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The code of life is not only encrypted in the sequence of DNA but also in the way it is
organized into chromosomes. Chromosome architecture is gradually being recognized as
an important player in regulating cell activities (e.g., controlling spatiotemporal gene
expression). In the past decade, the toolbox for elucidating genome structure has been
expanding, providing an opportunity to explore this under charted territory. In this review,
we will introduce the recent advancements in approaches for mapping spatial
organization of the genome, emphasizing applications of these techniques to immune
cells, and trying to bridge chromosome structure with immune cell activities.

Keywords: three-dimensional chromatin organization, enhancer-promoter interactions, transcriptional regulation,
epigenome, cell differentiation
INTRODUCTION

The spatial-temporal gene expression determines the identity and activity of cells (1, 2). Gene
expression is controlled by transcription factors working on the dynamically structured genome (3–
6). Elucidating genome architecture is pivotal for understanding the fundamental mechanisms of
gene expression regulation. Thanks to technological developments, our understanding of genome
structure has been revolutionized in the past decade (7–10).

Eukaryotic genomes are organized into chromatin with nucleosomes as fundamental structural
units (11). The spatial organization of chromatin in the nucleus has been investigated at several
scales. First, formation of chromatin loops brings distant genomic regions from tens to hundreds of
kilobases to spatial proximity, which involves the Cohesin complex through an extrusion process
(12–17). The next level of chromatin organization is topologically associating domains (TADs),
ranging from hundreds of kilobases to several million bases (18–20). The boundaries of TADs are
usually marked by the binding of insulator CCCTC-binding factor (CTCF), which plays a key role
in the formation of TADs (20–22). TAD boundaries appear to restrict chromatin loops within
TADs and few chromatin loops form across TAD boundaries (20, 23). Chromatin can also be
separated into even larger domains, termed as A compartment and B compartment, which are
enriched for active and repressive chromatin modification marks, respectively (23, 24). A
compartment is composed of active TADs, which often contain expressed genes, while B
compartments contain silent genes. Each chromosome occupies a specific location in the 3D
nuclear space, which is termed as chromosome territory (24, 25). From nucleosome to chromosome
territory, the architecture of chromatin features a hierarchical pattern.
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From a methodology perspective, RNA-seq method provides
transcriptome information (26), and ChIP-seq are used for
investigating transcription factor binding and histone
modification profiles on the genome (27, 28). Techniques for
mapping the landscape of chromatin accessibility include
ATAC-seq and DNase-seq (29). The techniques for cracking
the three-dimensional genome architecture have been rapidly
evolving during the last decade. In this review, we will introduce
current state-of-art techniques for untangling the three-
dimensional (3D) organization of chromatin, and then discuss
their applications to the immune system. Two classes of
approaches are extensively used in exploring the 3D genome
organization: microscopy-imaging based techniques and
sequencing based methods (Table 1). We will briefly introduce
imaging-based methods, and then focus on sequencing-
based approaches.
IMAGING-BASED TECHNIQUES

Fluorescence in situ hybridization (FISH) was once the
dominating method for studying genome structure (30, 31, 64, 65).
Frontiers in Immunology | www.frontiersin.org 2
The spatial distance between chromatin loci is visualized under
the microscope by hybridizing fluorescently labeled probes to
target regions in fixed cells. DNA-FISH is suitable for detecting
the spatial distances between two or a few loci. However, the two
major limitations, resolution and throughput, hamper its
applications. The resolution of FISH was constrained by
microscopy and the probe, making it not suitable of resolving
loci within relatively close spatial distance (shorter than several
hundred nanometers) or close locations on the genome (less than
100 kb). Recently, there have been significant improvements in
the resolution and throughput of FISH microscopy with the
development of short multiplexed probes and super-resolution
microscopy (32–36, 66). Genome architecture in single cells can
now be visualized at spatial resolution of tens of nanometers and
genome resolution of tens of kilobase pairs (36, 37, 67, 68). One
major advantage of imaging based techniques is that they are
capable of monitoring the dynamics of chromatin structure in
living cells (38, 69), which was reviewed recently (39). Even
though the resolution of these approaches is relatively low, they
still provide invaluable knowledge about the dynamics of
genome architecture. It would be of interest to observe how
the genome architecture of immune cells changes in response to
TABLE 1 | Comparison of the features of techniques for elucidating chromatin structures.

Methods Number of
cells

Number of
contacts

Advantages Shortcomings References

Imaging 2D/3D FISH Several
hundreds

Two to tens of
loci

Spatial distance between loci in single cell Low resolution, low throughput (30–33)

Multiplexed
FISH and
STORM

several
hundreds to
thousands

Over 1,000 loci Higher resolution and throughput comparing to
conventional FISH, spatial organization in single
cell

Laborious, low throughput comparing
to sequencing based methods

(34–38)

Live-cell
imaging

Several
hundreds

Two to tens of
loci

Visualize dynamics of chromatin structure in
single cell

Low resolution, low throughput (39–41)

3C based 3C 100 million One versus one Easy to perform experiments and analyze data Only for contacts between two target
locus

(42, 43)

4C 1–10 million One versus all Discover new contact partners Only detects pairwise contacts (44, 45)
5C 2–5 million Many versus

many
Simultaneously detects contacts between many
locus of interest

Requires information of the locus,
resolution and throughput relies on the
number of probes

(46, 47)

Hi-C 1–20 million All versus all Whole genome organization map High sequencing depth required for
high resolution, detects only pairwise
interactions

(24, 48)

capture Hi-C 1–20 million Many versus all Detect interactions of selected loci Requires specifically designed probes (49–51)
ChIA-PET 100 million Many versus

many
Works on interactions related with a protein
target

Requires large cell number, need high
quality antibody

(52, 53)

Hi-ChIP 50,000–25
million

Many versus
many

Works on interactions related with a protein
target, small cell number

Requires high quality antibody (54, 55)

Micro-C 1,000–5
million

All versus all High resolution Not good for capturing long-range
interactions

(56, 57)

Proximity
ligation
free

GAM Several
hundreds

All versus all No proximity ligation bias, captures long-range
interactions, provide spatial organization
information in single cell

Requires special equipment, low
resolution

(58)

SPRITE 10 million All versus all No proximity ligation bias, captures multi-way
interactions

Requires efficient multiple rounds of
index ligation

(59, 60)

ChIA-Drop 10 million All versus all No proximity ligation bias, captures multi-way
interactions

Requires a 10X Genomics sequencing
platform

(61)

DamC 10,000–1
million

One versus all Detect in vivo contacts Need to manipulate the cells to express
the fusion protein of Dam and the target
of interest

(62)

TrAC-
looping

50 million Many versus
many

No proximity ligation bias, provides chromatin
accessibility information

Requires large cell number, only detects
interactions in open chromatin regions

(63)
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environmental stimulus. Fluorescence and electron imaging
techniques are evolving rapidly for elucidating chromatin
organization. There are excellent reviews on this topic, which
will not be discussed in detail here (40, 41, 70, 71). Although
these cutting-edge imaging techniques have not been widely
applied to studying the immune system, with the improvement
of resolution and throughput, they will be sure to illuminate the
connection between genome organization and immune
cell activity.
SEQUENCING-BASED TECHNIQUES

In our discussion, sequencing based approaches for mapping
genome architecture are separated into two categories: proximity
ligation-based methods (Figure 1) and proximity ligation-
free methods.

Proximity Ligation-Based Methods
(1) Chromosome Conformation Capture (3C)
Unlike FISH directly presenting the physical distance between
genomic loci, chromosome conformation capture assay (3C)
detects the spatial proximity between two genomic loci by
interpreting the efficiency of them being ligated together (72,
73). Cells are fixed with formaldehyde to preserve the spatial
conformation of chromatin, and chromatin is then digested with
a restriction enzyme to generate free ends of DNA. The DNA
ends from chromatin regions in close spatial proximity are prone
to be ligated in the presence of DNA ligase. The frequency of
ligation between two loci can be examined by gel electrophoresis
or qPCR using primers specific to these regions. 3C detects the
interaction between two candidate loci (one-to-one). FISH and
3C are frequently used together to cross-validate each other’s
findings. Even with various more advanced methods available as
discussed below, 3C remains a good choice if one is interested in
examining the changes of interaction between two specific
genomic regions, especially transcriptional regulatory regions,
during cell differentiation or activation.
(2) Circular Chromosome Conformation Capture (4C)
and Chromosome Conformation Capture Carbon
Copy (5C)
4C was developed to identify genome-wide interacting partners
of a target locus (the “viewpoint”) (74, 75). Unlike 3C, which
requires knowledge of the interacting locus, 4C is capable of
discovering unknown interactions. The 4C protocol requires a
DNA circularization step after proximity ligation, followed by
reverse PCR with primers designed according to the sequence of
the viewpoint. All interacting partners can then be identified by
sequencing. Thus, 4C is a method for detecting one-to-all
interactions. By comparison, 5C is a method for detecting
many-to-many interactions. Since all interacting partners are
supposed to be ligated at the proximity ligation step in 3C,
multiple interacting pairs may be amplified and detected by
Frontiers in Immunology | www.frontiersin.org 3
using properly designed multiplexed primers in a 5C library. The
coverage and resolution of 5C depends on the diversity of the
primers (76, 77).

(3) Hi-C and Derivatives
In the past decade, a major breakthrough in the field of
elucidating genome architecture was the development of Hi-C,
a method for analyzing whole genome organization (all-to-all
interactions) (24). Hi-C follows the original 3C protocol with
some modifications including addition of a biotinylated
nucleotide fill-in step before proximity ligation. To generate
Hi-C libraries, biotin-labeled and ligated DNAs are enriched,
digested and ligated to Y-shaped adaptors for next generation
sequencing (NGS). After sequencing on an NGS platform and
mapping the reads to the genome, a genome-wide contact map
can be established from the paired-end sequencing reads. Hi-C
has provided tremendous information about genome
organization, from compartments and TADs to chromatin
loops. Efforts have been made to optimize Hi-C to generate
higher resolution genome organization map (78). In situ Hi-C
decreases random ligation between chromatin fragments due to
reduced nucleus disruption (23, 42). The resolution of a genome-
wide chromatin contact map generated by Hi-C is limited by the
available restriction enzyme cleavage sites in the genome. Thus,
digesting the chromatin by using a combination of restriction
enzymes (3e Hi-C) (43), DNase I (DNase Hi-C) (44) or
micrococcal nuclease (Micro-C) significantly increases the
resolution (45, 46). Application of Hi-C to immune cells has
revealed cell-specific three-dimensional chromatin interactions
and provided insights into the mechanisms of their regulation in
immune cells (43, 47).

Although Hi-C has the advantage of being capable of
providing genome-wide chromatin contact maps, it suffers
from the need for very deep sequencing in order to obtain
information on chromatin interaction among transcriptional
regulatory elements such as promoters and enhancers. The
cost of sequencing to examine the fine chromatin structures is
often prohibitory (23, 24, 48). Only a very limited number of
interactions between promoters and enhancers are detected even
with a sequencing depth of billions of PETs from a Hi-C library.
To increase the resolution and efficiency and reduce the
sequencing cost of Hi-C, a few derivative approaches were
developed. One strategy is the Capture Hi-C method that
detects chromatin contacts of selected chromatin regions such
as gene promoters (56, 79–81). After proximity ligations,
genomic loci of interest are captured and enriched by
hybridizing biotinylated oligonucleotide probes. This strategy
provides the chromatin interaction information of the selected
genomic regions. ChIA-PET (Chromatin Interaction Analysis
with Paired-End Tag) and HiChIP are strategies of detecting
chromatin interactions of a subset of genomic regions by
combining Hi-C and ChIP (chromatin immunoprecipitation)
(49, 57, 82–84). ChIA-PET performs proximity ligation after the
ChIP step by using a specific antibody against a transcription
factor (TF), chromatin modifier or histone modification to
enrich target regions, while HiChIP performs ChIP after the
April 2021 | Volume 12 | Article 670884
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proximity ligation step. These two approaches are capable of
profiling chromatin interactions genome-wide at locations
Frontiers in Immunology | www.frontiersin.org 4
bound by a specific chromatin protein or carrying a specific
histone modification. For example, the promoter-enhancer
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FIGURE 1 | Overview of 3C-based methods. Schematics illustrate experimental procedures of different methods.
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interaction network explored by RNA Pol II ChIA-PET in
GM12878 cells provided comprehensive view of the regulation
of B cell transformation triggered by Epstein-Barr Virus (EBV)
infection (50, 51).

Hi-C is a powerful technique for detecting chromatin
interactions; however, the heterogeneity of chromatin structure
in each individual cell is concealed in this population averaged
approach. In situ single-cell Hi-C and Dip-C are two methods for
exploring the diversity of genome organization at a single cell
level (52–55). Nagano et al. applied single-cell Hi-C to tracking
the dynamics of chromatin structure in cell cycle at a single cell
level (85). Flyamer et al. discovered reorganization of chromatin
in the transition of oocyte to zygote (86). By using Dip-C, Tan
et al. investigated genome organization in neurons of mouse
retina, olfactory epithelium and developing brain (87, 88). By
applying these techniques to immune cells, it would reveal
interesting diversity features of genome architecture at a single
cell level, such as the recombination of antigen receptors.

When performing 3C experiments, chromatin conformation
is normally preserved by fixing cells with formaldehyde.
However, chemical crosslinking may introduce bias in
detecting chromatin interactions. Intrinsic 3C/4C/Hi-C (i3C/
i4C/iHi-C) and liquid chromatin Hi-C are developed to study
native genome structure (89, 90). i3C captures chromatin
structures detected by conventional 3C with lower background.
Liquid chromatin Hi-C is capable of tracking dynamics of
chromatin interactions. By using i4C, Weiterer et al. studied
chromatin structures at CXCL2 and IL8 loci with the stimulation
of interleukin (IL)-1a, and found that IL-1a–induced chromatin
remodeling depends on TAK1 kinase and NF-kB pathways (91).
(4) Other Proximity Ligation-Based Methods
Conventional 3C techniques reconstruct genome architecture
based on averaged pairwise chromatin interactions. It remains to
be elucidated how these interaction pairs are synergized into
higher order structures. Recently developed chromosomal walks
(C-walks), multi-contact 4C (MC-4C), Tri-C, multi-contact 3C
(MC-3C) and other methods provide insights into concurrent
chromatin interactions at single allele levels (92–97).

Majority of noncoding RNAs (ncRNAs) localize in the
nucleus, and have contacts with chromatin. They play
important roles in gene regulation and chromatin remodeling
(98). Proximity ligation-based methods, such as MARGI
(mapping RNA-genome interactions), GRID-seq (global RNA
interactions with DNA by deep-sequencing), ChAR-seq
(chromatin-associated RNA sequencing) and RADICL-seq
(RNA and DNA interacting complexes ligated and sequenced),
were developed to detect genome-wide RNA-chromatin contacts
(99–102). They share a similar approach by bridging interacting
RNA and DNA with a bivalent linker.

Proximity Ligation-Free Approaches
All 3C-derived methods require proximity-based ligation. They
identify ligation frequency between loci instead of direct physical
contact information. Since the products are generated by pair-
wise ligation between different genomic regions, these methods
Frontiers in Immunology | www.frontiersin.org 5
are not effective at capturing multiple contact partners of a locus
simultaneously. Furthermore, artifacts could also be generated by
the proximity ligation step. To address these caveats, proximity
ligation-free techniques have been emerging.

(1) Genome Architecture Mapping (GAM)
GAM is performed by cryo-sectioning fixed and sucrose-
embedded nuclei (103). Hundreds of nuclei are sectioned in
random orientations. DNA from each slice is extracted, indexed
and sequenced. Chromatin contact information can be inferred
from the sequencing data by counting the chance of DNA loci
co-existing in the same slice. A mathematical model named
SLICE (statistical inference of co-segregation) was developed for
analyzing GAM data. GAM reveals long-distance chromatin
loops and TADs structure similar to that from Hi-C analysis
but at the single-cell level. However, due to the limited number of
slices that can be generated from each nucleus, the method
suffers from low resolution, particularly for studies of promoter-
enhancer interactions.

(2) Split-Pool Recognition of Interactions by Tag
Extension (SPRITE) and ChIA-Drop
Chromatin complexes are formed by chromatin binding
proteins and their target DNA, which could be stabilized by
formaldehyde crosslinking. The interacting chromatin regions
that remain in the same complex after cleavage of chromatin
will be labeled by the same set of barcoding indexes after
multiple of rounds of index ligation. Chromatin regions,
which are in different chromatin complexes, are labeled by
different barcoding indexes in this process. Based on this
property, SPRITE and ChIA-drop assign chromatin regions to
different complexes, which infers the spatial proximity and thus
potential interaction between different regions of chromatin
(104–106). Tagging in SPRITE is performed by ligation in
multiple rounds of split-pool, whereas, the reaction adding
barcoding indexes to each complex in ChIA-drop takes place
in a droplet. DNA loci carrying the same barcode are considered
to be in the same interacting complex. Multiple chromatin
regions could be assigned to the same chromatin complex,
which implies multiple ways of interactions in addition to
pairwise interactions.

(3) DamC
DamC uses Escherichia coli DNA adenine methyltransferase
(Dam) fused with rTetR, which binds to TetOs inserted into
the genome in the presence of doxycycline (Dox) (107). The
bound rTetR-Dam methylate adenines in GATC sequences near
its binding sites or regions in spatial proximity. Methylated
locations are identified by DpnI, which specifically cleaves
adenine methylated GATC sequences in the genome. The
cleavage sites are ligated to sequencing adapters and analyzed
by sequencing. This method generates 4C-like data (one-to-all)
with a viewpoint of TetOs that are inserted into the genome.
Data of many-to-all interactions can be generated using cell lines
with multiple sites of TetOs in the genome. DamC provides
genome structure information in living cells; however, it requires
April 2021 | Volume 12 | Article 670884
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manipulating the genome to insert “viewpoints” and to express
rTetR-Dam protein in the cells of interest.

(4) Transposase-Mediated Analysis of Chromatin
Looping (TrAC-Looping)
Our lab developed a method termed as TrAC-looping
(transposase-mediated analysis of chromatin looping), which
detects chromatin interactions at transposase Tn5 accessible
regions (108). This method relies on Tn5’s ability to insert
DNA into the genome. Tn5 forms a tetramer complex with a
specially designed bivalent mosaic ends (ME) oligonucleotide
linker, which inserts one ME end of the bivalent linker to a
chromatin region and the other ME end to an interacting
chromatin region. By this way, the two interacting regions are
directly linked by an oligonucleotide bridge and thus can be
amplified by PCR as one DNA template using primers
recognizing the ME sequence and oligonucleotide linker.
TrAC-looping detects all interactions between transcription
regulatory regions, which include all active promoters and
enhancers. TrAC-looping data simultaneously inform both
chromatin accessibility and chromatin interactions. Only
modest sequencing depth is required for measuring genome-
wide regulatory chromatin interactions at high resolution.
PROFILING GENOME ORGANIZATION IN
IMMUNE CELL DEVELOPMENT AND
DIFFERENTIATION

Next, we will discuss recent applications of these various
methods to investigate the genome architecture in immune
cells during development and differentiation. The development
and differentiation of immune cells are accompanied by
reorganization of the genome architecture, from compartment
switch to the formation of loops between regulatory elements
(Figure 2). Tissue microenvironment triggers the transformation
of genome structure, producing key transcription factors (TFs),
which regulate the expression of lineage specific genes,
determining the fate and function of the cells. The genome
organization during immune cel l development and
differentiation, especially during lineage commitment and
antigen receptor V(D)J recombination, has been extensively
studied by various approaches.

Genome Architecture of B Cells
B cell development takes place in bone marrow. Early B cell
factor (EBF1) is one of the key transcription factors that control
the commitment of progenitor cells to B-cell lineage. By
combining Hi-C and 3D-FISH, it was observed that the
Ebf1gene locus is sequestered at the nuclear lamina as a
repressive B compartment in progenitor cells. When the
progenitor cells transitioned to the pro-B stage, the Ebf1 locus
switched to an active A compartment, with the establishment of
stage specific new interactions (Figure 2) (109). Transcription
factor Paired box 5 (PAX5) locks B-cell commitment by
Frontiers in Immunology | www.frontiersin.org 6
regulating the expression of lineage specific genes. By using Hi-
C, it was found that PAX5 plays a critical role in establishing and
maintaining the unique genome structural features in B cells
throughout the B cell differentiation process (58). Ultimately, it
regulates gene expression by rewiring the interactions between
enhancers and promoters (58).

To fight against various antigens, the adaptive immune
system depends on B and T cells producing a diverse pool of
antigen specific receptors, immunoglobulins and T cell receptors
(TCRs), respectively, through the process of V(D)J gene
recombination (Figure 3) (59). The recombination of
immunoglobulin heavy chain (Igh) and light chain (Igl) takes
place in Pro-B and Small pre-B stages, respectively. The initiation
of recombination is carried out by RAG recombinases, which are
expressed in developing T and B cells. A Hi-C study revealed that
the expression of RAGs is regulated by transcription factor E2A,
which facilitates the formation of chromatin loops between their
promoters with the T cell-specific enhancer (R-TEn) or B cell-
specific elements (R1B and R2B) (60). During the transition from
progenitor cells to pro-B cells, by using 3D FISH, it was observed
that the Igh locus is released from the nuclear periphery and
undergoes chromatin decompaction, suggesting that nuclear
periphery localization represses the transcription and
recombination of Ig genes during lymphocyte development
(61). It was also visualized by FISH that distal Igh V regions
are brought into close proximity of the DJ cluster to generate
diverse Igh populations (62, 63), which is mediated by the
formation of chromatin looping (110). By combining FISH and
3C, Guo et al. discovered that the Igh locus folds into several
multi-looped domains, which are subsequently brought into
proximity for selective recombination of the enhancer Eµ
dependent looping with specific sites within VH region (111).

Close inspection of Igh recombination in live pro-B cells
revealed that the contact between VH and DHJH loci happens in
minutes and the interaction is controlled by the spatial
confinement from the formation of topological domains (112).
Using 4C, Medvedovic et al. extensively studied the organization
of the Igh locus from different viewpoints (113). They found that
distal VH cluster showed more flexibility than the proximal
domain, ensuring equal chance of distal VH to recombine with
DHJH. The long-range looping requires regulators PAX5, YY1,
and CTCF. Convincing data indicated the important roles of
CTCF and Cohesin in organizing chromatin loops at the Igh
locus and their involvement in Igh recombination (114–117).
Cohesin complex facilitates RAG endonuclease scanning along
the chromatin fiber by loop extrusion, which initiates
immunoglobulin recombination. CTCF bound at its target sites
stabilizes the contact between RAG and the distal VH locus,
promoting the recombination to happen (17, 110, 118–120).
PAX5 specifically represses the expression of Cohesin release
factor WAPl to ensure successful loop extrusion across the entire
Igh locus (121).

Another major chromatin reorganization event takes place
upon the activation of B cells. To elucidate the cis-regulomes in
activated B cells, Chaudhri et al. studied the interaction network
of cis-regulatory elements by Hi-C. They discovered multiplex
April 2021 | Volume 12 | Article 670884
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enhancer-promoter interaction configurations, including genes
regulated by multiple enhancers and enhancers controlling
multiple genes, which are engaged in B cell activation, cycling
and differentiation (122).

Genome Architecture of T Cells
Multipotent hematopoietic progenitor cells migrate into the
thymus, then initiate differentiation from double negative (DN,
CD4− CD8−) to double positive (DP, CD4+ CD8+) and finally the
CD4 or CD8 single positive T cells. DN cells can be further
separated into several stages from ETP, DN2, DN3 to DN4.
While ETP and DN2 cells can take alternative cell fates such as
dendritic cells, NK cells and mast cells, DN3 cells are already
committed to T cell lineage. Thus, the transition from DN2 to
DN3 is a key step of T cell fate commitment. Previous studies
identified BCL11B, which is upregulated at the DN2 stage, as a
key transcription factor required for DN2 to DN3 transition
(123–125). Hu et al. used Hi-C to survey the dynamic changes of
Frontiers in Immunology | www.frontiersin.org 7
genome architecture from HSCs to DP cells and observed a
striking reorganization of chromatin during the transition from
DN2 to DN3 (47). While all other transitions display a relatively
smooth change in chromatin interaction, the DN2 to DN3
transition is accompanied by an abrupt global transformation
of the 3D genome structure, suggesting that the global changes in
chromatin organization may lock the cells in the T cell lineage by
creating an energy barrier for reversing cell fate. This observation
led to the question of what process causes this global
reorganization of chromatin? BCL11B was found to bind to
numerous key regulatory regions accompanying T cell
commitment (47, 124). Interestingly, BCL11B is a core subunit
of the ATP-dependent chromatin remodeling BAF complexes,
suggesting that it may be a key player in promoting the global
transformation of chromatin reorganization during the DN2 to
DN3 transition. Although it has not been demonstrated yet
whether BCL11B regulates the changes of chromatin
interaction during the early development of T progenitor cells,
Nuclear membraneLamina
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Compartment A

Chromatin

Compartment B

Compartment A

Genes

Transcription factors

FIGURE 2 | Compartment switch in B cell and T cell lineage commitment. Loci of B or T cell lineage specific genes dissociate from nuclear lamina and are flipped
from inactive B compartment to active A compartment. Compartment switch is accompanied by expression of specific transcription factors regulating target
gene expression.
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its deletion in CD4 T cells resulted in decreased chromatin
interaction at its bound regions (47). The Bcl11b locus is also
associated with a switch from the repressive B compartment to
active A compartment when BCL11B expression is upregulated
at the DN2 stage. DNA-FISH confirmed the locus moves away
from the repressive nuclear periphery during this process. This
work demonstrated that, during T cell differentiation,
Frontiers in Immunology | www.frontiersin.org 8
remodeling of chromatin landscape initiates the expression of
key transcription factors, which reorganize chromatin structure
and alter gene expression to determine the fate of the cells. The
activation of Bcl11b is mediated by a non-coding RNA ThymoD
(thymocyte differentiation factor). Combining Hi-C and DNA-
FISH, Isoda et al. found that ThymoD promotes BCL11B
expression by facilitating the formation of chromatin looping
VV
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FIGURE 3 | V(D)J recombination of Igh locus. Transcription factors target Enhancer µ and recruit RAG1/RAG2 recombinase to execute recombination. In committed
pro-B cells, Cohesin complex and CTCF facilitate Igh locus contraction by looping, ensuring each V gene segment has equal opportunity to target DJ segment.
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between its enhancer and promoter mediated by CTCF and
Cohesin (126).

Similar to the recombination of immunoglobulin loci in B cell
development, reorganization of T cell antigen receptors also
takes place during T cell development. Based on the
composition of T cell receptors (TCRs), T cells are separated
into Tab and Tgd lineages. The rearrangement of b, g and d
TCRs takes place in DN cells, whereas TCRa recombination
takes place in DP cells. Lineage-specific recombination of TCR is
partially determined by the cell specific expression of RAG1 and
RAG2. Hi-C analysis revealed that there is a unique organization
pattern of cis-regulatory elements in developing T cells (60).
Transcription factor E2A binds to a T cell lineage-specific
enhancer (R-TEn) to orchestrate the chromatin conformation
and expression of the Rag genes in T cells. The chromatin
organization landscape of the Tcr locus changes in a spatial
and temporal pattern during T cell development. A DamID
study identified a lamina-associated domain (LAD), which
represses the recombination and expression of Tcrb (127). In
DN cells, LAD disassociates from lamina, and Tcrb adopts a
compact conformation, enabling the recombination between Vb
and DbJb segments (128). 3C and 4C analysis indicated that the
distal Vb segments are separated from the recombination center
in DP cells (129). Enhancer Eb is important for the expression of
Tcrb. Zhao et al. studied the looping between Eb and Tcrb
promoter by 3C (130). They found transcription factor
RUNX1 facilitates the rearrangement of chromatin loops.
Different transcription factors may contribute to the
rearrangement of chromatin interaction landscape of different
Tcr loci. For example, STAT5 binding to Jg promoter is essential
for the change of chromatin conformation at the Tcrg locus
(131). A series of work, by combining 3C, 4C, Hi-C and DNA-
FISH, have demonstrated that chromatin looping organized by
CTCF and Cohesin plays an important role in shaping the
diversity of TCR repertoire (117, 132–136).

Mature naïve CD4 or CD8 single positive (SP) cells exit the
thymus. They are activated upon encountering antigens and
differentiate to effector or memory cells. This process is
associated with global epigenomic changes (137). Three-
dimensional chromatin organization has been extensively
studied in these cells by different approaches, especially for
CD4+ T helper (Th) cells. Our lab looked into the genome-
wide promoter-enhancer interaction in naïve and activated
human CD4+ T cells by TrAC-looping and ChIA-PET (84,
108). It was found that genes with promoters which have
interacting enhancers are expressed at higher levels than those
without interacting enhancers, and their expression levels are
positively correlated with the number of interacting enhancers. A
large number of promoters interact with other promoters and
they are co-expressed in a tissue-specific manner (84, 108).
Activation of naïve CD4+ T cells is associated with significant
changes of chromatin interaction at thousands of promoters and
enhancers, which are correlated with the changes in gene
expression (84, 108). The FOS family motif, TGAGTCA, was
significantly enriched in chromatin regions with increased
interaction and ChIP-seq assays confirmed that the binding of
Frontiers in Immunology | www.frontiersin.org 9
FOSL1/Fra-1 to these regions after T cell activation. These data
suggest that the binding of the FOS family factors may contribute
to the increased interactions.

Naïve CD4+ cells differentiate into Th1, Th2, Treg, Th17, or
Tfh effector cells by the expression of key transcription factors.
T-bet is the key transcription factor for Th1 differentiation and
the expression of cytokine interferon-g (IFNG). DNA-FISH
combined with 3C analysis indicated that T-bet collaborates
with CTCF and Cohesin to facilitate the formation of chromatin
loops between the regulatory elements at Ifng gene locus and
promote its expression (138, 139). The transcription factor
GATA3 critically regulates Th2 differentiation and the
expression of Th2 cytokines, IL4, IL13, and IL5. It was found
that the Th2 locus control regions (LCR) contributes to the
expression of Th2 cytokines through the formation of long-range
chromatin loops with the promoter regions (140). GATA3
collaborates with STAT6 and YY1 to regulate the chromatin
interaction of the Th2 cytokine locus (141, 142). Interestingly,
interchromosomal interactions between Th2 LCR (on
chromosome 11) and the promoter of Ifng (on chromosome
10) or IL-17 (on chromosome 1) were discovered by 3C and
FISH analysis (143, 144). These results suggest long-range
chromatin interactions between functionally important genes
may play a role in coordinating the expression of key cytokines
in the T cell fate decision. The basic leucine zipper transcription
factor, BATF, is one of the key transcription factors for the
differentiation of Th17 and Tfh cells. A recent study using Hi-C
and 3C assays demonstrated that BATF, cooperating with ETS1,
recruits CTCF to lineage-specific genes and reorganizes
chromatin landscapes in developing effector cells (145). By
using a combination of ChIP-seq, Hi-C and CRISPR-mediated
genomic editing, our lab discovered a novel transcriptional
regulatory element about 8.5 kb of upstream of the Foxp3 gene
promoter for the expression of FOXP3 in Treg cells (146). The
data revealed that this element interacts with the Foxp3 promoter
and intronic enhancers and its deletion impaired the expression
of FOXP3. Interestingly, the histone methyltransferase MLL4
binds to this upstream regulatory region and remotely regulates
the H3K4 methylation at the promoter and intronic enhancer
regions via long-distance chromatin looping (Figure 4), which
exemplifies that a chromatin modification enzyme can modify a
chromatin region from a distant binding site through long-
distance chromatin interactions. The differentiation of T cells
is regulated by not only transcription factors, but also by
cytokines. By applying ChIA-PET, Li et al. found that IL-2
activated STAT5, which then regulates the chromatin looping
between super-enhancers and promoter of Il2ra gene (147).

Mutations in key transcription factors may hamper the
differentiation of corresponding T cells, leading to diseases
caused by abnormal immune activity. For example, a M370I
mutation in FOXP3, identified in an IPEX (immune
dysregulation polyendocrinopathy enteropathy X-linked)
patient, led to increased chromatin interaction and de-
repression of the Th2 cytokine locus in Treg cells in mutation-
recapitulated mice as revealed by H3K27ac HiChIP assays (148).
These abnormal Treg cells were unable to suppress extrinsic Th2
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cells and the mice developed an autoimmune syndrome
consistent with an unrestrained T helper type 2 (Th2) immune
response. In addition to gene coding regions, mutations in
regulatory elements may also alter protein expression and
result in the onset of immune diseases. Methods for untangling
3D chromatin structure, such as HiChIP and Hi-C, have been
applied to investigate the connection between alternation of the
regulome and diseases (49, 79, 149). For example, by applying
HiChIP to T cells from type 1 diabetes patients or mouse models,
Fasolino et al. discovered the formation of chromatin loops
between enhancers and promoters at diabetes risk-conferring
loci, indicating that genetic variation leading to the alternation of
chromatin structure and gene expression may result in the
pathogenesis of autoimmune disorders (150). Widespread
alternations in TAD boundary and intra-TAD chromatin
interactions were found in T cells of T cell acute lymphoblastic
leukemia (T-ALL) patients using Hi-C assays (151). These
studies suggest that 3D chromatin structure may critically
contribute to the pathogenesis of human diseases and
Frontiers in Immunology | www.frontiersin.org 10
elucidation of the structural changes and their regulation may
provide novel insights into the diseases.
FUTURE PERSPECTIVES

In this review, we summarized the approaches for elucidating 3D
genome organization, with emphasis on their applications in the
immune system. Studies using these tools have advanced our
understanding of how genome architecture such as TADs and A/
B compartments contributes to the development, differentiation
and function of various immune cells. However, many
techniques need further improvements in sensitivity and
resolution and decreasing background noise. Hi-C related
assays could provide high resolution data, which may even
reveal promoter-enhancer interactions; however, the
sequencing cost is prohibitory to reach its full capacity. Since
promoter-enhancer interactions are critical to cell-specific gene
expression, highly sensitive and less costly methods for this
Enhancer Enhancer Promoter

Direct target Indirect target
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MLL4

Direct target Indirect target

Nucleosome
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FIGURE 4 | MLL4 catalyzes H3K4 methylation through chromatin looping. MLL4 binds its direct target region, and the lysine 4 of histone H3 at distal indirect target
regions are also methylated through chromatin looping.
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purpose will be instrumental for elucidating this aspect of
chromatin looping. In this regard, TrAC-looping is a method
of choice, which specifically reveals interactions among
chromatin regulatory elements and thus requires only very
modest sequencing depth to cover the entire genome.
However, the current TrAC-looping protocol requires 50 to
100 million cells for one experiment, which may be
prohibitory for many types of primary cells or clinical samples.
A more sensitive TrAC-looping protocol requiring fewer cells is
highly demanded.

Genome organization data from bulk cells provides average
images of genome architecture of many cells. More studies are
demanded to address unique features of individual cells and
elucidate how the cellular heterogeneity impacts cellular
differentiation and function. Current single cell Hi-C and Dip-C
assays suffer from limitations including low efficiency and
resolution. To study the genome organization at a single cell
level, more versatile approaches are required. For imaging-based
approaches, improvements in throughput and resolution should
be made to visualize the dynamics of chromatin structure in single
cell. With new technical improvement and development, genome
Frontiers in Immunology | www.frontiersin.org 11
architecture, particularly promoter-enhancer interactions, can be
analyzed using rare primary cells or patient samples, which will
provide more insights into the contribution and mechanisms of
chromatin looping in the normal development of immune cells
and pathogenic immune disorders.
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