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Patients with schizophrenia diverge in their clinical trajectories. Such diverge outcomes

may result from the resilience provided by antioxidant response system centered on

glutathione (GSH). Proton Magnetic Resonance Spectroscopy (1H-MRS) has enabled

the precise in vivo measurement of intracortical GSH; but individual studies report highly

variable results even when GSH levels are measured from the same brain region. This

inconsistency could be due to the presence of distinct subgroups of schizophrenia

with varying GSH-levels. At present, we do not know if schizophrenia increases the

interindividual variability of intracortical GSH relative to matched healthy individuals. We

reviewed all 1H-MRS GSH studies in schizophrenia focused on the Anterior Cingulate

Cortex published until August 2021. We estimated the relative variability of ACC GSH

levels in patients compared to control groups using the variability ratio (VR) and

coefficient of variation ratio (CVR). The presence of schizophrenia significantly increases

the variability of intracortical GSH in the ACC (logVR= 0.12; 95% CI: 0.03–0.21; log CVR

= 0.15; 95%CI= 0.06–0.23). Insofar as increased within-group variability (heterogeneity)

could result from the existence of subtypes, our results call for a careful examination

of intracortical GSH distribution in schizophrenia to seek redox-deficient and redox-

sufficient subgroups. An increase in GSH variability among patients also indicate that

the within-group predictability of adaptive response to oxidative stress may be lower in

schizophrenia. Uncovering the origins of this illness-related reduction in the redox system

stability may provide novel treatment targets in schizophrenia.
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INTRODUCTION

Glutathione is an antioxidant molecule seen as a fundamental
component in the response to oxidative stress in the brain
(1). Animal models that mimic the phenotype of schizophrenia
have been shown to have low central glutathione levels (2,
3). These pre-clinical studies have predicted reduced brain
glutathione in schizophrenia, which when corrected by using
GSH precursors or drugs that enhance the genetic regulation
of GSH transcription [via Nrf2 pathways (4)] could reduce
symptoms of schizophrenia. However, in vivo measurement of
GSH from the brain using Magnetic Resonance Spectroscopy
(MRS) has produced inconsistent results to date. Some studies
have indicated the presence of a small to medium sized reduction,
while others have noted no differences, or higher GSH in
schizophrenia (5, 6). This has raised the speculation that there
may be two subgroups of patients with schizophrenia; one with
increased and the other with decreased GSH levels (7). To date,
there is no empirical evidence to support this hypothesis of
intracortical GSH variability in schizophrenia.

In recent times, meta-analysis of group variance has emerged
as an important method in the investigation of therapeutic (8,
9) and neurobiological (10, 11) heterogeneity in schizophrenia.
This approach looks beyond synthesizing effect sizes (mean
differences) from pooled group comparisons. Instead, by
comparing group variances we can test if distinct subgroups or
more pronounced individual differences occur in patients relative
to healthy subjects. To date, meta-analyses have established
a small reduction in GSH levels in the anterior cingulate
cortex (ACC), the most sampled site for MRS studies on GSH
in schizophrenia, by averaging mean GSH values (7, 12). In
the present study, we examine the systematic changes in the
variability of ACC GSH among patients with schizophrenia.

Greater variability in GSH levels in schizophrenia would
mean that some patients (i.e., the putative low-GSH subgroup)
are more likely to benefit from the use of GSH precursors
or drugs that activate Nrf2 pathway than the others. In other
words, the outcomes of antioxidant trials are likely to be
more robust when the treatment is stratified for the GSH-
based subgroups. Identifying GSH-based subgroups will also
enable more precise mechanistic investigations of the antioxidant
system in schizophrenia.

METHODS

Search Process
We followed the search process set out in our previous meta-
analysis ACC GSH studies (7) and extended the time line to 31
August 2021 and searched MEDLINE electronic database. We
used the following search terms: (schizophrenia OR schizo∗ OR
psychos∗ OR psychot∗) AND (“1H-MRS” OR “1H NMRS” OR
“1HMRS”OR “MRS”OR “Magnetic resonance spectroscopy”OR
“Spectroscopy” OR “proton magnetic resonance spectroscopy”)
AND (“glutathione” OR “GSH”). To include studies reporting
GSH as a secondary measure, we used the terms (“myoinositol”
OR “NAA” OR “n-acetyl aspartate” OR “glutamine” OR
“neurometabolic” OR “Glutamate” OR “Glu” OR “GABA” OR

“Lactate” OR “creatinine”) and examined the results for reported
GSH values. Next, we repeated the search with Google Scholar
and EMBASE (through Ovid search engine) to identify journal
articles that were not indexed on MEDLINE. We also undertook
a manual search of reference lists of review articles and eligible
full text articles. Finally, as in our prior study, we also searched
the citation records of Google Scholar for all identified full
text articles in order to locate in press and pre-print articles
that are not yet indexed. Two authors undertook independent
searches using the inclusion and exclusion criteria without any
exchange of notes. This followed the guidelines set out by the
consensus statement from PRISMA group (13). The protocol
for this updated review has not been previously published or
registered elsewhere. The inclusion and exclusion criteria were
the same as used by Das et al. (7). In brief, all peer-reviewed
articles in English language reporting GSH concentrations in the
brain in patients with schizophrenia or schizoaffective disorder
in comparison with a healthy control group were included. As
in our prior work, we only included those studies with the
largest proportion of MRS voxel placed on the anterior cingulate
region of the medial prefrontal cortex, anterior to the posterior
commissure, as per the cingulate boundaries defined by Vogt
et al. (14). We excluded the following studies: (1) those reporting
only within-subject changes in GSH (2) studies that excluded
adult samples of age >16. If a single study was reported as two
samples, the largest sample was included. We utilized diagnostic
group-wise data provided by the study authors when the original
studies reported GSH data from non-diagnostic clusters (15).

We identified seven additional eligible datasets, along with
the 13 located in 2018 (details below). We used meta-analysis of
variance to investigate inter-individual variability in GSH levels
in the anterior cingulate cortex in patients with schizophrenia
or schizoaffective disorder compared to healthy controls. We
included 20 studies that reported measurements of GSH levels
in 589 patients and 601 controls and extracted research-specific
means and standard deviations of 1HMRS GSH concentrations
in the patient groups and control. This search procedure was a
continuation of our previous efforts reported in Das et al. (7).
Each study was independently extracted by at least 2 raters and
recorded in an Excel sheet. A table with the demographic details
of the studies before 2018 can be found inDas et al. (7); for studies
after 2018, see Table 1 in a recent review discussing challenges and
opportunities related to glutathione in schizophrenia (16).

Variation Ratio (VR) and Coefficient of Variation Ratio
(CVR) were used to quantify variation differences (17). Our first
variability outcomemeasure is the natural logarithm of variability
ratio (logVR), where VR is the ratio of standard deviation
estimates between the patients and controls, as shown below:

logVR = log

(

σ̂p

σ̂c

)

= log

(

sp

sc

)

+
1

2(np − 1)
−

1

2 (nc − 1)
,

where σ̂p and σ̂c are estimates of population standard deviations
(SDs), sp and sc are reported sample SDs, and np and
nc are sample sizes of the patient group and the control
group, respectively.
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The first measure focuses only on the variability of the internal
measure values in the two groups, and we also report the results
of the analysis using the natural logarithm of the coefficient of
variation (logCVR), where the CVR is the ratio of the estimated
total coefficient of variation between the patient and the control
group, as an outcome measure. This measure quantifies the
difference in variability after scaling to the mean of each group.
ln CVR can be determined as follows:

logCVR = log

(

σ̂p/ xp

σ̂c/ xc

)

= log

(

sp/ xp

sc/ xc

)

+
1

2(np − 1)
−

1

2 (nc − 1)
,

where xp and xc are reported sample means for patient and
control groups, respectively. A logVR or logCVR of 0 indicates
equal variability between patients and controls, >0 indicates
greater variability in patients, and <0 indicates lower variability
in patients.

We also used the standardized mean difference with
heteroscedastic population variance (SMDH) to estimate the
effect size of Hedges’ g. Hedges’ g effect values of 0.20, 0.50 and
0.80 respectively represent small, medium and large effects (18).

Meta-analysis was performed using R Studio’s Metafor
package (19). We used random-effects model to calculate the
pooled effect size, with the 95% confidence limit. This approach
can provide more reliable inferences when there is significant
heterogeneity between individual studies. We used I2 statistics
for quantification and Cochran’s Q for statistical significance test
to evaluate heterogeneity.

RESULTS

Search Results
A total of 17 studies were identified by literature search [one with
two eligible contrasts (20) and one with three eligible contrasts
(21), making a total of 20 datasets] in schizophrenia (6, 15, 20–
34). All these studies were published between 2001 and 2021, and
included a total of 589 patients and 601 controls. The sample sizes
ranged from 9 to 88 for controls and 11 to 74 for patients.

Pooled Effect-Size
Between-studies heterogeneity was not significant for VR (I2 =

12.8%, Cochran’s Q = 24.14, p = 0.19) and CVR (I2 = 0%,
Cochran’s Q = 14.33, p = 0.76) estimates, but as expected, for
SMDH there was a significant between-studies heterogeneity (I2

= 47.4%, Cochran’s Q= 37.15, p= 0.008).
A random-effect analysis showed increased variance in GSH

levels in patients with schizophrenia compared to healthy
controls (logVR = 0.12; 95% CI: 0.03–0.21; log CVR = 0.15;
95% CI = 0.06–0.23). When the SMDH method was used,
the mean GSH levels had no significant difference between
the two groups (SMDH = −0.12; 95% CI: −0.29–0.04). These
results are displayed in the forest plot in Figure 1. On visual
examination (Figure 1), the funnel plots for the three metrics
were symmetric, and the Begg’s test and the Egger’s test for
publication bias were not statistically significant (logVR: 0.7246

for Begg’s test; 0.7993 for Egger’s test; log CVR: 0.2884 for
Begg’s test; 0.4453 for Egger’s test; SMDH: 0.6771 for Begg’s test;
0.6791 for Egger’s test), confirming an absence of significant
publication bias.

DISCUSSION

The main finding from this meta-analysis is the observation of
a small, but statistically significant increase in the variability
of GSH concentration in the ACC among patients with
schizophrenia compared to healthy control subjects. This result
was not attributable to publication bias, or a significant between-
studies heterogeneity. Thus, we confirm the hypothesis that ACC
GSH levels become notably variable among individuals with
schizophrenia, adding credence to the existence of subgroups
with both increased and decreased GSH within the diagnostic
category of schizophrenia. We also note that there was no
significant mean reduction in GSH levels when considering
patients with schizophrenia as a single homogenous group. There
was a low to medium between-studies heterogeneity (I2 < 50%)
in the mean effect estimate; but this was not driven by any
single study, again adding to the argument that between subjects’
variation may contribute to the dispersion of the mean effect in
MRS studies of ACC GSH.

Why should the GSH levels be more variable within the
patient group?We see two possibilities here. Firstly, the increased
among-individuals variability in GSH levels may result from the
presence of a dynamic, time-varying course for GSH aberrations
in schizophrenia. Such dynamic changes in putative biomarkers
is a well-established aspect of schizophrenia (39). Given that
GSH is a component of stress-response system, acute, untreated
symptomatic psychosis may relate to higher levels of GSH than
stable clinical states of schizophrenia. This putative GSH excess
may relate to the hypothesized excitotoxic surge in glutamate
(40) that affects the redox balance. GSH surge may occur as a
compensatory process to limit the excitotoxicity. We observed
that in untreated first episode patients, an elevated ACC GSH
at the time of presentation occurred in those with higher levels
of thought disorder, in conjunction with reduced integrity of
the adjacent white matter tract (cingulum) (41). Interestingly,
such untreated symptomatic patients with higher GSH respond
much faster to the regular antipsychotic treatments over the
next 6 months (42). We also noted that while glutamate excess
related to the degree of disinhibition within the dorsal ACC node
of the Salience Network, GSH excess had the opposing effect,
supporting the hypothesized compensatory function (38). In line
with this evidence, we observe higher than expected GSH levels at
the prodromal, clinical high-risk state of psychosis, in association
with better social and functional outcomes (43). Second, as
the trajectory of schizophrenia unfolds, the putative early
compensatory GSH surge may not be sustained; instead a relative
GSH-deficit statemay ensue especially in patients who experience
poorer outcomes such as higher residual symptom burden (34).
When both high and low GSH phases are captured in a sample
with some patients in an acute stage of excitotoxic compensation
and others in the later “spent” stage of decompensation, this
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FIGURE 1 | Forest plots of studies for variability ratio (VR) and coefficient of variation ratio (CVR) and standardized mean difference with heteroscedastic population

variance (SMDH) of GSH levels in schizophrenia vs. healthy subjects. First column lists the first author name and year of the studies from which the data point for

analysis were obtained. For studies that yielded more than one contrast, the characteristic feature separating the contrasts are given in brackets. The last column of

the Forest Plots lists the mean and 95% CI of the estimates. The summary statistics based on Random effects model is provided for each synthesis at the bottom of

the list. Funnel Plots for each metric are also displayed. Statistical tests for publication bias were not significant; these are reported in the Results section.
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may increase sample heterogeneity as reported here. If this is
the case, then longitudinal follow-up of patients with initially
high GSH levels, should reveal a dynamic lowering of GSH to
generate a deficit state over time. See Figure 2where this scenario
is described as “Adaptive GSH Changes.”

The second possible explanation of the increased variance is
the presence of distinct subgroups with stable but different levels
of GSH as a “trait” feature of schizophrenia. Support for this

explanation comes from the existing longitudinal studies of ACC
GSH in schizophrenia which do not reveal a picture of dynamic
change in GSH levels. Instead, existing longitudinal MRS (44, 45)
as well as genetic studies (31) indicate a constitutional deficit
of GSH, at least in some individuals with schizophrenia. The
modest effect-size of the reported GSH deficit even in the chronic
and partially treatment-resistant samples (7, 46), suggests that
either (1) only a small number of patients belong to the putative

FIGURE 2 | (A) In this model, a primary defect in glutathione generation is thought to contribute to NMDA hypofunction in cortical microcircuits, leading to relative

glutamatergic excess via disinhibition of pyramidal neurons. This induces a glutamatergic excess state. As excitotoxic damage ensues, loss of dendritic spines and a

longer-term picture of cognitive deficits and negative symptoms develop. See Steullet et al. (35) for more details. (B) In this model, GSH changes are considered to be

adaptive consequences of glutamatergic aberrations. Primary glutamatergic deficit, likely originating from aberrant neuron-glia interactions, leads to an early GSH

excess via diversion of GSH-glutamate metabolic pathways. A two-way interaction between GSH and glutamate may serve to counteract both glutamatergic deficit

and excess in early stages. This adaptive response restores glutamate to near normal levels as a compensatory mechanism. But this cannot be sustained for long

especially as neural activity diminishes and GSH reserves are depleted, with loss of dendritic spines and a longer-term picture of cognitive deficits and negative

symptoms. See Koga et al. (36), and Sedlak et al. (37), for how GSH levels may relate to glutamate and Limongi et al. (38) for observations relating to opposing effects

of anterior cingulate GSH and glutamate on effective connectivity. The relationship between GSH and glutamate is discussed in detail elsewhere (16). Credits for

images used in this figure: Scidraw.io doi: 10.5281/zenodo.4421165; 10.5281/zenodo.3926048; 10.5281/zenodo.3926143; 10.5281/zenodo.3926604.

Ball-and-stick model of the glutathione molecule from Ben Mills via Wikimedia commons.
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GSH-deficit (or redox-deficient) subgroup. (2) some individuals
from the putative GSH-excess subgroup (or redox sufficient) may
still progress to chronic or resistant stages of schizophrenia. In
the context of our current observation of increased variation in
GSH levels in schizophrenia, the extant literature supports the
model of ‘Primary GSH Deficit’ (Figure 2) in some individuals
with schizophrenia; this deficit may be pathoplastic and influence
the treatment outcomes [e.g., treatment resistance (47)] among
patients. Demonstrating bimodal distribution of GSH levels in
large samples of patients in early illness stages, in conjunction
with clinical and functional validation of the distributed values,
will add substantial evidence to our claim regarding the existence
of subgroups (16).

In addition to the above considerations, it is also likely that
the use of antipsychotics and other medications as well as a
high degree of variability in lifestyle factors and daily functioning
(including diet) may make the patient group more heterogenous.
A detailed exposition of methodological approaches required
to conclusively establish the presence of the deficient/sufficient
subtype can be found elsewhere (16).

The lack of significant mean difference, despite a trend toward
GSH-deficit in schizophrenia, compared to the two prior meta-
analyses (7, 12) relates to several recent studies that failed to
demonstrate a group difference for patients vs. healthy controls
comparisons, and one study showing a relatively higher GSH
levels in patients (6). This latter study (6) from our group,
specifically recruited early stage, untreated patients from a
first-episode service. Such patients typically have much better
outcome compared to patients with much more established
illness and long-term antipsychotic exposure. Irrespective of the
mean change, an increase in GSH variability in schizophrenia
reflects reduced within-group predictability of the adaptive
antioxidant response when patients face increased oxidative
stress. It is possible that patients adopt different stress-response
strategies other than GSH-centered mechanisms when facing
redox stress, generating variance in GSH levels. Quantifying
the covariance between GSH and other critical intracortical
markers of antioxidant pathways will be required in the future
to investigate this notion.

We highlight several limitations of this meta-analysis of
variance. We restricted our search to one brain region (ACC)
as many studies in schizophrenia have focussed on this region;
the variability may be higher or lower in other regions of the
brain. Between studies, the anatomical definition of ACC voxel
was variable, as discussed in our prior work (7). We also included
only studies that focussed on patients with schizophrenia after
the diagnosis; prodromal or high-risk states are characterized
by notable morphological changes (48) but these were not
captured in our study. Finally, higher variance in an illness-
afflicted group may occur due to higher variability in the
measurement approaches (e.g., higher variability in the MRS

voxel placement in the patient group; head movement being
higher among patients), which cannot be inferred directly from a
meta-analytical synthesis. Head-to-head comparisons with other
patient groups will be needed to infer specificity of this finding
to schizophrenia.

Individual variance in oxidative stress response is a feature
of schizophrenia and likely crucial in identifying the potential
prognostic trajectory for individuals with this condition. Our
findings raise two key questions. First is whether the MRS
based subtyping of patients could assist interpreting outcomes of
future antioxidant trials in this illness. Targeting GSH-deficient
phenotypes with specific antioxidant interventions and studying
downstream biological effects could improve our understanding
of prognosis-determining factors that have a pathoplastic effect
on schizophrenia. Second is the question of how oxidative stress
based preclinical models of schizophrenia can be generated
to capture the full spectrum of this illness. A representative
model of schizophrenia that is true to its heterogenous clinical
phenotype likely includes both redox-deficient and redox-
sufficient individuals. We, like many other observers in the
field (49), consider antioxidant system to be an important non-
dopaminergic target for early intervention in schizophrenia;
addressing the questions raised here will be of critical importance
to realize the potential promise of this pathway in treating
psychotic disorders.
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