-treated hpg mice using Trizol (Life
technologies) and residual genomic DNA was removed
by DNAse treatment (DNA-free, Ambion Inc., Austin,
TX, USA, supplied by AMS Biotechnology, Abingdon,
UK). RNA (1 mg) was reverse transcribed using random
hexamers (Ambion) and Moloney murine leukaemia
virus reverse transcriptase (Life Technologies) as
previously described (Hirst et al. 2004).

Quantitative real-time PCR was used to confirm
changes in selected mRNA transcripts identified from
the microarray analysis or to examine other transcripts
of potential interest. The real-time PCR used either the
Taqman (Inha, Inhba, Inhbb andHdc) or the SYBR green
(all other transcripts) method in a 96-well plate format.
For Taqman, Universal Taqman master mix, and
optimised primer and probe sets were purchased from
Applied Biosystems (Warrington, UK) and used accord-
ing to the manufacturer’s recommendations in a 25 ml
volume. For SYBR green, each reaction contained 5 ml
2!SYBR mastermix (Stratagene, Amsterdam, Nether-
lands), primer (100 nM) and template in a total volume
of 10 ml. The thermal profile used for amplification was
95 8C for 8 min followed by 40 cycles of 95 8C for 25 s,
63 8C for 25 s and 72 8C for 30 s. At the end of the
amplification phase a melting curve analysis was carried
out on the products formed. All primers were designed
by Primer Express 2.0 (Applied Biosystems) using para-
meters previously described (Czechowski et al. 2004).
www.endocrinology-journals.org
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No-RTcontrols for each sample were screened to check
for the presence of residual genomic DNA. The primers
and probes used for real-time SYBR PCR are shown in
Supplementary Table 1, see supplementary data in the
online version of the Journal of Molecular Endo-
crinology at http://jme.endocrinology-journals.org/
content/vol42/issue4/. Different animals were used
to provide RNA for real-time PCR and microarray
studies.
Hormone assay

In a separate study adult hpg mice were treated with
rhFSH as above and intratesticular levels of testosterone
measured by RIA following ethanol extraction as
previously described (O’Shaughnessy & Sheffield
1990). The limit of detection of the assay was
25 fmol/testis.
Statistical analysis

With the exception of the array studies described above,
the effects of FSH treatment were analysed initially by
single-factor ANOVA followed by post hoc analysis using
Fisher’s test.
Figure 1 Effect of rhFSH on testis weight and morphology in hpg
mice. A) Testis weights of control adult hpg mice and mice treated
every 12 h with FSH (n for each group is shown in the histogram).
B) Semi-thin sections of testes from control adult hpg mice and
mice treated with FSH for 12, 24 and 72 h. Note the appearance of
vacuoles within the cytoplasm of the Sertoli cell at 24 and 72 h
post-treatment. C) Electron micrographs at 24 and 72 h, arrows
indicate the progression from multiple small vacuoles to fewer
large vacuoles.
Results

Testicular weight and histology after rhFSH treatment

There was a significant increase in testis weight within
12 h of the start of FSH treatment and weight
continued to increase up to 24 h (Fig. 1A). This
weight increase was accompanied by an apparent
increase in tubular diameter with clear formation of
a tubular lumen (Fig. 1B). On the semi-thin light
micrographs, there was also an apparent increase in
vacuolation of the Sertoli cell cytoplasm by 24 h which
became more marked by 72 h (Fig. 1B). This was
confirmed on electron micrographs with several small
vacuoles apparent within the cytoplasm at 24 h and
larger vacuoles present at 72 h (Fig. 1C). There was no
clear advancement of spermatogenesis within the
timescale of the experiment.
Hormone levels

Intratesticular testosterone levels were undetectable in
control hpg mice (!25 fmol/testis (!12 fmol/mg
tissue), nZ8) and increased to low but consistently
detectable levels 24 h after the start of treatment with
FSH (65.0G12.4 fmol/testis (19.1G3.6 fmol/mg),
nZ4) and remained detectable up to 72 h (76.2G
45.0 fmol/testis (19.5G11.5 fmol/mg), nZ4).
www.endocrinology-journals.org
Microarray data

Analysis of the array data showed that there were 182,
164 and 203 transcripts significantly (O2-fold)
increased in the hpg testis 12, 24 and 72 h after the
start of FSH treatment and 162, 411 and 215
significantly decreased at the same times. Transcripts
with the highest fold changes in expression at each time
during treatment are listed in Table 1 and the complete
list of significantly altered transcripts (O2-fold) is
shown in Supplementary Table 2, see supplementary
data in the online version of the Journal of Molecular
Endocrinology at http://jme.endocrinology-journals.
org/content/vol42/issue4/. At 12 h after the start of
FSH treatment, there was a clear increase in the levels
of a number of transcripts known to be expressed in
the Sertoli cells (e.g. Fabp5, Lgals1, Tesc and Scara5;
Journal of Molecular Endocrinology (2009) 42, 291–303
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Table 1 Effects of FSH treatment on testicular transcript levels – highest-regulated transcripts from microarray studiesa

Gene
symbol Gene title

Fold
change

Gene
symbol Gene title

Fold
change

Transcripts up-regulated 12 h after start of treatment Transcripts down-regulated 12 h after start of treatment
20.7 Ren1 Renin 1 structural 7.27 Myh8 Myosin, heavy polypeptide 8
18.2 Dmkn Dermokine 6.65 Rin2 Ras and Rab interactor 2
13.3 Aqp5 Aquaporin 5 5.03 Pdgfc Platelet-derived growth factor C
12.1 Wif1 Wnt inhibitory factor 1 4.55 Transcribed locusb

11.0 Fabp5 Fatty acid binding protein 5, epidermal 4.53 Bcan Brevican
6.6 Tubb3 Tubulin, b 3 4.46 Rgs11 Regulator of G-protein signalling 11
6.5 Cyp17a1 Cytochrome P450, family 17a 1 4.45 Tmem37 Transmembrane protein 37
6.3 Akr1b7 Aldo-keto reductase family 1 B7 4.43 Fhod3 Formin homology 2 domain containing 3
6.0 Lgals1 Lectin, galactose binding, soluble 1 4.38 Derl3 Der1-like domain family, member 3
5.9 Col4a1 Procollagen, type IV, a1 4.01 Ddit4l DNA-damage-inducible transcript 4-like
5.7 Pappa Pregnancy-associated plasma protein A 3.98 BC013672 cDNA sequence BC013672
5.2 Star Steroidogenic acute regulatory protein 3.97 Scin Scinderin
4.6 Ldlr Low density lipoprotein receptor 3.96 Ddit4l DNA-damage-inducible transcript 4-like
4.6 Tesc Tescalcin 3.89 Cabc1 Chaperone, ABC1 complex-like
4.6 Rps6ka2 Ribosomal protein S6 kinase 2 3.86 Krt20 Keratin 20
4.6 Scara5 Scavenger receptor class A 5 3.74 Tmem140 Transmembrane protein 140
4.4 Hgsnat Heparan N-acetyltransferase 3.71 Dbp D site albumin promoter binding protein
4.4 Hs3st1 Heparan sulphate 3-O-sulphotransferase 1 3.71 Rnasel Ribonuclease L
4.2 Syne1 Synaptic nuclear envelope 1 3.70 Spsb1 splA receptor domain and SOCS box 1
4.1 Slc38a5 Solute carrier family 38, member 5 3.67 Tnni3 Troponin I, cardiac
4.0 Gpd1 Glycerol-3-phosphate dehydrogenase 1 3.65 Cdo1 Cysteine dioxygenase 1, cytosolic
3.9 Dos Downstream of Stk11 3.57 Stard8 START domain containing 8
3.8 Svs5 Seminal vesicle secretory protein 5 3.55 Slc40a1 Solute carrier family 40, member 1
3.8 Bhmt Betaine-homocysteine methyltransferase 3.52 Hdac5 Histone deacetylase 5
3.7 D9Ertd280e Chr 9, ERATO Doi 280 3.32 Dbp D site albumin promoter binding protein
3.7 Tnfrsf12a Tumour necrosis factor receptor 12a 3.23 Chdh Choline dehydrogenase
3.7 1200016-

E24Rik
RIKEN cDNA 1200016E24 3.23 8030411-

F24Rik
RIKEN cDNA 8030411F24 gene

3.7 Nr4a1 Nuclear receptor subfamily 4,
group A1

3.23 Per3 Period homolog 3 (Drosophila)

3.6 Dkk3 Dickkopf homolog 3 3.22 Ctnna2 Catenin, a 2
3.6 Cyp51 Cytochrome P450, family 51 3.19 Trim47 Tripartite motif protein 47

Transcripts up-regulated 24 h after start of treatment Transcripts down-regulated 24 h after start of treatment
28.8 Lin7c Lin-7 homolog C (C. elegans) 9.9 Ddit4l DNA-damage-inducible transcript

4-like
18.0 Cyp17a1 Cytochrome P450, family 17a1 9.9 Rin2 Ras and Rab interactor 2
13.6 Cyp11a1 Cytochrome P450, family 11a1 9.1 Slc40a1 Solute carrier family 40, member 1
11.0 Fabp5 Fatty acid binding protein 5, epidermal 8.0 Rgs11 Regulator of G-protein signalling 11
10.1 Rhox5 Reproductive homeobox 5 7.6 Igfbp3 Insulin-like growth factor binding protein 3
9.4 Star Steroidogenic acute regulatory protein 7.4 Myh6 Myosin, heavy polypeptide 6 a
8.7 Slc38a5 Solute carrier family 38, member 5 7.2 Apbb2 Amyloid precursor protein-binding B2
7.9 Aqp5 Aquaporin 5 6.7 Rassf5 Ras association domain family 5
7.4 Tubb3 Tubulin, b 3 6.3 Tmem37 Transmembrane protein 37
7.0 Drd4 Dopamine receptor 4 6.3 Chdh Choline dehydrogenase
6.3 Tesc Tescalcin 6.2 Itga9 Integrin a 9
5.5 Lgals1 Lectin, galactose binding, soluble 1 6.2 Thbd Thrombomodulin
5.0 Spinlw1 Eppin 5.9 Fcgr2b Fc receptor, IgG, low affinity IIb
4.6 Osr1 Odd-skipped related 1 5.8 Trim47 Tripartite motif protein 47
4.5 Fads2 Fatty acid desaturase 2 5.7 Spsb1 splA receptor domain and SOCS box 1
4.2 Pappa Pregnancy-associated plasma protein A 5.6 Ddit4l DNA-damage-inducible transcript 4-like
4.2 Scara5 Scavenger receptor class A5 5.5 Vnn1 Vanin 1
4.2 Pscdbp Pleckstrin homology binding protein 5.5 Fcgr2b Fc receptor, IgG, low affinity IIb
4.1 Plac8 Placenta-specific 8 5.4 Ptprd Protein tyrosine phosphatase, receptor D
4.0 Gpt2 Glutamic pyruvate transaminase 2 5.4 Nkx3-1 NK-3 transcription factor, locus 1
4.0 Rps6ka2 Ribosomal protein S6 kinase 2 5.3 Fcgr2b Fc receptor, IgG, low affinity IIb
4.0 Gpd1 Glycerol-3-phosphate dehydrogenase 1 5.1 Ctgf Connective tissue growth factor
4.0 Hdc Histidine decarboxylase 5.0 H19 H19 fetal liver mRNA
3.8 Igf1 Insulin-like growth factor 1 5.0 Pdgfc Platelet-derived growth factor C

(continued)
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Table 1 Continued

Gene
symbol Gene title

Fold
change

Gene
symbol Gene title

Fold
change

3.7 Fah Fumarylacetoacetate hydrolase 4.9 Hsd17b11 Hydroxysteroid (17b) dehydrogenase 11
3.7 Mpzl2 Myelin protein zero-like 2 4.9 Cabc1 Chaperone, ABC1 complex-like
3.6 Insl3 Insulin-like 3 4.9 9630031F1-

2Rik
RIKEN cDNA 9630031F12 gene

3.4 Wif1 Wnt inhibitory factor 1 4.8 Ptch1 Patched homolog 1
3.3 Inha Inhibin a 4.7 Smoc2 SPARC related modular calcium

binding 2
3.2 Col18a1 Procollagen, type XVIII, a 1 4.7 Fhod3 Formin homology 2 domain containing 3

Transcripts up-regulated 72 h after start of treatment Transcripts down-regulated 72 h after start of treatment
35.0 Drd4 Dopamine receptor 4 13.4 Igfbp3 Insulin-like growth factor binding protein 3
21.1 Slc38a5 Solute carrier family 38a5 8.2 Rgs11 Regulator of G-protein signalling 11
14.9 Rhox5 Reproductive homeobox 5 6.6 Rin2 Ras and Rab interactor 2
13.9 Fabp5 Fatty acid binding protein 5, epidermal 6.5 Clca1 Chloride channel calcium activated 1
8.4 Spinlw1 Eppin 6.0 Slc40a1 Solute carrier family 40 1
7.6 Klk1b24 Kallikrein 1-related peptidase b24 5.6 Spsb1 splA receptor domain and SOCS box 1
6.6 Tubb3 Tubulin, b 3 4.9 Ifitm1 Interferon induced transmembrane 1
5.9 Hdc Histidine decarboxylase 4.7 Myh8 Myosin, heavy polypeptide 8
5.5 Fah Fumarylacetoacetate hydrolase 4.6 Fhod3 Formin homology 2 domain containing 3
5.5 Tsx Testis specific X-linked gene 4.4 Bcan Brevican
5.4 Zcchc18 Zinc finger, CCHC domain 18 4.4 Tmem140 Transmembrane protein 140
4.6 Sct Secretin 4.4 BC013672 cDNA sequence BC013672
4.6 Gpd1 Glycerol-3-phosphate dehydrogenase 1 4.3 Tmem37 Transmembrane protein 37
4.5 Myh1 Myosin, heavy polypeptide 1 4.0 Erbb3 v-erb-b2 homolog 3
4.5 Fabp4 Fatty acid binding protein 4, adipocyte 3.9 Dst Dystonin
4.5 St8sia2 ST8 sialyltransferase 2 3.9 Xist Inactive X specific transcripts
4.5 Tgfb1 Transforming growth factor, b 1 3.8 Arhgdig Rho GDP dissociation inhibitor g
4.3 Pscdbp Pleckstrin homology binding protein 3.7 Edn1 Endothelin 1
4.2 Igf1 Insulin-like growth factor 1 3.7 6330403-

K07Rik
RIKEN cDNA 6330403K07 gene

4.1 Scara5 Scavenger receptor class A, member 5 3.7 Jun Jun oncogene
4.1 Sept6 Septin 6 3.6 Pla2g5 Phospholipase A2, group V
4.0 D17H6-

S56E-5
Chr 17, human D6S56E 5 3.6 Apbb2 Amyloid b precursor protein-binding B2

4.0 Pappa Pregnancy-associated plasma protein A 3.6 H19 H19 fetal liver mRNA
4.0 Klk1 Kallikrein 1 3.6 Hspb1 Heat shock protein 1
3.9 Dmkn Dermokine 3.6 Fcgr2b Fc receptor, IgG, low affinity IIb
3.8 Tpd52l1 Tumour protein D52-like 1 3.5 Transcribed locusc

3.8 Inha Inhibin a 3.5 Adi1 Acireductone dioxygenase 1
3.8 Slc25a5 Solute carrier family 25, member 5 3.4 H2-T23 Histocompatibility 2, T region locus 23
3.7 Car3 Carbonic anhydrase 3 3.4 Scin Scinderin
3.7 Pde4b Phosphodiesterase 4B, cAMP specific 3.3 Rnasel Ribonuclease L

aIf a transcript is represented more than once on the array only the highest fold change is shown in this table. Supplementary Table 2 shows the complete
significant dataset.
bNet affy number 1454967_at.
cNet affy number 1436092_at.
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Kingma et al. 1998, Perera et al. 2001, Dettin et al. 2003,
Jiang et al. 2006) and, perhaps surprisingly, in the
Leydig cells (e.g. Ren1, Cyp17a1, Akr1b7, Star, Ldlr and
Nr4a1; Deschepper et al. 1986, Le Goascogne et al. 1991,
Song et al. 2001, Baron et al. 2003; Table 1). By 24 h after
the start of FSH treatment, androgen-dependent
Sertoli cell transcripts appeared in the list of up-regu-
lated transcripts (e.g. Rhox5, Drd4, Spinlw1 and Tubb3;
Lindsey & Wilkinson 1996, Cunningham et al. 1998,
Denolet et al. 2006, O’Shaughnessy et al. 2007) and this
www.endocrinology-journals.org
trend became more marked by 72 h. By contrast with
the somatic cells, very few germ cell genes appear on the
lists of significantly regulated transcripts. Only Hdc
(increased 4.0- and 5.9-fold at 24 and 72 h respectively;
Safina et al. 2002) and 1700021K02Rik (Spatial )
(increased 3.1-fold at 72 h) (Irla et al. 2003) were
significantly altered by FSH within the time-span of
these studies (Table 1 and Supplementary Table 2).

Few of the transcripts down-regulated following FSH
treatment have been localised in the testis with the
Journal of Molecular Endocrinology (2009) 42, 291–303
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exception of Igfbp3 which has been shown to be of Sertoli
cell origin (Smith et al. 1990). In order to identifymore of
the differentially expressed transcripts on the arrays,
which may be of a Sertoli cell origin, up- and down-
regulated transcripts were compared with those ident-
ified as being of likely Sertoli cell origin by Chalmel et al.
(2007) using a cell isolation, GeneChip and clustering
approach (Supplementary Table 2A and B). A degree of
caution is required as some known Sertoli cell transcripts
(e.g. Rhox5) are missing from the list generated by
Chalmel et al. (2007) probably due to Chip sensitivity or
the subsequent filtering process. Nevertheless, of the
transcripts up-regulated at 12 h, 44%matched to the data
from Chalmel et al. (2007). Interestingly, this number
declined to 35% at 24 h and 27% at 72 h after the start of
FSH treatment (Supplementary Table 2A). The number
of down-regulated transcripts that matched the Sertoli
cell list was 27, 21 and 28% at 12, 24 and 72 h respectively
(Supplementary Table 2B).
Real-time PCR

Leydig cell genes

To confirm results from the array studies, real-time PCR
was used to measure the effect of FSH treatment on
testicular expression of selected transcripts which are
known to be expressed exclusively in the Leydig cells
(O’Shaughnessy et al. 2002). Eight mRNA species were
tested which had shown an increase in transcript levels
on the arrays after FSH (Star, Cyp17a1, Hsd17b3, Akr1b7,
Lhr, Cyp11a1, Insl3 and Ren1) (Fig. 2A). Results from the
real-time PCR studies confirmed that seven of these
transcripts are regulated by FSH in the hpg testis,
although no change in Lhr was seen. Two other Leydig
cell mRNA species (Hsd3b6 and Sult1e1) that had not
shown any response to FSH on the arrays were also
tested by real-time PCR (Fig. 2A). Levels of Hsd3b6 did
not show a response to FSH but there was a significant,
if variable, increase in Sult1e1 after 72 h.
Androgen-dependent genes

The array studies showed clearly that a number of
androgen-dependent Sertoli cell transcripts were
altered after FSH treatment. Real-time PCR was used
to confirm changes in selected transcripts (Rhox5, Tsx,
Drd4, Spinlw1 (Eppin) and Igfbp3) shown previously to
be androgen-regulated (Lindsey & Wilkinson 1996,
Denolet et al. 2006, O’Shaughnessy et al. 2007; Fig. 2B).
In agreement with results from the array studies four
transcripts (Rhox5, Tsx, Drd4 and Spinlw1) showed
increased expression 24–72 h after FSH treatment
while one transcript (Igfbp3) showed a significant
decrease in expression (Fig. 2B).
Journal of Molecular Endocrinology (2009) 42, 291–303
Sertoli cell genes

In addition to androgen-dependent Sertoli cell genes
described above, 16 other Sertoli cell transcripts were
measured by real-time PCR following FSH treatment of
adult hpg mice (Fig. 3). Of these transcripts, seven had
shown significantly increased expression on the arrays
(Tesc,Lgals1,Aqp5,Dhh,Pappa,Wnt4and Shbg), sixhadnot
shown any significant change (Trf,Wt1, Amh, Spata2, Tjp1
andGdnf), twohad shown a significant decrease (Fshr and
Rgs11) after FSH treatment and one transcript (Defb19)
was not on the array. Results from real-time studies
confirmed increased transcript levels for six out of the
seven mRNA species identified on the array (the
exception was Shbg) and for the one transcript (Defb19)
not on the array (Fig. 3A). Both transcripts decreased on
the arrays after FSH treatment also showed a significant
decrease by real-time PCR (Fig. 3A). Interestingly,
however, the real-time PCR data showed there was a
significant increase in levels of three out of the six
transcripts that were not significantly changed on the
arrays (Trf,Wt1 andAmh; Fig. 3A).Twoof these transcripts
(Trf and Amh) had shown a greater than twofold increase
on the arrays but had not reached significance.
Differences between results from real-time PCR and
arrays may be a matter of sensitivity and variability of the
two techniques or may be due to the choice of primers,
away from the 30 region targeted by these arrays.

The inhibin subunits are expressed in a number of
cell types in the testis (Barakat et al. 2008) although it
might be expected that initial responsiveness to FSH
would be predominantly localised in the Sertoli cells.
On the arrays, both Inha and Inhbb were significantly
increased by FSH (Table 1 and Supplementary Table 2)
while there was no effect on Inhba. Results from the real-
time PCR studies reflected the same pattern of results
(Fig. 3B).
Germ cell genes

The number of known germ cell transcripts on the
array affected by FSH, within the time-span of the study,
was not high. This was, therefore, investigated further
using real-time PCR. Expression of nine germ cell
transcripts known to be expressed predominantly in
spermatogonia (Stra8, Pou5f1, Dkkl1 and Spo11),
spermatocytes (Mybl1, Zfp541) or spermatids
(1700021K02Rik, Hdc and Tp1) was measured following
FSH treatment (Fig. 4). Expression levels of Stra8,
Spo11, Mybl1 and Tp1 were unaffected by treatment but
there was a transient increase in Pou5f1 at 12 h while
Dkkl1 and Zfp541 were significantly increased at 72 h.
Expression of Hdc and 1700021K02Rik (shown pre-
viously to be increased on the array) was increased at all
times after treatment.
www.endocrinology-journals.org



Figure 2 Real-time PCR measurements of mRNA transcript levels in testes from adult hpgmice treated for 0
(control), 12, 24 or 72 h with FSH. Data show results from Leydig cell-specific transcripts (A) and from Sertoli
cell-specific, androgen-dependent transcripts (B). The meanGS.E.M. of three or four animals per group is
shown. Groups with different letter superscripts are significantly different.
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Other transcripts

Results from the array studies identified a number of
transcripts regulated by FSH but without known
function and/or known expression pattern in the testis.
Levels of three of these transcripts (Wif1, Dmkn, Dkk3)
weremeasured in hpg testes after FSH treatment (Fig. 5).
In all cases, FSH caused a significant increase in
transcript levels confirming the results of the array study.

Canonical pathway analysis

Analysis of canonical pathways showed that com-
ponents of the cholesterol biosynthetic pathway were
significantly increased at 12 h but not at other times
www.endocrinology-journals.org
(Supplementary Table 3A, see supplementary data in
the online version of the Journal of Molecular
Endocrinology at http://jme.endocrinology-journals.
org/content/vol42/issue4/) and that there was a
general decline in transcripts encoding factors involved
in formation and regulation of tight junctions (Supple-
mentary Table 3B).
Discussion

FSH is essential for optimum fertility in the adult male
but uncertainty remains about how it acts to regulate
Sertoli cell activity and spermatogenesis. The hpgmouse
Journal of Molecular Endocrinology (2009) 42, 291–303
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Figure 3 Real-time PCR measurements of Sertoli cell-specific mRNA transcript levels in testes from adult
hpg mice treated for 0 (control), 12, 24 or 72 h with FSH. Results show the meanGS.E.M. of three or four
animals per group. Groups with different letter superscripts are significantly different; where no superscripts
are shown there was no difference between groups.
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is an excellent model system with which to test the
effects of FSH since the Sertoli cells have not been
exposed to the hormone but express FSHR and are
sensitive to FSH action. This study is an extension of
earlier work by Sadate-Ngatchou et al. (2004) using a
longer treatment period, different array chips with a
larger characterised gene set (MOE430A chips (14 000
characterised genes) versus MG U74Av2 chips (6000
characterised genes, 6500 ESTs)), a significantly larger
animal cohort and recombinant FSH. In addition, the
purpose of this study was to follow changes in testicular
transcript levels in the hpg in response to maintained
levels of FSH rather than the acute response to a single
administration. Together, the two studies complement
Journal of Molecular Endocrinology (2009) 42, 291–303
each other and serve to identify transcripts regulated by
FSH over the short and medium term. Interestingly, at
12 h after the start of FSH administration, when both
studies can be directly compared with a degree of
caution, there were only 44 differentially transcripts
common to both studies, 25 up-regulated (e.g. Cyp17,
Ren1, Fos, Hdc, Col4a1) and 19 down-regulated (e.g.
Rgs11, Cdo1, Erbb3, Ptk2b, Vnn1). This low number of
transcripts in common may be due to a combination
of the chips used, the age of the animals, the number of
animals used and the treatment regime.

In this study, the total number of transcripts altered
at each time point did not vary markedly across the
treatment period but only 39 transcripts were
www.endocrinology-journals.org



Figure 4 Real-time PCR measurements of germ cell-specific mRNA transcript levels in testes from adult
hpg mice treated for 0 (control), 12, 24 or 72 h with FSH. Results show the meanGS.E.M. of three or four
animals per group. Groups with different letter superscripts are significantly different; where no superscripts
are shown there was no difference between groups.
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up-regulated more than twofold at all times indicating
that there was a changing pattern of expression as
the exposure to FSH was maintained. There were also
63 transcripts down-regulated more than twofold at all
times suggesting that the inhibitory effects of FSH are
more consistent. Results from the arrays and from real-
time PCR showed that FSH treatment caused a general
increase in many transcripts encoding known Sertoli
cell-specific products such as Tesc, Lgals1, Fabp5 and
Aqp5 (Kingma et al. 1998, Perera et al. 2001, Dettin et al.
2003) although some transcripts (e.g. Shbg, Tjp1 (Wang
et al. 1989, Byers et al. 1991)) were unaffected while
others were decreased (see below) indicating that the
effect of FSH was not simply to increase the overall
activity of the cells. Comparison of the up-regulated
Figure 5 Real-time PCR measurements of mRNA tra
origin. Levels were measured in testes from adult hpg m
Results show the meanGS.E.M. of three or four animals
are significantly different.

www.endocrinology-journals.org
transcripts in this study with the list of Sertoli cell
transcripts generated by Chalmel et al. (2007) confirms
that, at least initially, a high proportion of the affected
transcripts are likely to be of Sertoli cell origin. The
declining proportion of Sertoli cell transcripts at later
times is likely to be due to increasing activity in other
cells such as the Leydig cell. The lower proportion of
down-regulated transcripts that match to the Sertoli cell
list of Chalmel et al. (2007) may reflect the GeneChip
sensitivity involved in generating that list since many of
these down-regulated transcripts might be expected to
have a low level of expression in the normal animal.

Among the transcripts that showed decreased levels
in response to FSH were a number encoding tight
junction components. This is consistent with a recent
nscript levels of species with unknown testicular
ice treated for 0 (control), 12, 24 or 72 h with FSH.
per group. Groups with different letter superscripts

Journal of Molecular Endocrinology (2009) 42, 291–303
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study which reported that gonadotrophins reduce
transcript levels of Sertoli cell barrier components but
that FSH may act at the level of protein organisation
to induce barrier functionality (Tarulli et al. 2008).
Other transcripts that showed a significant decrease
in levels after FSH treatment included Fshr and Rgs11.
It is well established that FSH will cause down-
regulation of its receptor by decreasing transcript levels
(O’Shaughnessy 1980, Themmen et al. 1991) and a
reduction in Fshr is to be expected. RGS11, in contrast,
belongs to the regulator of G protein-signalling family
which are GTPase-activating proteins that act to inhibit
signal transduction and thus play a role in desensitisa-
tion (Chasse & Dohlman 2003). The role of RGSs in
normal hormonal signalling is not well established but
the declining levels of Rgs11 after FSH treatment may
act to enhance signal transduction despite a reduction
in receptor levels.

In addition to changes in Sertoli cell transcripts
induced by FSH, it was clear from the rise in testicular
androgen and the array and real-time PCR data that
FSH was also acting to induce Leydig cell function. This
effect was marked and rapid with a Leydig cell transcript
(Ren1) showing the greatest fold change at 12 h
(Deschepper et al. 1986). Results from the arrays and
real-time PCR show that all components of the
androgen biosynthetic pathway were induced at 12 h
apart from Hsd3b6. Since Hsd3b1 is already highly
expressed in the adult hpg testis (Baker et al. 2003) lack
of HSD3B6 is unlikely to affect the steroidogenic
potential of the cells. In addition to the steroidogenic
enzymes, pathway analysis showed that most com-
ponents of the cholesterol biosynthetic pathway were
induced 12 h after FSH treatment while Ldlr levels are
increased. This shows that FSH is acting to increase the
capacity of the Leydig cells to produce and sequester
cholesterol and to convert cholesterol to androgen.
Interestingly, one of the critical components of the
cholesterol biosynthetic pathways (Mvk) also acts to
inhibit Lhr translation (Nair & Menon 2004) and this
may serve to regulate further Leydig cell sensitivity to
LH. The hpg mouse testis is likely to contain both adult
and fetal-type Leydig cells (Baker et al. 2003) and
Hsd3b6 is a marker of adult Leydig cell differentiation
(Baker et al. 1999). This might imply that FSH is acting
to induce activity in the fetal Leydig cell population but
Sult1e1 is a marker of adult Leydig cells (Song et al.
1997) and is increased 72 h after FSH suggesting that
the effects of FSH are probably being mediated through
the adult Leydig cells.

In the testis, receptors for FSH are only found in the
Sertoli cells (Heckert & Griswold 2002) and the effects
of FSH must be mediated by a factor or factors released
by the Sertoli cells which act on the Leydig cells. In the
short-term, the effects of FSH on Leydig cell function in
the hpg appear to be more marked than effects of hCG
Journal of Molecular Endocrinology (2009) 42, 291–303
(Baker et al. 2003) and the effects are also very rapid
since Sadate-Ngatchou et al. (2004) saw a marked
increase in Cyp17a1 after only 4 h of FSH treatment.
FSH appears, therefore, to be able to induce a powerful
and rapid response in Leydig cells presumably through
stimulation of release of potent trophic factors by the
Sertoli cells. The presence of such factors has been
postulated for a number of years since early studies on
perfused testes or hypophysectomised animals treated
with FSH (Johnson & Ewing 1971, Chen et al. 1976,
Vihko et al. 1991). One report has suggested that the
active factors are TIMP1 and Procathepsin L (Boujrad
et al. 1995) but this has not been confirmed and we saw
no evidence of changes in these factors in our study.
Following FSH treatment, our array data showed that
there was an increase in Igf1 levels and IGF1 has been
suggested to play a role in Leydig cell differentiation
(Morera et al. 1987). Interestingly, there was a marked
decline in Igfbp3 and an increase in Pappa levels after
FSH treatment. Increased Pappa would be expected
to increase the bioavailability and activity of IGF1
(Conover et al. 2004) although the effect of altered
Igfbp3 may be more complex (Modric et al. 2001). The
time-course of changes in expression of Igf1 levels does
not appear to fit well with a role in the stimulation of
Leydig cell function after FSH treatment although it is
possible that early changes in Pappa and Igfbp3may alter
early IGF1 bioavailability. Other secreted molecules
showing a marked increase in transcript levels after FSH
include Wif1, Dkk3 and Dmkn. Both WIF1 and DKK3 act
to regulate WNT signalling and the WNT/CTNNB1
pathway is critical for normal Sertoli cell development
(Boyer et al. 2008) although its function in the Leydig
cell remains uncertain.

Following the increase in Leydig cell activity after
FSH treatment, there was a significant change in the
levels of known androgen-dependent Sertoli cell-
specific transcripts. It is possible that changes in these
transcripts are due to direct effects of FSH treatment
but the known androgen-dependence of the transcripts
makes it more likely that changes are related to
increased Leydig cell androgen production induced
by FSH. The rise in intratesticular androgen after FSH
treatment was significant but levels remained very low,
probably because FSH stimulates synthesis of the
components of the steroidogenic pathway without
being able to stimulate the pathway itself. The apparent
effect of these low levels of androgen on Sertoli cell
transcript levels suggests that the Sertoli cells are
extremely sensitive to androgen stimulation.

Treatment of hpg mice with FSH increased vacuo-
lation in the Sertoli cells and induced formation of a
lumen within the seminiferous tubules but had little
apparent effect on germ cell morphology or pro-
gression up to 72 h. Changes in the Sertoli cell and
tubule diameter correlate with a marked rise in Aqp5 at
www.endocrinology-journals.org
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12 h suggesting that increased water movement across
the Sertoli cell membrane may contribute to increased
tubular diameter and testis weight. The absence of
spermatogenic progression over the time-course
studied is likely to reflect the inactive state of the
Sertoli cell in the adult hpg testis and the time required
for the Sertoli cell to become active enough to support
germ cell maturation. Real-time PCR studies of a small
number of known germ cell genes showed that there
was a variable response of germ cell transcripts to FSH
stimulation. POU5F1 has been shown to be necessary
for primordial germ cell survival (Kehler et al. 2004)
and the increase in response to FSH, albeit small, may
facilitate an increase in spermatogonial number within
the testis. DKKL1 and ZFP541 are expressed in both
spermatocytes and spermatids (Kohn et al. 2005, Choi
et al. 2008) while HDC and SPATIAL are associated
with round spermatids and the later stages of sperma-
togenesis (Safina et al. 2002, Irla et al. 2003). Lack of a
general increase in germ cell transcripts (data from
both arrays and real-time PCR) would indicate that the
effects seen are not due to an overall increase in germ
cell number but are more likely to be part of an early
specific response to FSH stimulation. It has been
shown previously that more prolonged treatment of
hpg mice with FSH will stimulate an increase in germ
cell number and development (O’Shaughnessy et al.
1992, Singh & Handelsman 1996b, Baines et al. 2008)
but the stimulatory effect of FSH on the Leydig cells
makes interpretation of the FSH effects on the germ
cells difficult because of the known stimulatory effect
of testosterone on germ cell development in the hpg
mouse (O’Shaughnessy & Sheffield 1990, Singh et al.
1995).

In this study, FSH treatment of hpg mice for up to
72 h induced significant changes in Sertoli cell
transcript levels and led to indirect stimulation of
Leydig cell function. The changes in Leydig cell activity
probably induced further changes in androgen-depen-
dent Sertoli cell transcripts. While FSH is known to be
required for optimal germ cell development (Abel et al.
2000, 2008), treatment of hpgmice for 72 h did not have
a marked effect on germ cell differentiation suggesting
that longer-term action of FSH is required to induce
germ cell proliferation and progression.
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