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SKF-LDA: Similarity Kernel Fusion
for Predicting lncRNA-Disease Association
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Recently, prediction of lncRNA-disease associations has at-
tracted more and more attentions. Various computational
models have been proposed; however, there is still room to
improve the prediction accuracy. In this paper, we propose a
kernel fusion method with different types of similarities for
the lncRNAs and diseases. The expression similarity and cosine
similarity are used for lncRNAs, and the semantic similarity
and cosine similarity are used for the diseases. To eliminate
the noise effect, a neighbor constraint is enforced to refine all
the similarity matrices before fusion. Experimental results
show that the proposed similarity kernel fusion (SKF)-LDA
method has the superiority performance in terms of AUC
values and other measurements. In the schemes of LOOCV
and 5-fold CV, AUC values of SKF-LDA achieve 0:9049 and
0:8743± 0:0050 respectively. In addition, the conducted case
studies of three diseases (hepatocellular carcinoma, lung can-
cer, and prostate cancer) show that SKF-LDA can predict
related lncRNAs accurately.
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INTRODUCTION
In humans, only about 1.5% of the genome can be encoded into pro-
teins, while the rest are extensively transcribed into non-coding RNAs
(ncRNAs).1–3 Studies have shown that ncRNAs play an important
role in human biological mechanisms,4–6 especially the long non-cod-
ing RNAs (lncRNAs), a kind of significant ncRNA with over 200 nt in
length.7–10 In the past years, lncRNAs have been found that influ-
enced transcription, translation, cell cycle, imprinting, splicing, and
protein localization;5,11,12 for example, intergenic 10 regulates expres-
sion of ADAM12- and FANK1-flanking genes throughmodulation of
the chromatin structure in cis.13 Additionally, it has shown that the
dysregulations and mutations of some lncRNAs are associated with
human diseases,14–16 such as breast cancer,17,18 intracranial aneu-
rysm,19,20 and b-thalassemia.21,22 Though the detail mechanisms of
lncRNA are a riddle, we can still use computational models to predict
the relationship between lncRNAs and diseases, which can be helpful
for disease diagnosis. Besides, the computational methods can be a
powerful complementary tool to the biological experiments or can
even avoid the time-consuming experiments.23

In the past few years, many effective computational models have been
built to calculate potential lncRNA-disease associations.24–27 We can
roughly classify the methods into two categories according to the
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computational model. The first category of methods predicts the
lncRNA-disease associations with designed machine learning models.
Chen et al.28 proposed Laplacian regularized least squares for lncRNA-
disease association (LRLSLDA) in the semi-supervised learning frame-
work, which is based on the prior that similar diseases are more likely
to be associated with functionally similar lncRNAs. Lan et al.29 inte-
gratedmultiple biological data resources to predict lncRNA-disease as-
sociations with a bagging support vector machine (SVM) classifier
based on lncRNA similarity and disease similarity. The SIMCLDA30

method uses an inductive matrix to predict lncRNA-disease associa-
tions. In thismodel, theGaussian interaction profile kernel of lncRNAs
is from known lncRNA-disease interactions, and the function similar-
ity of diseases is based on disease-gene and gene-gene ontology associ-
ations. Also, the primary feature vectors from constructed feature
matrices are used to complete the association matrix based on the
inductivematrix completion framework. Another type ofmethod pre-
dicts associations based on constructed networks. In an earlier study,
Sun et al.31 designed a computational network framework, random
walk with restart for lncRNA-disease association (RWRlncD), to pre-
dict lncRNA-disease association based on the lncRNA-lncRNA func-
tional similarity network. RWRlncD integrates lncRNA-disease asso-
ciation and disease functional similarity and then uses random walk.
Bi-random walks for lncRNA-disease association (BRWLDA)32 ap-
plies bi-randomwalks that take the structural differences into account
between lncRNA similarity and disease similarity and build two net-
works using lncRNA functional similarity and disease semantic simi-
larity. Then multiple the random walks method is used on both net-
works to predict potential lncRNA-disease associations. Paths with
limited lengths for lncRNAs-diseases association (PLLDA) builds
lncRNA similarity networks and disease similarity networks based
on lncRNA functional similarity and disease semantic similarity.33

PLLDA is based on themethod of connecting their pathways and their
length in their respective similarity networks. The depth-first search is
then used to calculate the probability of lncRNA-disease association.
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Figure 1. Flow Chart of SKF-LDA Applied to lncRNA-Disease Association Prediction

(A–D) SKF-LDA consists of four steps: (A) constructing the lncRNA-disease correlationmatrix; (B) calculating the two similarities of lncRNA and disease similarity, respectively;

(C) using SKF integration similarity; and (D) obtaining the prediction matrix by Laplacian regularized least squares.
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Thismethod is suitable for the prediction of the relation between a new
disease and lncRNAs or the relation between a new lncRNA and dis-
eases. However, since the length-based cost function is relatively sim-
ple, it is necessary to look for model substitution for machine learning.
By combining lncRNA-disease association and gene and disease asso-
ciation, tripartite graph for lncRNAs-diseases association (TPGLDA)
can effectively predict the association between lncRNA and disease,
but this method relies on the structure among the three parts, and
the incomplete data will limit its performance.34

Although the aforementioned methods achieve relatively good re-
sults, there is still room for us to improve the accuracy of association
prediction. For example, some methods only consider the similarity
of lncRNA and disease in one dimension (functional or semantic)
and do not fully take the multi-dimensional information into consid-
eration. It is believed that, when more biological knowledge is applied
with elaborated fusionmethod, we can get a more accurate prediction,
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as proved by previous studies on the prediction of association
between microRNA (miRNA) and disease.35,36 Recently, there are
increasingly more state-of-the art computational models37–41

published in well-known journals that have promoted the study of
the association between lncRNA and disease. For example, the inte-
gration method we used is inspired by the method of predicting
miRNA and disease association.42 Also, the idea of using Laplacian
regularization43 to explore the relationship between miRNA and dis-
ease inspires us to apply similar ideas to predict the association be-
tween lncRNA and disease.

In this study, we present a similarity kernel fusion (SKF) method to
predict lncRNA-disease association (SKF-LDA, for short). In the
proposed method, two different similarities, the functional similarity
and semantic similarity, are utilized with a new fusion approach.
The fusion step is built on the refined similarity matrices by a
neighbor-based constraint and iterates over the similarity matrices



Figure 2. The AUC Values with Different as
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instead of a simply weighted addition. The final lncRNA-disease asso-
ciation is computed by a normal Laplacian regularized least-squares
method. To demonstrate the prediction performance of the proposed
SKF-LDA, the leave-one-out cross-validation (LOOCV) and 5-fold
cross-validation (5-fold CV) frameworks are implemented. The exper-
imental results showed that the proposed SKF-LDA achieves 0.9049
and 0.8743± 0.0050 in terms of AUC value in the scheme of LOOCV
and 5-fold CV. Furthermore, in case studies, 9, 10, and 7 out of the top
10 predicted lncRNAs for disease hepatocellular carcinoma, lung can-
cer, and prostate cancer, respectively, are confirmedby recent research.
RESULTS
Overview of Proposed Method

The proposed SKF-LDA method can be summarized in four steps, as
shown in Figure 1. First, we construct the lncRNA-disease correlation
matrix based on the known lncRNA-disease association. Second, we
calculate lncRNA similarity (lncRNA expression similarity, lncRNA
cosine similarity) and disease similarity (disease semantic similarity,
disease cosine similarity). Third, SKF is used to integrate the two sim-
ilarities of lncRNAs and diseases. Lastly, we obtain the predicted
lncRNA-disease association matrix by the Laplacian regularized
least-squares method.

We verify the performance of SKF-LDA by LOOCV and 5-fold
CV. The idea of LOOCV is to use one of the 540 lncRNA-disease re-
lationships as a test sample and the rest as training set. 5-fold CV
randomly divides 540 lncRNA-disease associations into 5 parts;
each time, one part is used as a test set and the remaining as training
sets. When one dataset is used as the test set, the prior knowledge is
removed before calculating the similarity, and the associations in the
dataset are regarded as unknown; in other words, the initial 1 is set to
be 0. When the final predicted value is higher than the threshold for
those who have the associations, the prediction is correct. According
to different thresholds, various false-positive rates (FPRs; 1 � speci-
ficity) and true-positive rates (TPRs; sensitivity) are obtained. Based
on these data, we can plot the receiver operating characteristic
(ROC) curve and get the area under the ROC curve (AUC). The
prediction ability is perfect if AUC = 1, the prediction ability tends
to be random if AUC = 0.5, and AUC = 0 indicates that the forecast
result is negative prediction. In addition, we adopt the area under the
precision-recall curve (AUPR) as another measurement. In order to
verify the accuracy of SKF-LDA, the precision (PRE), sensitivity
(SEN), accuracy (ACC), F1-score (F1-score) and Matthews’s correla-
tion coefficient (MCC) are defined as follows:

PRE =
TP

TP + FP
; (Equation 1)

SEN =
TP

TP + FN
; (Equation 2)

ACC =
TN +TP

TP +TN + FN + FP
; (Equation 3)

F1 =
2� TP

2� TP + FP + FN
= 2� PRE � REC

PRE +REC
; (Equation 4)

and

MCC =
TP � TN � FP � FN

ðTN + FNÞ � ðTP + FPÞ � ðTN + FNÞ � ðTN + FPÞ;
(Equation 5)

where TP represents true positive, TN represents true negative, FP
represents false positive, and FN represents false negative.

Parameter Selection

In this paper, there are five parameters: the number of iteration,
t; the weight parameter a; the number of neighbors, K , in the
SKF; and the weight parameters bl and bd in Laplacian regular-
ized least squares. In the experiments, the iteration number is
set to be t = 2, and the value of a is set to be 0.1 after parameter
tuning. We set the value of a as a range from 0.1 to 1 with step
0.1. The AUC values with different as are shown in Figure 2
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 47
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Figure 3. The AUC Values with Different Values of the Number of Neighbors (K)
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based on the LOOCV scheme and 5-fold CV scheme. As shown
in Figure 2, the AUC values barely change when a is in the range
of 0.1 to 0.9 and decay fast in the range of 0.9 to 1. Since there
are 178 diseases and 115 lncRNAs in our data, the value of K
ranges from 10 to 110 with step 10. As shown in Figure 3, the
highest AUC value is achieved at K = 20 in the LOOCV scheme
and K = 40 in the 5-fold CV scheme. As for the weighting param-
eter blðbdÞ in Laplacian regularized least squares, previous
research has shown that the performance of Laplacian regulariza-
tion least squares (LapRLS) is robust to the paremeters, so we set
bl to be equal to bd as b, and in the experiments, the value of b
ranges from 10�3 to 1,000. As shown in Figure 4, the AUC values
in both the LOOCV scheme and 5-fold CV scheme change in a
small interval and achieve the highest value when b = 1.

Comparison with Other Fusion Methods

To verify the superiority of the SKF, we compared SKF with two
common fusion methods: average kernel fusion (AVG) and sim-
ilarity network fusion (SNF).44 We plotted the ROC curve and
the precision recall (PR) curve of three methods based on
LOOCV. As shown in Figure 5, the AUC values of SKF, AVG,
and SNF are 0.9049, 0.8511, and 0.8298, respectively. The
AUPR values of SKF, AVG, and SNF are 0.4082, 0.3955, and
0.2752, respectively. In summary, SKF performs better than other
fusion methods in terms of the prediction association accuracy
between lncRNA and disease.

Comparison with Single Similarity

In this paper, we combined different types of similarity for both
lncRNAs and diseases. To demonstrate the benefit of the combi-
nation, we performed a series of comparison experiments,
including all combinations of one single similarity for the lncRNA
and the disease. The AUC values of different combinations in
LOOCV and the 5-fold CV scheme are shown in Table 1, from
which we can see that the proposed SKF-LDA achieves the high-
est AUC values.
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Comparison with and without Neighbor Constraint

In this paper, we add a neighbor constraint to eliminate the noise ef-
fect. To demonstrate the benefit of the neighbor constraint, we tested
the case without the neighbor constraint in comparison, as shown in
Figure 6, which achieved 0.8915 and 0.8694± 0.0035 in LOOCV and
5-fold CV, respectively; and the one with the neighbor constraint
achieved 0.9049 and 0.8743± 0.0050, respectively, which validates
the effect of the neighbor constraint.

Comparison with Other Methods

To further validate the advantage of SKF-LDA, we compared our
method with four state-of-the-art methods, namely, RWRlncD,31

LRLSLDA,28 SIMCLDA30 and BRWLDA.32 As shown in Figure 7,
based on the LOOCV scheme, the AUC values of RWRlncD,
LRLSLDA, SIMCLDA, and BRWLDA are 0.6448, 0.8349, 0.8298,
and 0.8024, respectively, while the proposed SKF-LDA method
achieves 0.9049, which is much better than the others. In the
5-fold CV scheme, the AUC values of RWRlncD, LRLSLDA,
SIMCLDA, and BRWLDA are 0.6518, 0.8339, 0.8138, and
0.7907, respectively, while ours is 0.8743. The AUPR measure-
ment is also used to evaluate different methods. The AUPRs of
SKF-LDA, RWRlncD, LRLSLDA, SIMCLDA, and BRWLDA are
0.4081, 0.0808, 0.3343, 0.2555, and 0.3068, respectively. Mean-
while, we set two stringency levels to evaluate predictive
performance as shown in Table 2. When the stringency level of
specificity is set as Sp = 95%, the PRE, sensitivity, accuracy,
F1-score, and MCC of SKF-LDA are 0.4884, 0.3519, 0.97318,
0.5206, and 0.4013. When Sp = 99%, the PRE, sensitivity, accu-
racy, F1-score, and MCC of SKF-LDA are 0.2407, 0.5852,
0.9404, 0.7383, and 0.3501, which are higher than those of
RWRlncD, LRLSLDA, SIMCLDA, and BRWLDA.

Case Studies

To validate the ability of SKF-LDA to predict lncRNA-disease as-
sociations, case studies were conducted for three human diseases:
lung cancer, hepatocellular carcinoma, and prostate cancer. The



Figure 4. The AUC Values with Different bs

www.moleculartherapy.org
top 10 predicted lncRNAs of each disease are confirmed by two
other databases: Lnc2Cancer45 and MNDR.46

Lung cancer is one of the leading cancers that cause death. The death
rate for lung cancer is nearly 87%, as its malignancy has the highest
numbers among all cancers.47 Therefore, it is necessary to study the
biological mechanism and the cause of lung cancer. Here, in our ex-
periments, 9 of the top 10 lncRNA-lung cancer forecast results by
SKF-LDA are confirmed by known databases, as shown in Table 3.
GAS5 is a novel lung cancer biomarker that is related to the diagnosis
and prognosis of lung cancer patients.48,49 CCAT2 not only promotes
the non-small-cell lung cancer production but also is one specific
lncRNA of lung adenocarcinoma.50 UCA1 is overexpressed in lung
cancer cells, because it induces resistance to T790M in the AKT/
mTOR pathway of non-small-cell lung cancer.51

Hepatocellular carcinoma (HCC) is one of the most often seen types
of cancer in the world. Since many HCC patients are already in
Figure 5. The ROC Curve and the PR Curve of Three Integration Methods
advanced stages of cancer when they are diagnosed, it is urgent to un-
derstand the principle of HCC and improve early diagnosis ability.52

Studies have shown that lncRNAs have a vital effect on human
HCC.53 In this study, the top 10 lncRNAs of lncRNA-HCC results
based on SKF-LDA are confirmed by known databases and related
literature as shown in Table 4. Studies have shown that GAS5 is
downregulated in most cell cancer patients and can be regarded as
an important prognostic factor for HCC.54,55 In addition, UCA1 pro-
motes the development of HCC by inhibiting miR-216b and acti-
vating the FGFR1/ERK signaling pathway.56 PVT1 is upregulated
during the liver development and contributes to HCC by affecting
the lncRNA-hPVT1/NOP2 pathway.57

Prostate cancer is also a common form of malignancy among males
and accounts for the second leading cause of cancer fatality.58 The
ability to explain the principles of prostate cancer from a genetic
perspective will help us to diagnose and prevent prostate cancer. 4
of the top 5 lncRNAs are successfully found in the databases, while
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 49
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Table 1. The AUC Values of SKF-LDA and Other Single Similarity in LOOCV

and 5-fold CV Scheme

lncRNA Similarity Disease Similarity LOOCV 5-fold CV

Expression semantic 0.8512 0.8476 ± 0.0034

Expression cosine 0.8630 0.8375 ± 0.0046

Cosine semantic 0.8835 0.8502 ± 0.0073

Expression cosine 0.8754 0.8519 ± 0.0070

Expression + cosine semantic + cosine 0.9049 0.8743 ± 0.0050

Molecular Therapy: Nucleic Acids
7 of the top 10 lncRNAs are found in the databases based on
SKF-LDA, as shown in Table 5. Different variants of CDKN2B-AS1
are associated with prostate cancer.59 CCAT2 is upregulated in pros-
tate cancer patients and affects the development of prostate cancer by
changing the epithelial-mesenchymal transition.50 Among prostate
cancer patients, the XIST gene locus is hypomethylated. This phe-
nomenon may contribute to a further realization of the biological
mechanism of prostate cancer.60
DISCUSSION
Numerous literatures have shown that lncRNA is of great importance
in disease. Studying the relationship between lncRNA and disease not
only helps us to realize the fundamentals behind disease but also
contributes to the prognosis and prevention of disease. Since the cur-
rent biological experimental methods are time consuming, many
lncRNA-disease predictive models have emerged. In this paper, the
proposed SKF-LDA method combines both the expression similarity
with cosine similarity for lncRNAs and the semantic similarity with
cosine similarity for diseases with an effective fusion method.
Compared with the other four methods, SKF-LDA performs better
in terms of AUC and AUPR in the LOOCV and 5-fold CV schemes.

Other important reference indices show a perfect performance
of SKF-LDA as well. To further validate the accuracy of the
Figure 6. The ROC Curve and the PR Curve When Using Neighbor and without
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SKF-LDA, we predicted three diseases (lung cancer, HCC, prostate
cancer) based on the forecast result by SKF-LDA. We found that the
prediction success rates reached 90%, 100%, and 70%, respectively.
The reason for the excellent performance of the SKF-LDA method
is mainly due to several reasons as follows. First, SKF-LDA inte-
grates two lncRNA similarities and two disease similarities, which
provide us with rich biological information. Second, we integrate
different similarities with the neighbor constraint, which will
eliminate the noise data in the known dataset. Finally, the final
lncRNA-disease correlation prediction matrix is obtained by solving
an optimization model based on the Laplacian operator normaliza-
tion, which has shown its successful application in many other
related problems.

Still, the proposed method has some shortcomings. The original
lncRNA-disease association matrix is a sparse matrix. There were
only 540 associations for 115 lncRNAs and 178 diseases; that is to
say, there are only three associations per disease, which is not enough
and unstable for the forecast result. Meanwhile, there are only two
similarities in the current integration, and more biological knowledge
can be applied in the future.

MATERIALS AND METHODS
Human lncRNA-Disease Association Dataset

The lncRNADisease database61 is used as the known lncRNA-dis-
ease association dataset, which contains 687 confirmed lncRNA-dis-
ease associations between 369 lncRNAs and 247 diseases. After
eliminating lncRNAs without an expression profile62 and diseases
without disease ontology,63 540 known lncRNA-disease associations
including 115 lncRNAs and 178 diseases were obtained. From the
aforementioned known associations, we can get the lncRNA-disease
adjacency matrix A˛Rnl�nd , where nland nd are the number of
lncRNAs and diseases, respectively, and each row of matrix A rep-
resents one lncRNA, while each column denotes one disease. 0 in
Aði; jÞ indicates that the relationship between lncRNA lðiÞ and dis-
ease dðjÞ is still unknown, and 1 in Aði; jÞ indicates that lncRNA lðiÞ
Neighbor Constraint



Figure 7. The ROC Curve and AUC Values of Different Methods in LOOCV and 5-fold CV Scheme: SKF-LDA, RWRlncD, LRLSLDA, SIMCLDA, and BRWLDA
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has some relationship to disease dðjÞ. The definition of matrix A is
as follows:�

AðlðiÞ; dðjÞÞ= 1 lncRNA lðiÞ has association with disease dðjÞ
AðlðiÞ; dðjÞÞ= 0 lncRNA lðiÞ has no association with disease dðjÞ ;

(Equation 6)

Similarity Kernels for lncRNAs and Diseases

The proposed method is based on the currently accepted hypoth-
esis that lncRNAs with similar functionality tend to be associated
with diseases with semantic or phenotypic similarities, and vice
versa. Therefore, it is very important to get the similarity kernels
for both the lncRNAs and the diseases, which can provide
Table 2. Results of Different Methods

Measurement SKF-LDA RWRlncD31

AUC 0.9049 0.6448

AUPR 0.4082 0.0808

Sp = 99%

PRE 0.4884 0.1076

Sensitivity 0.3519 0.0444

Accuracy 0.9732 0.9651

F1-score 0.5206 0.0851

MCC 0.4013 0.0532

Sp = 95%

PRE 0.2407 0.1293

Sensitivity 0.5852 0.2741

Accuracy 0.9404 0.9321

F1-score 0.7383 0.4302

MCC 0.3501 0.1563
lncRNA-disease associations with more accuracy. In this paper,
first, we will compute the expression similarity and cosine similar-
ity for the lncRNAs. Second, we will get the semantic similarity
and cosine similarity for the diseases. Then, a kernel fusion
method is applied to all similarity kernels. At last, based on the
integrated lncRNA similarity kernel matrix and the disease simi-
larity matrix, the Laplacian regularized least-squares method is
used to get the final lncRNA-disease associations.

lncRNA Expression Similarity

The expression profiles of the lncRNAs are downloaded from Ar-
rayExpression: E-MEXP-3783,64 in which more than 1.5 million
expression profiles are collected by high-throughput sequencing.
The Spearman correlation is used to calculate the expression
LRLSLDA28 SIMCLDA30 BRWLDA32

0.8349 0.8298 0.8024

0.3343 0.2555 0.3068

0.4472 0.3539 0.4413

0.2982 0.2019 0.2926

0.9718 0.9692 0.9716

0.4593 0.3359 0.4527

0.3513 0.2526 0.3455

0.2283 0.2037 0.2100

0.5463 0.4722 0.4907

0.9393 0.9374 0.9379

0.7066 0.6415 0.6584

0.3271 0.2823 0.2937
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Table 3. The Top 10 lncRNA Candidates Predicted for Lung Cancer

Rank lncRNA Disease Evidence

1 GAS5 lung cancer lnc2Cancer2, MNDR

2 CCAT2 lung cancer MNDR

3 UCA1 lung cancer lnc2Cancer2, MNDR

4 HULC lung cancer unconfirmed

5 SPRY4-IT1 lung cancer MNDR

6 CCAT1 lung cancer MNDR

7 PVT1 lung cancer lnc2Cancer2, MNDR

8 NEAT1 lung cancer lnc2Cancer2, MNDR

9 XIST lung cancer MNDR

10 HNF1A-AS1 lung cancer MNDR

Table 4. The Top 10 lncRNA Candidates Predicted for Hepatocelluar

Carcinoma

Rank lncRNA Disease Evidence

1 GAS5 hepatocelluar carcinoma lnc2Cancer2, MNDR

2 UCA1 hepatocelluar carcinoma lnc2Cancer2, MNDR

3 PVT1 hepatocelluar carcinoma lnc2Cancer2, MNDR

4 CCAT2 hepatocelluar carcinoma lnc2Cancer2, MNDR

5 CDKN2B-AS1 hepatocelluar carcinoma MNDR

6 CCAT1 hepatocelluar carcinoma lnc2Cancer2, MNDR

7 BANCR hepatocelluar carcinoma lnc2Cancer2, MNDR

8 PTENP1 hepatocelluar carcinoma lnc2Cancer2, MNDR

9 SPRY4-IT1 hepatocelluar carcinoma lnc2Cancer2, MNDR

10 NEAT1 hepatocelluar carcinoma lnc2Cancer2, MNDR

Molecular Therapy: Nucleic Acids
similarity between different lncRNAs.28,65 The matrix SL1˛ Rnl�nl de-
notes the similarity of lncRNA expression, where element SL1ði; jÞ
represents the similarity degree between lncRNA lðiÞ and lncRNA
lðjÞ; values range from 0 to 1.

Disease Semantic Similarity

The disease semantic is very important information in character-
izing a disease. The directed acyclic graph (DAG) has been studied
to calculate the semantic similarity of diseases and shows great
performance.66,67 In this paper, the semantic similarity is also
used as one dimension of disease similarity. The raw data of seman-
tic similarity are downloaded from the U.S. National Library of
Medicine. Based on medical subject heading (MeSH) description in-
formation, a DAG, Gdi = ðdi;Tdi; EdiÞ , can be constructed, where Tdi

denotes that the ancestor node of disease di including itself, Edi is
the corresponding connection of di.

68 The disease semantic similar-
ity between disease di and its ancestor disease p is calculated as
follows:

DdiðpÞ =
�
maxfu � Ddiðp0Þ j p0˛children of tg if psdi
1 if p= di

;

(Equation 7)

where the disease p˛Tdi, u is the weight parameter of the semantic
similarity of diseases, and u= 0:5 by default.

Also, we can define the semantic value for each disease as follows:

DVðdiÞ =
X
p˛Tdi

DdiðpÞ: (Equation 8)

With the similarity and semantic value defined, the semantic similar-
ity matrix SD1˛Rnd�nd can be calculated. The similarity between arbi-
trary disease dðiÞ and disease dðjÞ is computed as follows:

SD1

�
di; dj

�
=

P
p˛TdiXTdj

�
DdiðpÞ+DdjðpÞ

�

DVðdiÞ+DV
�
dj
� : (Equation 9)
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Cosine Similarity for lncRNAs and Diseases

The expression profile similarity for lncRNAs and the semantic sim-
ilarity for diseases are two commonly used similarity kernels.30,68,69

To better improve the similarity kernels, one more dimensional sim-
ilarity is used in the proposed method. Previous studies have
showed that cosine similarity is successfully applied to collaborative
filtering recommendation algorithms,70,71 which inspired us to
combine such similarity into the lncRNA-disease association
prediction.

The principle of lncRNA cosine similarity is based on the assumption
that if lncRNA lðiÞ and lncRNA lðjÞ are similar to each other, then, in
the lncRNA-disease association matrix, pattern Aði; :Þ and pattern
Aðj; :Þ should be similar to each other. The same assumption should
also be true for diseases, and the cosine similarity between lncRNA
lðiÞ and lncRNA lðjÞ is calculated as follows:

SL2

�
li; lj

�
=

Aði; :Þ,Aðj; :Þ
kAði; :Þ k � kAðj; :Þ k ; (Equation 10)

whereAði; :Þ represents the ith row of the lncRNA-disease association
matrix A and contains the relationship of all the diseases to lncRNAs
lðiÞ.

Similarly, the cosine similarity between disease dðiÞ and disease dðjÞ
can be calculated as follows:

SD2

�
di; dj

�
=

Að:; iÞ,Að:; jÞ
kAð :; iÞ k � kAð:; jÞ k ; (Equation 11)

where SD2˛Rnd�nd is the cosine similarity matrix for diseases, and
Að:; iÞ represents the ith column of the lncRNA-disease association
matrix A.

SKF for lncRNAs and Diseases

Now we have two lncRNA similarity kernels (lncRNA expression
similarity and lncRNA cosine similarity) and two disease similarity
kernels (disease semantic similarity and disease cosine similarity).



Table 5. The Top 10 lncRNA Candidates Predicted for Prostate Cancer

Rank lncRNA Disease Evidence

1 CDKN2B-AS1 prostate cancer MNDR

2 CCAT2 prostate cancer lnc2Cancer2, MNDR

3 XIST prostate cancer lnc2Cancer2, MNDR

4 PTENP1 prostate cancer lnc2Cancer2, MNDR

5 LSINCT5 prostate cancer unconfirmed

6 IGF2-AS prostate cancer unconfirmed

7 SPRY4-IT1 prostate cancer lnc2Cancer2, MNDR

8 MINA prostate cancer unconfirmed

9 CCAT1 prostate cancer lnc2Cancer2

10 BANCR prostate cancer MNDR
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Next, we use SKF to integrate the two lncRNA similarity kernels SLn;
n = 1; 2. In the first step, we normalize each lncRNA similarity ker-
nels as follows:

Pn

�
li; lj

�
=

SLn
�
li; lj

�
P
lk˛L

SLn
�
lk; lj

�; (Equation 12)

where L= flignli= 1 represents the set of lncRNAs, and Pn represents the
normalized kernel and satisfies

P
lk˛L

Pnðli; ljÞ = 1.

In the second step, we create a neighbor-constraint kernel for two
lncRNA similarity kernels as follows:

Sn
�
li; lj

�
=

8>><
>>:

SLn
�
li; lj

�
P
lk˛Ni

SLnðli; lkÞ if lj˛Ni

0 if lj;Ni

; (Equation 13)

where Snðli; ljÞ denotes a neighbor-constraint kernel and satisfiesP
lk˛L

Snðli; ljÞ = 1. Here, the neighbor Ni of lncRNA li is defined by

the most K similar lncRNAs to li.

In the third step, we mix up the normalized similarity kernel Pn and
the neighbor-constraint kernel Sn literally, as follows:

Pt + 1
n = a

0
@Sn �

P
rsn

Pt
r

2
� STn

1
A+ ð1�aÞ

P
rsn

P0
r

2
; (Equation 14)

where Pt + 1
n denotes the nth kernel obtained after tth iterations,

P0
r denotes the initial value of Pt

r , and a˛ð0; 1Þ denotes the weight
parameter. After tth iterations, the final kernel is obtained as
follows:

SL =
1
2

X2

n= 1

Pt + 1
n : (Equation 15)
In the fourth step, one more weighted matrix is added to the embed-
ding of more neighbor information. The weightedmatrix is as follows:

u
�
li; lj

�
=

8<
:

1 if li˛Nj X lj˛Ni

0 if li;Nj X lj;Nj

0:5 otherwise
: (Equation 16)

Finally, we get the integrated lncRNA similarity kernel matrix
SL�˛Rnl�nl as follows:

SL� = u
�
li; lj

�� SL: (Equation 17)

Similarly, we can get the integrated disease similarity kernel matrix
SD�˛Rnd�nd .

Laplacian Regularized Least Squares for lncRNA-Disease

Association

With the lncRNA similarity matrix SL� and the disease similarity
matrix SD� obtained by the SKF method, LapRLS is used to predict
the potential lncRNA-disease association. From the view of lncRNAs,
we can build the minimization model as follows:

minFlkA� Fl k 2
F + blkFT

l LlFl k
2

F ; (Equation 18)

where k, k F is the Frobenius norm; A is the initial known lncRNA-
disease association matrix; bl is the weighting parameter of LapRLS;
Fl˛Rnl�nl is the correlation matrix in the lncRNA space; and
Ll =D�1=2

l ðDl �SL�ÞD�1=2
l is the normalized similarity matrix, where

Dl˛Rnl�nl is the diagonal matrix obtained by summing the elements of
each row of the lncRNA similarity matrix SL�. The first objective
function in Equation 18 is to make sure that the obtained new corre-
lation matrix is similar to the known one. The second objective func-
tion is to make sure that the obtained correlation matrix is smooth
over the lncRNA space. We can solve Equation 18 by calculating
the derivative of the objective function as follows:44

Fl = SL�ðSL� + blLlSL
�Þ�1A: (Equation 19)

Similarly, we can obtain the optimal correlation matrix Fd in the dis-
ease space as follows:

Fd = SD�ðSD� + bdLdSD
�Þ�1AT : (Equation 20)

Finally, we integrate the prediction matrix F˛Rnl�nd from the lncRNA
and disease space and obtain the final prediction association matrix as
follows:

F =
Fl + FT

d

2
: (Equation 21)
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